Bottom-Up Signal Quality Impacts the Role of Top-Down Cognitive-Linguistic Processing During Speech Recognition by Adults with Cochlear Implants

Moberly, Aaron C.; Lewis, Jessica H.; Vasil, Kara J.; Ray, Christin; Tamati, Terrin N.

Published in:
Otology & Neurotology

DOI:
10.1097/MAO.0000000000003377

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher’s PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Bottom-Up Signal Quality Impacts the Role of Top-Down Cognitive-Linguistic Processing During Speech Recognition by Adults with Cochlear Implants

*Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; and †Department of Otorhinolaryngology – Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

Hypotheses: Significant variability persists in speech recognition outcomes in adults with cochlear implants (CIs). Sensory (“bottom-up”) and cognitive-linguistic (“top-down”) processes help explain this variability. However, the interactions of these bottom-up and top-down factors remain unclear. One hypothesis was tested: top-down processes would contribute differentially to speech recognition, depending on the fidelity of bottom-up input.

Background: Bottom-up spectro-temporal processing, assessed using a Spectral-Temporally Modulated Ripple Test (SMRT), is associated with CI speech recognition outcomes. Similarly, top-down cognitive-linguistic skills relate to outcomes, including working memory capacity, inhibition-concentration, speed of lexical access, and nonverbal reasoning.

Methods: Fifty-one adult CI users were tested for word and sentence recognition, along with performance on the SMRT and a battery of cognitive-linguistic tests. The group was divided into “low-,” “intermediate-,” and “high-SMRT” groups, based on SMRT scores. Separate correlation analyses were performed for each subgroup between a composite score of cognitive-linguistic processing and speech recognition.

Results: Associations of top-down composite scores with speech recognition were not significant for the low-SMRT group. In contrast, these associations were significant and of medium effect size (Spearman’s rho = 0.44–0.46) for two sentence types for the intermediate-SMRT group. For the high-SMRT group, top-down scores were associated with both word and sentence recognition, with medium to large effect sizes (Spearman’s rho = 0.45–0.58).

Conclusions: Top-down processes contribute differentially to speech recognition in CI users based on the quality of bottom-up input. Findings have clinical implications for individualized treatment approaches relying on bottom-up device programming or top-down rehabilitation approaches.

Key Words: Cochlear implant—Cognition—Sensorineural hearing loss—Spectro-temporal processing—Speech recognition.

functioning (5–7). Moreover, a listener relies more heavily on top-down processes—to a degree—when the signal is more degraded (8). However, it is unclear how bottom-up and top-down processes interact to explain outcome variability across different listeners, and in particular, adults with CIs. It also remains unclear how the experience of postlingual hearing loss impacts these bottom-up/top-down interactions in adults, while more is known regarding these effects in individuals with prelingual deafness (9). The current study explores these interactions across postlingual adult CI users.

Increased signal degradation results in greater dependence on cognitive-linguistic skills. In one explanatory framework, the Ease of Language Understanding (ELU) model (8), speech input is automatically bound in short-term memory. If this information matches speech sounds in long-term memory, automatic retrieval of the word occurs. In contrast, if there is a mismatch, controlled processing comes into play using higher-level linguistic knowledge (e.g., semantic context). Thus, the use of top-down processing primarily “kicks in” when bottom-up processing fails.

Based on the ELU model, and supported by previous findings (10), it is clear that the quality of the bottom-up input contributes substantially to speech recognition outcomes in CI patients. The current study aimed to investigate the relative role of top-down processing in subgroups of CI users with a range of bottom-up auditory processing ability. A widely employed approach to assessing bottom-up processing is through non-linguistic behavioral measures of spectral and temporal processing, known to demonstrate variability among CI users (11–14). Pertinent to the current study, a modified spectral ripple task, the spectral-temporally modulated ripple test (SMRT), was created to control for confounds of traditional spectral ripple tasks (15). For example, potential confounds include local loudness cues, or cues at the upper or lower frequency boundaries of the stimulus (15).

Multiple studies have shown significant correlations of SMRT thresholds with speech perception abilities in adult CI users (10,16,17). Thus, the SMRT has arisen as a promising tool to assess the perceptual fidelity of the signal delivered to the CI listener, with an important caveat. As discussed by multiple authors, the CI speech processor output is unpredictable for stimuli above 2.1 ripples per octave (RPO), leading to distortions related to aliasing (18–20). Thus, SMRT scores above 2.1 RPO should be interpreted cautiously or reassigned an upper limit score of 2.1 RPO. Nonetheless, taking these concerns into consideration, SMRT scores were treated in the current study as an indicator of bottom-up processing.

