Impact of hemostasis and blood loss on outcome after liver surgery

de Boer, Maria Theresia

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Impact of blood loss on outcome after liver resection

Marieke T. de Boer
I. Quintus Molenaar
Robert J. Porte

Digestive Surgery 2007;24:259-264
ABSTRACT
Partial liver resections are the treatment of choice for patients with a malignant liver or bile duct tumor. The most frequent indications for partial liver resections are colorectal metastasis, hepatocellular carcinoma (HCC) and cholangiocarcinoma.
Liver resection is the only therapy with a chance for cure in these patients. Refinements in surgical technique and increasing experience have contributed to a reduction in perioperative morbidity and mortality in recent years. Despite these improvements, partial liver resections remain a major surgical procedure and carry the risk for excessive blood loss and a subsequent need for blood transfusion.
Blood transfusions have been associated with systemic side effects, such as depression of the immune system. Several studies have suggested that perioperative blood loss or transfusions have a negative impact on postoperative outcome.
However, it has been debated whether this is due to a real cause-effect relationship or merely the result of more complicated surgery. We have reviewed the literature concerning studies focusing on the relationship between blood loss and blood transfusion during liver surgery for malignant tumors and postoperative outcome. Most studies were based on a retrospective analysis of single center experiences, using uni- and multivariate statistical methods. Most studies have demonstrated a significant and clinically relevant association between blood transfusion and postoperative mortality and morbidity, especially postoperative infectious complications. The effect of blood transfusions on tumor recurrence and more long-term mortality is much less clear and evidence varies depending on the type of malignancy. The strongest indication that blood transfusion may have an impact on tumor recurrence has been found for patients with early stages of HCC. However, overall, no such effect could be demonstrated for patients undergoing partial liver resection for late stages of HCC, colorectal liver metastasis or cholangiocarcinoma.
INTRODUCTION

Liver resection has been accepted as the standard treatment for most benign and malignant liver tumors. True anatomical right hepatectomy was first described by Lortat-Jacobs in 1952.1 The subsequent early experience with hepatic resection has been discouraging, showing mortality figures over 20% for major hepatectomies in a retrospective series of 621 patients operated for a variety of indications.2 In 20% of these patients death was attributed to hemorrhage.2 Evolution of surgical and anesthetic techniques, better understanding of the segmental liver anatomy, new methods to control hemorrhage, and better patient selection have led to improvement in outcome. Nowadays liver resections are performed in specialized centers with a perioperative mortality rates of less than 5% even though the indications for liver resections have been extended, also to high-risk patients.3-9 In a consecutive series of 1222 liver resections Poon et al. have described a gradual reduction in transfused patients from around 90% in 1989 to 5% in 2003.3 Despite these improvements, blood loss remains one of the main predictors of both perioperative morbidity and mortality after liver resection.7,10 The possible negative sequelae of blood transfusions are well known and include alloimmunization,11-16 transmission of viral diseases,17 graft-versus-host disease,18 increased postoperative infection rate16,19-21 and increased incidence of tumor recurrence in certain cancers.16,22-27

In this paper an overview is given on the impact of blood loss and blood transfusion on outcome after liver resections for the most prevalent malignant tumors of the liver: colorectal metastasis, hepatocellular carcinoma (HCC) and cholangiocarcinoma.

Evolution of blood transfusions in liver surgery

The hypothesis that transfusion compromises outcome after liver resection has both been supported and refuted in various studies. Limitations of older studies were the small sample sizes but also the low numbers of non-transfused patients.28,29 More recent studies with larger numbers of both transfused and non-transfused patients have been able to confirm the detrimental effects of transfusion on the development of postoperative complications3,7,8,10 and perioperative death after liver resections.7,10 Poon et al. have described a series of 1222 consecutive liver resections for benign and malignant lesions between 1989 and 2003.3 In this time period a doubling of the number of resections was observed between the first (Group 1: 1989-1996) and last half (Group 2: 1996-2003) as a result of more liberal patient selection, leading to significantly more elderly patients, patients with more comorbidity and significantly worse preoperative liver function. Despite this, the intraoperative blood loss and transfusion requirements, as well as postoperative morbidity and hospital mortality were significantly lower in group 2, compared to group 1. Transfusion of blood products was one of the independent predictors of morbidity identified in a multivariate analysis.1 Another large retrospective study on the improvement of outcome after liver resections has been reported by Jarnagin et al.7 This group has described a consecutive series of 1803 liver resections for both benign and malignant lesions performed between 1992 and 2001. Over the years, an
increase in concomitant major procedures was observed, but operative mortality decreased from approximately 4% in the first 5 years of the study to 1.3% in the last 2 years. In a multivariate analysis, the number of hepatic segments resected and operative blood loss were the only independent predictors of both perioperative morbidity and mortality. 7

