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Identifying and characterizing 
high‑risk clusters 
in a heterogeneous ICU population 
with deep embedded clustering
José Castela Forte 1,2,3*, Galiya Yeshmagambetova3, Maureen L. van der Grinten3, 
Bart Hiemstra2, Thomas Kaufmann2, Ruben J. Eck4, Frederik Keus5, Anne H. Epema2, 
Marco A. Wiering3 & Iwan C. C. van der Horst6

Critically ill patients constitute a highly heterogeneous population, with seemingly distinct patients 
having similar outcomes, and patients with the same admission diagnosis having opposite clinical 
trajectories. We aimed to develop a machine learning methodology that identifies and provides 
better characterization of patient clusters at high risk of mortality and kidney injury. We analysed 
prospectively collected data including co‑morbidities, clinical examination, and laboratory parameters 
from a minimally‑selected population of 743 patients admitted to the ICU of a Dutch hospital 
between 2015 and 2017. We compared four clustering methodologies and trained a classifier to 
predict and validate cluster membership. The contribution of different variables to the predicted 
cluster membership was assessed using SHapley Additive exPlanations values. We found that deep 
embedded clustering yielded better results compared to the traditional clustering algorithms. The 
best cluster configuration was achieved for 6 clusters. All clusters were clinically recognizable, and 
differed in in‑ICU, 30‑day, and 90‑day mortality, as well as incidence of acute kidney injury. We 
identified two high mortality risk clusters with at least 60%, 40%, and 30% increased. ICU, 30‑day 
and 90‑day mortality, and a low risk cluster with 25–56% lower mortality risk. This machine learning 
methodology combining deep embedded clustering and variable importance analysis, which we made 
publicly available, is a possible solution to challenges previously encountered by clustering analyses in 
heterogeneous patient populations and may help improve the characterization of risk groups in critical 
care.

Critically ill patients constitute a highly heterogeneous population, with high rates of acute and chronic mul-
timorbidity, and different profiles of risk, response to interventions, and outcomes. Despite extensive research, 
however, the goal of unravelling patient heterogeneity remains largely unattained. Critical care clinicians rely 
on a combination of laboratory and clinical examination variables, and their own clinical experience (clinical 
gestalt) and gut feeling to characterize  patients1. While human beings excel at ascribing meaning to observed 
patterns once they have seen them, data-driven approaches enabling the combination of diverse data streams can 
enhance patient characterization within known “sub-phenotypes” or provide insight into new  categorizations2,3.

Clustering analysis has been used for several purposes in medical research, with different approaches showing 
promising results to help identify and characterize relevant clusters. One of the main appeals of clustering analysis 
is that its principles resemble a heuristic which clinicians are familiar with: it finds similarities and differences 
between patients and divides them into  group1. Within critical care research in particular, latent class analysis 
(LCA) has been the most broadly used algorithm for sub-phenotype identification in cohorts of patients with 
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acute respiratory distress syndrome (ARDS) and acute kidney injury (AKI)4,5. LCA is an established, model-based 
statistical technique, that defines the best fitting models for data assumed to contain several unobserved  groups4,5. 
Unlike LCA, where clusters are derived from the distribution of the data, unsupervised clustering algorithms 
such as k-means and hierarchical clustering find clusters by identifying similarities between  cases1. These two 
algorithms have recently been applied to identify clusters in a general ICU population, cardiovascular clusters 
in septic shock patients, and corticosteroid response in patients with severe asthma, with a variation of k-means 
called fuzzy c-means also being used to cluster severely injured blunt trauma  patients2,6–8.

Similarly, prediction models with increasingly higher accuracy and explainability for mortality and organ 
injury have been suggested, capable of processing high-frequency  data9–11. Both approaches have different advan-
tages and shortcomings. Prediction models can deal with virtually any data format and provide individual 
probabilities for an outcome, but are bound by a priori hypotheses and can only compute the probability of one 
specific outcome. On the other hand, traditional clustering algorithms, are not designed to process the high-
frequency, dynamic data collected in  ICU1.