Previous findings have also established important contributions of individual cognitive-linguistic skills to speech recognition in CI patients. The foundation of the ELU model is that top-down processing depends on working memory (WM) (8), which is responsible for storing and manipulating information temporarily (21,22). In CI users, there is evidence that WM capacity contributes to speech recognition outcomes (23–25). Additional cognitive-linguistic skills have been linked to speech recognition variability in adult CI users: inhibition-concentration, information-processing speed, and nonverbal reasoning. As listeners process incoming speech, lexical competitors are activated and must be inhibited (6). Faster response times during a task of inhibition-concentration predicted better sentence recognition scores in speech-shaped noise, and also relate to the ability to use semantic context (26,27). Information-processing speed for linguistic information, specifically speed of lexical access, is a likely contributor to successful speech recognition (28,29). In adult CI users, speed of lexical access contributed to recognition of multiple types of sentence materials (27,30). Lastly, nonverbal reasoning (i.e., IQ) appears to play a role in CI top-down processing. Holden and colleagues reported a correlation between a composite cognitive score (including verbal memory, vocabulary, similarities, and matrix reasoning) and word recognition outcomes in adult CI users (36,37). Previous studies in CI users have shown that decreased when the sensory degradation is too extreme (36,37). Previous studies in CI users have shown that relatively poorer performing CI users with poor auditory sensitivity (38,39). Similarly, Tamati et al. suggested that top-down processes may play a limited role in CI users with the poorest bottom-up auditory sensitivity (10). Thus, the ability to engage neurocognitive resources to compensate for a degraded signal in CI users likely depends on the quality of the signal.

In the current study, experienced adult CI users were tested using measures of word and sentence recognition, along with top-down cognitive-linguistic assessments of WM capacity, inhibition-concentration, speed of lexical access, and nonverbal reasoning. Bottom-up spectrotemporal processing was measured using the SMRT. The main hypothesis was that top-down processes would...
contribute differentially to speech recognition outcomes, depending on the fidelity of the bottom-up processing.

METHODS

Participants

Fifty-one postlingually deafened experienced adult CI users were tested, with mean age of 66.8 years (SD = 9.8, range 45–87). Mean patient-reported duration of hearing loss was 38.4 years (SD = 19.0, range 4–76). All had at least 1 year of CI use (mean 6.7 years, SD 6.1, range 1–34). Twenty-seven (52.9%) were female. All were native English speakers with corrected near-vision of better than 20/40, general reading/language proficiency standard score ≥70 on the Wide Range Achievement Test (WRAT, (40)) and lack of cognitive impairment as demonstrated by a raw score ≥24 on the Mini-Mental State Examination (MMSE, (41)), delivered in a combined auditory and visual format, with instructions delivered in writing. Average screening WRAT and MMSE scores were 97.3 (SD 12.0, range 77–122) and 28.7 (SD 1.3, range 26–30), respectively. Socioeconomic status (SES) was assessed using a metric that accounted for occupational and educational levels, ranging from values of 1 (lowest) to 64 (highest) (42). Mean composite SES score was 25.9 (SD 14.6, range 6–64). Most (N = 46, 90.2%) had Cochlear CIs, with four patients (7.8%) using Advanced Bionics devices and one using a Med-EL device (2.0%). Thirteen (25.5%) had bilateral CIs, 22 (43.1%) were bimodal listeners (i.e., CI and contralateral hearing aid), and 16 (31.4%) were unilateral CI users. Unaided better-ear pure tone averages (PTA, 0.5, 1, 2, and 4 kHz) were also computed, with mean PTA 94.5 dB HL (SD 23.7).

General Approach and Equipment

This study was approved by the local Institutional Review Board, protocol #2015H0173, and participants underwent informed, written consent. Each participant was tested using a battery of visual cognitive-linguistic measures. Visual tasks (instead of auditory tasks) were used to avoid audibility effects on performance. Participants were also tested using sentence and isolated word recognition measures, along with the SMRT. All participants were tested in a sound-treated booth, using their standard hearing devices (one CI, two CIs, or one CI with contralateral hearing aid if typically worn). Speech materials and SMRT were presented at 68 dB SPL in quiet from a speaker 1 m away at zero degrees azimuth.