Immunosuppressive effect of blood transfusion
The possibility to store and transfuse blood has been a major advance in medicine in the 20th century, saving countless lives. One of the side effects of blood transfusion, however, is immunosuppression which is assumed to cause decreased tumor surveillance and worse outcome. 11, 16, 20 In different fields of cancer surgery these negative effects have been examined, but also disputed. Even though the percentage of patients receiving blood transfusion has decreased, 3 blood loss remains a major concern in liver surgery. 6, 30, 31, 32, 33 The mechanisms underlying the adverse effects of blood product transfusions with respect to postoperative outcome have been assumed to be related to the suppressive effects on the immune system. Although the exact mechanism of this is not fully understood, several studies have suggested that blood transfusions suppress host immunity via a reduction in natural killer cell function, decreased cytotoxic T-cell function, increased numbers of suppressor T cells and decreased function of macrophages and monocytes. 12, 13, 16 Many of these immunosuppressive effects are thought to be related to the number of leukocytes within the stored blood as well as to the length of blood storage. 34 Theoretically these immunosuppressive effects should be less in leukocyte-depleted blood transfusion, which is standard nowadays in most western countries. 35, 36 More and larger studies will be needed to confirm this assumed benefit of leukocyte-depletion.

Effects of blood loss and blood transfusion in colorectal metastases
Only few studies have focused on the effect of blood transfusions on outcome after partial liver resections for colorectal metastasis. Kooby et al have retrospectively described a series of 1351 patients who were treated for colorectal liver metastases between 1986 and 2001. 10 A total of 55% of these patients received some blood product transfusion (red blood cell (RBC), fresh frozen plasma (FFP), or platelet concentrate transfusion), 6% received autologues blood and 39% of the patients did not receive any transfusion. The percentage of patients transfused reduced markedly over time. Non-transfused patients had significantly fewer complications than patients who needed blood transfusions (33 vs 46%, P value <0.001). This effect was dose-related. Patients transfused with autologues blood had complication rates similar to patients receiving one or two allogeneic transfusions. Patients who received autologues blood transfusions had significantly more complications than patients who did not require transfusions. In a multivariate analysis, independent predictors of postoperative complications were blood transfusion (OR 1.5; P value =0.0008), extent of the resection (OR 2.0; P value =<0.0001) and male gender (OR 1.4; P value =0.002). In addition, blood transfusion was found to be a predictor for postoperative mortality on multivariate analysis.
Impact of blood loss on outcome after liver resection

(HR 3.7; 95% CI 1.7-8.4; P value =0.001) together with the extent of the resection (HR 4.9; 95% CI 1.8-13.8; P value =0.003). Blood transfusion, however, was not a significant predictor of long-term survival.10

In another retrospective study, Stephenson et al. have also analyzed the effect of blood transfusion on tumor recurrence in series of 55 consecutive patients who underwent partial liver resection for colorectal metastasis.28 In this study, an increase in number of units of blood transfused was found to be associated with a decreased time to recurrence in a Cox proportional hazards model analysis (RR 1.05; P value =0.0015).28 In contrast with these studies suggesting a relationship between blood transfusions and tumor recurrence after partial hepatectomy for colorectal metastasis, Younes et al. were not able to identify blood transfusion as an independent risk factor for tumor recurrence in a group of 116 patients.29 Although a significant association between blood transfusion and tumor recurrence was found in univariate analysis, this could not be confirmed as an independent predictor in multivariate analysis. These investigators found hypotensive episodes during surgery, the site of the primary tumor, level of serum CEA, and the number of metastases as the only significant independent predictors of tumor recurrence.29 Altogether, there is no convincing scientific support for an effect of perioperative blood transfusions on the risk of tumor recurrence after partial liver resection of colorectal liver metastases.

Effects of blood loss and blood transfusion in HCC

HCC is mainly found in cirrhotic livers and most studies focusing on this type of malignancy have focused on partial liver resection in cirrhotic patients. In a series of 155 patients undergoing extended hemihepatectomy for hepatocellular carcinoma, Wei et al. have analyzed risk factors for perioperative morbidity and mortality. The overall morbidity rate in this series was 55.5% and mortality rate was 8.4%.21 These investigators were able to identify perioperative blood transfusion (P value <0.001) and portal clamping during the resection (P value =0.023) as independent risk factors for postoperative morbidity. Independent risk factors for perioperative mortality were perioperative blood transfusion (P value =0.004) and comorbid illness (P value =0.019).21 Outcome after partial hepatectomy for HCC has also studied by Fan et al. in a large retrospective analysis of 330 patients operated between 1989 and 1997 in a single institution in Hong Kong.5 These investigators have reported a zero mortality rate in their series. There were no significant changes in the patient characteristics throughout the 9-year time period, but a significant reduction in intraoperative blood loss and blood transfusion requirements was observed in this time period. In the most recent years of this analysis, the median blood transfusion requirement was 0 ml, and 64% of the patients did not require any blood transfusion. In a univariate analysis, the volume of blood loss, volume of blood transfusions, and operation time correlated significantly with postoperative morbidity rates in the most recent two years (1996 and 1997). In a multivariate stepwise logistic regression analysis, operation time could be identified as the only parameter that correlated significantly with the postoperative morbidity rate.5
The effects of blood transfusion on recurrence in HCC after partial hepatectomies, has been studied in several series. Asahara et al have described 175 patients who underwent a partial liver resection for HCC between 1986 and 1994. The cumulative cancer-free survival rate for patients who had received blood transfusion (n=23) was significantly lower than that for patients who had not received blood transfusions (n=152) (P value = 0.003). Multivariate analysis for risk factors for recurrence in stage I and II of HCC showed significance for blood transfusion (P value = 0.006), extent of resection (P value = 0.04), and ICG-clearance (P value = 0.04). No significant effect of blood transfusion was observed on cancer-free survival rates in patients with HCC in stage III-IV. Also, no significant relation between blood transfusion and the degree of liver cirrhosis was found in this analysis. In another study of 252 patients undergoing partial liver resection for HCC, the incidence of tumor recurrence was found to be significantly higher in a subgroup of patients who had HCC without angio-invasion and had received intraoperative blood transfusion. These studies suggest that the impact of blood transfusions on tumor recurrence is most pronounced in patients with relatively early stages of HCC. These observations are in line with studies suggesting that immune surveillance is oncologically more relevant in early stages than in the more advanced stages of HCC.