Cognitive-Linguistic Measures

Each of the cognitive-linguistic measures is described below in brief, but details can be found in prior publications (10,17,27).

Working memory was assessed using a visual digit span task. Participants were scored based on their ability to recall a sequence of digits after presentation one at a time on a computer screen. Scores were percent total digits recalled in correct serial order.

Inhibition-concentration was assessed using a computerized version of the Stroop Color-Word Interference test. This test (http://www.millisecond.com) measures how quickly participants can identify the correct font color of a word shown. Separate trials including congruent trials (color and color word matched), incongruent trials (color and color word did not match), and control trials (single rectangle of a given color) were recorded with response times for each condition. The control trial represents a user’s general processing speed; the congruent response time represents concentration ability; and the incongruent response time represents inhibitory control.

Speed of lexical access was assessed using the Test of Word Reading Efficiency (TOWRE, (43)), in which participants were asked to read as many words as accurately as possible from a list of 108 words in 45 s. The percent words correctly read was used in analyses.

Lastly, nonverbal reasoning was measured using a computer-based, timed version of Raven’s Progressive Matrices, a series of progressively more difficult 3 × 3 visual grid patterns presented on a touch screen with the bottom-right square unfilled. Participants were scored based on how many items they correctly completed in 10 minutes.

Speech Recognition Measures

Speech recognition tests included the Central Institute of the Deaf (CID) W-22 isolated words (44) spoken by a single male talker; isolated words were expected to rely mostly on bottom-up input and less on cognitive-linguistic skills. Harvard Standard sentences (IEEE, (45)) are complex but meaningful sentences, also spoken by a single male talker, which were expected to rely more heavily on cognitive-linguistic skills than CID words. The third speech recognition test was the Perceptually Robust English Sentence Test Open-set (PRESTO) sentences (46), in which sentences are each spoken by a different talker (male or female) across a variety of American dialects. Performance on PRESTO was expected to depend most strongly on cognitive-linguistic skills. Details of each measure can be found in a previous report (17).

Spectral-Temporally Modulated Ripple test

Participants’ spectro-temporal processing was assessed using the Spectral-Temporally Modulated Ripple test (SMRT), developed by Aronoff and Landsberger (15). Stimuli were 202 pure-tone frequency components with amplitudes spectrally modulated by a sine wave. A three-interval, two-alternative forced-choice task was performed in which two of the intervals contained a reference signal with 20 RPO and one contained the target signal. This target, set initially at 0.5 RPO, was modified using a one-up-one-down adaptive procedure with step size of 0.2 RPO. A ripple-detection threshold was calculated based on the last six reversals of each run. Listeners selected the deviant signal. A higher score represented better spectro-temporal processing.

Data Analyses

Data for several speech recognition (CID words and Harvard Standard sentences) and cognitive-linguistic measures (Stroop, Digit Span), as well as SMRT, were not normally distributed, based on Kolmogorov–Smirnov and Shapiro–Wilk tests of normality. Thus, nonparametric tests were used for analyses. Prior to performing main analyses, Kruskal–Wallis one-way ANOVA was performed to determine if there was any effect of side of implantation (right, left, or bilateral) on SMRT scores, which would suggest that the bottom-up input differed among those three groups. No significant effect was found (p = 0.359). Similarly, an independent-samples Mann–Whitney U test was performed to determine whether SMRT scores differed between CI users who wore a contralateral hearing aid or did not. No significant difference was found (p = 0.930). Thus, CI users were collapsed across these conditions for our main analyses.

The 51 CI users were divided into three groups based on SMRT performance: “low-,” “intermediate-,” and “high-SMRT.” The “high-SMRT” group was defined as scores > 2.1 RPO (N = 18), as discussed in the Introduction. The remaining 33 participants were divided by median split into “low-SMRT’’ (N = 16) and “intermediate-SMRT” (N = 17)
groups, with the cutoff occurring at a median of 1.3 RPO. Mean SMRT scores for these groups are shown in Table 1. Kruskal–Wallis one-way analyses of variance (ANOVA) confirmed that SMRT scores were highly significantly different among the three groups, with each post hoc pairwise Dunn’s comparison also highly significant with Bonferroni correction (all pairwise p < 0.001). Demographic, audiologic, and cognitive-linguistic variables were also compared among the three groups, shown in Table 1. Among demographic and audiologic variables, reading score and duration of deafness were significantly different among the three groups. On post hoc pairwise Dunn’s tests with Bonferroni correction, reading scores were only significantly different between the low-SMRT and high-SMRT with Bonferroni correction, reading scores of low-SMRT than both the intermediate-SMRT (p = 0.001) and the high-SMRT (p = 0.022) group. Generally, cognitive-linguistic scores were not significantly different among the groups, except for speed of lexical access. Pairwise comparison demonstrated that the only significant difference in speed of lexical access was between low-SMRT and high-SMRT groups (p = 0.016).

A final set of Kruskal–Wallis ANOVA analyses was performed to compare speech recognition outcomes among the three groups, with results shown in Table 2. As expected, speech recognition scores differed among the three groups for all three speech measures, with the low-SMRT group performing the worst, the intermediate-SMRT group scoring in the middle, and the high-SMRT group performing the best on all speech recognition tasks. Post hoc pairwise Dunn’s tests with Bonferroni correction, demonstrated all pairwise comparisons to be significant (p < 0.05), for all three speech recognition measures, except that intermediate-SMRT and high-SMRT did not differ significantly (p = 0.24) on Harvard Standard sentence recognition.

For our main analyses shown in Results, one-tailed non-parametric Spearman’s rank-order correlations were performed in each group separately between speech recognition performance measures and cognitive-linguistic processing. One-tailed tests were used based on the consistent prediction across speech materials that better cognitive-linguistic scores would be associated with better speech recognition. To account for the fact that the subgroups were small in size (each N < 20), to reduce redundancy among variables, and to represent the variance among the measures with minimal factors, a composite score of cognitive-linguistic processing was computed. To create this composite score, the cognitive-linguistic data were subjected to a principal-components factor analysis (PCA), following Humes, Kidd, and Lentz (47). A single factor accounted for 51.39% of variance (KMO sampling adequacy statistic = 0.73; communalities = 0.65–0.86). The component

Table 1. SMRT, Demographic/Audiologic, and Cognitive-Linguistic Measures for Low-, Intermediate-, and High-SMRT Participants

<table>
<thead>
<tr>
<th>Measure</th>
<th>Low-SMRT (N = 16) Mean (SD)</th>
<th>Intermediate-SMRT (N = 17) Mean (SD)</th>
<th>High-SMRT (N = 18) Mean (SD)</th>
<th>ANOVA P</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMRT (RPO)</td>
<td>0.92 (0.23)</td>
<td>1.6 (0.22)</td>
<td>3.7 (1.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Demographic/Audiologic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>66.9 (9.4)</td>
<td>68.5 (10.1)</td>
<td>65.2 (10.2)</td>
<td>0.74</td>
</tr>
<tr>
<td>SES</td>
<td>27.3 (18.6)</td>
<td>22.7 (14.4)</td>
<td>27.6 (11.1)</td>
<td>0.46</td>
</tr>
<tr>
<td>Reading (standard score)</td>
<td>92.4 (9.4)</td>
<td>95.3 (11.5)</td>
<td>103.6 (12.4)</td>
<td>0.04</td>
</tr>
<tr>
<td>MMSE (raw score)</td>
<td>28.4 (1.4)</td>
<td>28.9 (1.1)</td>
<td>28.8 (1.3)</td>
<td>0.54</td>
</tr>
<tr>
<td>Residual PTA (dB HL)</td>
<td>98.5 (18.9)</td>
<td>95.8 (24.3)</td>
<td>89.4 (27.7)</td>
<td>0.67</td>
</tr>
<tr>
<td>Duration Hearing Loss (years)</td>
<td>51.0 (17.5)</td>
<td>29.6 (17.1)</td>
<td>35.1 (16.6)</td>
<td>0.004</td>
</tr>
<tr>
<td>Duration CI Use (years)</td>
<td>8.9 (8.7)</td>
<td>5.3 (3.9)</td>
<td>5.9 (4.4)</td>
<td>0.47</td>
</tr>
<tr>
<td>Cognitive-Linguistic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working Memory (score)</td>
<td>40.5 (19.8)</td>
<td>36.9 (11.0)</td>
<td>47.1 (18.2)</td>
<td>0.18</td>
</tr>
<tr>
<td>Average inhibition-concentration (ms)</td>
<td>1,472 (712)</td>
<td>1,478 (378)</td>
<td>1,346 (539)</td>
<td>0.24</td>
</tr>
<tr>
<td>Speed of Lexical access (percent words)</td>
<td>69.5 (8.1)</td>
<td>69.5 (12.4)</td>
<td>77.7 (9.7)</td>
<td>0.04</td>
</tr>
<tr>
<td>Nonverbal Reasoning (score)</td>
<td>9.6 (4.1)</td>
<td>9.2 (3.8)</td>
<td>11.8 (6.1)</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Table 2. Speech Recognition Measures for Low-, Intermediate-, and High-SMRT Participants