Effects of blood loss and blood transfusion in cholangiocarcinoma

Very few studies have focused on the impact of blood transfusions on outcome after partial liver resections for cholangiocarcinoma. Nagino et al. have reported a series of 100 consecutive patients undergoing combined resections of extrahepatic bile ducts and part of the liver for hilar cholangiocarcinoma. Preoperative blood donation was performed in 73 patients in this series. Only 7 of these 73 patients (10%) required allogeneic blood transfusions. In the remaining 27 patients, 18 (67%) received allogeneic blood transfusion during surgery. During the postoperative period, 16 patients needed a blood transfusion. The incidence of postoperative complications was significantly higher in the 35 patients who received a perioperative blood transfusion than in the 65 patients who did not (94% vs 52%; P value < 0.0001). No multivariate analysis was done to identify independent risk factors.

In a recent publication by Liu et al, a group of 142 patients is described with hilar cholangiocarcinoma in the period 1989-2004. For comparison of outcome patients were divided between two groups: period 1: 1989-1998 and period 2: 1999-2004. Modifications in management resulted in a higher resection rate in period 2 than in period 1 (45 versus 16%). In multivariate analysis, resection of the tumor in period 2 and operative blood loss of 1.5 litres or less were significant independent determinants of improved overall survival. There is no data on the effects of blood transfusion on long-term survival or tumor recurrence after partial liver resection for cholangiocarcinoma.
CONCLUSIONS AND PERSPECTIVES FOR THE FUTURE

Recent improvements in the surgical techniques used for hepatic resections as well as optimal intra- and postoperative patient management have led to a significant improvement in short- and long-term outcome in patients undergoing partial liver resections. Blood transfusions have been identified as an independent predictor of postoperative morbidity and mortality. Unfortunately, many patients will get recurrent disease, even after complete oncological resection. The impact of blood transfusions on the risk for tumor recurrence has best been characterized for patients with early stages of HCC. Much less evidence exists with respect to the effect of blood transfusion on the risk of tumor recurrence after resections for colorectal liver metastases. A similar adverse effect of blood transfusion on tumor recurrence has been reported for gastric cancer, colon cancer, lung cancer and soft tissue carcinoma. The main problem with all these studies remains their retrospective design, which never allows complete ruling out of the possibility that blood transfusion and outcome are affected by a common underlying cause, such as more advanced disease, or more complex surgery. Nevertheless, investigators have tried to overcome these limitations by performing multivariate regression analyses, including variables that reflect severity of disease.

Although the exact mechanisms underlying the adverse effects of blood transfusions are not fully elucidated, residual amounts of donor leukocytes present in transfusions as well as preservation related changes in erythrocytes are assumed to be critically involved. Whether the increasing use of leukoreduction technologies will lead to a reduction of the negative impact of blood transfusion on outcome after liver resections needs to be awaited and requires additional studies. Future studies on blood loss and transfusion in liver surgery should focus on methods to further reduce blood loss and the need for allogeneic blood transfusion. Strategies to minimize the risks of allogeneic blood transfusion are leukocyte-depleted transfusions, short storage time and the use of autologous blood transfusion. Methods for autologous transfusion used in liver surgery include preoperative blood donation, intraoperative acute normovolemic hemodilution, and intraoperative blood salvage. However, these methods are not common clinical practice yet because of logistical reasons in preoperative blood donation or the required training of the operating team in intraoperative hemodilution. Furthermore, intraoperative blood salvage theoretically increases the risk of tumor cell dissemination.

In conclusion, the effects of blood loss and blood transfusions in liver surgery have been studied extensively. Most studies have demonstrated a significant and clinically relevant association between blood transfusion and postoperative morbidity, especially postoperative infectious complications. The effect of blood transfusions on tumor recurrence and more long-term mortality is much less clear and evidence varies depending on the indication for liver resection and the type of malignancy. The strongest indication that blood transfusion may have an impact on tumor recurrence has been found for patients with early stages of HCC, but no such effect could be demonstrated for patients undergoing partial liver resection for late stages of HCC, colorectal liver metastasis or cholangiocarcinoma.
REFERENCES

Impact of blood loss on outcome after liver resection