<table>
<thead>
<tr>
<th>Measure</th>
<th>Low-SMRT (N = 16) Mean (SD)</th>
<th>Intermediate-SMRT (N = 17) Mean (SD)</th>
<th>High-SMRT (N = 18) Mean (SD)</th>
<th>ANOVA P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CID Words (% correct)</td>
<td>52.5 (15.0)</td>
<td>65.9 (23.1)</td>
<td>82.5 (11.8)</td>
<td>< .001</td>
</tr>
<tr>
<td>Harvard Sentences (% words)</td>
<td>63.0 (18.7)</td>
<td>77.5 (16.5)</td>
<td>82.7 (11.1)</td>
<td>< .001</td>
</tr>
<tr>
<td>PRESTO Sentences (% key words)</td>
<td>41.9 (16.7)</td>
<td>57.7 (16.6)</td>
<td>73.1 (18.7)</td>
<td>< .001</td>
</tr>
</tbody>
</table>

P values are results of Kruskal–Wallis one-way analyses of variance (ANOVA). CID indicates Central Institute of the Deaf; SD, standard deviation; SMRT, Spectral-Temporally Modulated Ripple Test.
weights of each cognitive-linguistic measure on the single factor are as follows: Digit Span (WM) = −0.26; Stroop-control (processing speed) = 0.92; Stroop-congruent (concentration) = 0.93; Stroop-incongruent (inhibition) = 0.90; TOWRE (speed of lexical access) = −0.37; Raven’s Progressive Matrices (nonverbal reasoning) = −0.61. Note that for Stroop scores, lower values (shorter response times) represent better performance. Thus, the pattern of component weights across measures was consistent, and the resulting factor was interpreted as a single “cognitive-linguistic composite” score. Categorization of effect sizes for Spearman correlation coefficients are as follows: small effects, Spearman coefficient 0.10 to 0.29; medium effects, Spearman coefficient 0.30 to 0.49; and large effects, Spearman coefficient ≥0.50. An α of <0.05 was considered significant.

RESULTS

To address our main hypothesis, correlation analyses were performed among cognitive-linguistic composite scores and speech recognition for each group separately. Results are shown in Table 3. Note that, as a result of incorporating Stroop response times (with shorter response time representing better performance) into the creation of the composite cognitive-linguistic score through PCA, a negative correlation coefficient suggests that better cognitive-linguistic processing is associated with better speech recognition. Differential relations between cognitive-linguistic composite scores and speech recognition scores were found among the three groups. (1) For the low-SMRT group, no significant correlations were found among the composite cognitive-linguistic score and any speech recognition measure. (2) For the intermediate-SMRT group, significant correlations were found between the composite cognitive-linguistic score and both sentence recognition types, Harvard Standard and PRESTO, and these were of medium effect size. (3) For the high-SMRT group, significant correlations were found between the composite cognitive-linguistic score and all three speech recognition measures. For CID words and PRESTO sentences, these correlations were of large effect size; for Harvard Standard sentences, the correlation was of medium effect size.

As discussed above, a composite cognitive-linguistic score was used for our main analyses because the subgroups were small in size. However, scatterplots of participant data are shown in Figure 1 for the three SMRT subgroups, representing PRESTO sentence recognition scores versus each of the cognitive-linguistic tasks of working memory, inhibition-concentration, speed of lexical access, and nonverbal reasoning. PRESTO scores were chosen for Figure 1 because PRESTO was the speech recognition measure for which we expected the strongest effect of cognitive-linguistic skills. Exploratory one-tailed Spearman correlation analyses were performed among each speech recognition measure and each cognitive-linguistic skill, with results shown in Table 4; these were treated as exploratory because they led to a large number of correlation analyses for such small subgroups. Nonetheless, these exploratory analyses provide some evidence for which cognitive-linguistic measures might be contributing most strongly to speech recognition performance for the three subgroups and for the three speech recognition outcomes. Overall, only a few weak to moderate-sized correlations were identified among speech recognition measures and cognitive-linguistic measures in the low-SMRT group (i.e., CID word recognition and nonverbal reasoning). More moderate-sized correlations were identified broadly among speech recognition and cognitive-linguistic measures in the intermediate-SMRT and high-SMRT groups, with the patterns of relations appearing to differ between the two groups. For example, inhibition-concentration related more to speech recognition in the high-SMRT group, while working memory related more to speech recognition in the intermediate-SMRT group. However, it should be noted that these results should be interpreted with caution in these small subgroups of participants.

DISCUSSION

Cognitive-linguistic functions contribute to the ability to recognize degraded speech (e.g., (48,49)), and specifically so for adult CI users (10,27). Because the input provided by a CI is spectro-temporally limited, CI users must tap into top-down cognitive-linguistic functions to understand speech. However, most prior studies on this topic in adult CI listeners have been limited by small sample sizes, and/or have failed to capture measures of both top-down functions as well as the quality of bottom-up input. One study used discriminant analysis approaches.

TABLE 3. Results of Spearman’s rank-order correlations among cognitive-linguistic composite score and speech recognition measures for each subgroup: Low-SMRT, Intermediate-SMRT, and High-SMRT; Spearman’s rho and p value are bolded where $p < 0.05$

<table>
<thead>
<tr>
<th>Speech Measure</th>
<th>Group</th>
<th>Low-SMRT (N = 16)</th>
<th>Intermediate-SMRT (N = 17)</th>
<th>High-SMRT (N = 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CID words (% correct)</td>
<td>Spearman’s rho</td>
<td>0.28</td>
<td>−0.10</td>
<td>−0.58</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.15</td>
<td>0.35</td>
<td>0.007</td>
</tr>
<tr>
<td>Harvard sentences (% words)</td>
<td>Spearman’s rho</td>
<td>0.26</td>
<td>−0.44</td>
<td>−0.45</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.17</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>PRESTO sentences (% key words)</td>
<td>Spearman’s rho</td>
<td>0.39</td>
<td>−0.46</td>
<td>−0.50</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.07</td>
<td>0.04</td>
<td>0.02</td>
</tr>
</tbody>
</table>

CID indicates Central Institute of the Deaf; SMRT, Spectral-Temporally Modulated Ripple Test.
FIG. 1. Scatterplots of PRESTO sentence recognition scores versus the individual cognitive-linguistic measures for the three subgroups based on bottom-up SMRT performance. SMRT indicates Spectral-Temporally Modulated Ripple Test.

TABLE 4. Results of Spearman’s rank-order correlations among cognitive-linguistic measures, divided by SMRT subgroup; Spearman’s rho and p value are bolded where p < 0.05

<table>
<thead>
<tr>
<th>Speech Measure</th>
<th>Low-SMRT group</th>
<th>Intermediate-SMRT group</th>
<th>High-SMRT group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Working Memory (score)</td>
<td>Average Inhibition-Concentration (ms)</td>
<td>Speed of Lexical Access (% Correct)</td>
</tr>
<tr>
<td>CIDs (% correct)</td>
<td>Spearman’s rho</td>
<td>0.18</td>
<td>0.31</td>
</tr>
<tr>
<td>Harvard sentences (% words)</td>
<td>Spearman’s rho</td>
<td>0.25</td>
<td>0.12</td>
</tr>
<tr>
<td>PRESTO sentences (% key words)</td>
<td>Spearman’s rho</td>
<td>0.11</td>
<td>0.27</td>
</tr>
<tr>
<td>Low-SMRT group</td>
<td>p</td>
<td>0.08</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.23</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.44</td>
<td>-0.35</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.49</td>
<td>-0.40</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>Intermediate-SMRT group</td>
<td>Spearman’s rho</td>
<td>0.01</td>
<td>-0.49</td>
</tr>
<tr>
<td>Harvard sentences (% words)</td>
<td>Spearman’s rho</td>
<td>0.23</td>
<td>0.09</td>
</tr>
<tr>
<td>PRESTO sentences (% key words)</td>
<td>Spearman’s rho</td>
<td>0.49</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.49</td>
<td>-0.40</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>High-SMRT group</td>
<td>Spearman’s rho</td>
<td>0.01</td>
<td>-0.49</td>
</tr>
<tr>
<td>Harvard sentences (% words)</td>
<td>Spearman’s rho</td>
<td>0.49</td>
<td>0.02</td>
</tr>
<tr>
<td>PRESTO sentences (% key words)</td>
<td>Spearman’s rho</td>
<td>0.49</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.49</td>
<td>-0.40</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0.03</td>
<td>0.07</td>
</tr>
</tbody>
</table>

CID indicates Central Institute of the Deaf. SMRT, Spectral-Temporally Modulated Ripple Test.
to determine that both spectro-temporal resolution (using the SMRT) and nonverbal reasoning (using the Raven’s Progressive Matrices) contributed to differentiating high-vs low-performers of sentence recognition in 21 adult CI users (of note, that sample overlapped with the current sample) (10). Moreover, that study suggested only a limited role of cognitive functioning in those CI users who had relatively poor bottom-up input. A similar conclusion was made by Bhargava et al. who examined top-down processing using phonemic restoration in CI users, and found that CI users could take advantage of top-down processing only when provided with better bottom-up input (39).

The current study sought to investigate whether variability in spectro-temporal processing experienced across adult CI users would lead to differences in contributions of top-down to bottom-up cognitive-linguistic skills to individual variability in outcomes. Findings were generally supportive of our main hypothesis. For the low-SMRT group, no significant associations were found. For the intermediate-SMRT group, the composite cognitive-linguistic score was associated with better recognition performance on both sentence materials. Interestingly, for the high-SMRT group, the composite cognitive-linguistic score was associated with better recognition performance on both sentence types but also on isolated word recognition. This was somewhat surprising, as we assumed that isolated word recognition would predominantly rely on bottom-up processing. Our findings, however, suggest that top-down processes contribute significantly to both sentence and word recognition, at least when the bottom-up input is of relatively high quality. Overall, our findings suggest that listeners with at least “intermediate” bottom-up input can capitalize on top-down functions for speech recognition.

A question that follows, and one that will require more data to answer, is whether there might be a “threshold” of bottom-up processing ability above which top-down functions are able to contribute to speech recognition and, conversely, below which cognitive-linguistic skills cannot compensate. If this were the case, it would have ramifications for patient care. For example, for individuals receiving a signal better than the proposed “threshold”, auditory training approaches that encourage the listener to capitalize on top-down processes (e.g., combined “auditory-cognitive” training, auditory training with passages that vary in use of semantic context) could be effective (50,51). In contrast, for individuals with bottom-up abilities that are worse than threshold, it might be more important to seek device re-programming or use of accessories that improve the sensory input prior to bottom-up abilities that are worse than threshold, it might be effective (50,51). In contrast, for individuals with passages that vary in use of semantic context) could be effective (50,51). In contrast, for individuals with better SMRT thresholds in children with hearing aids (52). This potential impact of cognitive functioning on SMRT scores may be even more relevant when using this test in older adults, since there is a clear link between advancing age and declines in cognitive processing (53). Finally, it should be noted that hearing loss, itself, may impact top-down functions as well as top-down/bottom-up interactions, which has been demonstrated clearly as a result of congenital deafness (54,55). Although this study was not designed to directly investigate those effects of hearing loss, future studies are warranted to determine those effects in individuals with post-lingual hearing loss.
CONCLUSIONS

Top-down cognitive-linguistic functions contribute differentially to speech recognition outcomes among adult CI users depending on the quality of the bottom-up input. With poor spectro-temporal processing abilities, CI users cannot capitalize effectively on top-down processing. In contrast, at intermediate and higher fidelities of spectro-temporal processing, listeners are able to take advantage of cognitive-linguistic processes to assist them in recognizing speech. This evidence that the complex top-down/bottom-up interactions in speech recognition for CI users have ramifications for individualized approaches to auditory rehabilitation in this clinical population.

REFERENCES

BOTTOM-UP AND TOP-DOWN PROCESSING