In this study, we sought to develop and apply a novel approach to identifying and characterizing clusters of 
critically ill patients. Using co-morbidity, clinical examination, and laboratory data from a minimally selected 
ICU cohort, we compared the performance of different clustering methodologies and applied a combined deep 
embedded clustering and feature importance analysis algorithm to identify clusters of patients at high risk of 
AKI and mortality during ICU stay, and at 30 and 90 days. Then, we trained a classifier to predict and validate 
cluster membership, and identified the features driving these predictions. We hypothesized that this approach 
could identify clinically recognizable patient clusters with clinically significant differences in mortality and 
severe acute kidney injury.

Methods
Data sources. Data used for this study originated from the prospective, single-centre Simple Intensive Care 
Studies (SICS) I cohort study. All acutely admitted, critically ill patients included the study underwent clinical 
examination and critical care ultrasonography (CCUS) within the first 24 h of ICU admission. Informed con-
sent was obtained for all included patients, and all analyses were performed in accordance with relevant guide-
lines and regulations. Further details on inclusion criteria, informed consent, and study protocol are available 
 elsewhere12,13. The study was approved by the local institutional review board (Medisch Ethische Toetsingscom-
missie (METc) of the UMCG, M15.168207).

Co‑morbidity, clinical examination, and laboratory data. The dataset consisted of patient charac-
teristics including co-morbidities, clinical examination variables including CCUS, vital signs, and urine output, 
and a time-series of 40 laboratory values measured at least once daily (Table  1). CCUS measurements were 

Table 1.  Complete list of input features. List including all patient characteristics, co-morbidities, time-series 
of laboratory parameters, and clinical examination parameters. ALAT alanine transaminase, ASAT aspartate 
transaminase, CK creatine kinase, CRP C-reactive protein, LDH lactate dehydrogenase, POC point of care, 
HCO3 bicarbonate, pCO2 arterial  CO2 pressure, pO2 arterial  O2 pressure, HbMet methemoglobin, HbCO 
carboxyhemoglobin.

Patient characteristics Age, sex, APACHE IV Score, SAPS II Score, BMI, surgical admission, 
previous admission to ICU

Clinical examination

Hemodynamic parameters
Cardiac index, mottling, atrial fibrillation, heart rate at admission, 
urine output in previous 6 h, prolonged capillary refill time, central 
venous pressure (CVP), diastolic blood pressure (DBP), systolic blood 
pressure (SBP), mean arterial pressure (MAP)
Respiratory parameters
Worsened respiratory condition after 24 h assessed by physician, tidal 
volume, Respiratory rate of ventilator, positive end-expiratory pres-
sure (PEEP) of ventilator, mechanical ventilation after 24 h (binary), 
mechanical ventilation at admission (binary), respiratory rate, lowest 
FiO2 (%) during ICU stay
Other
EMV score

Co-morbidities and medical history

History of cardiovascular disease (CVD), history of chronic kidney 
disease (CKD), history of cirrhosis, history of chronic obstruc-
tive pulmonary disease (COPD), history of diabetes, history of 
hematological malignancy, history of metastatic disease, history of 
myocardial infarction, history of respiratory insufficiency, history of 
acquired immunodeficiency syndrome (AIDS), history of immune 
insufficiency, previous dialysis

Laboratory variables (for which the mean and variance were taken)

Routinely collected
ALAT, ASAT, albumin, amylase, ALP, bilirubin (total), gamma-GT, 
CK, CRP, calcium, chloride, magnesium, MCV, sodium, phosphate, 
potassium, fibrinogen, hemoglobin, hematocrit, creatinine, LDH, 
leukocytes, thrombocytes, troponin T, total protein, urea
Arterial POC
Ionized calcium, glucose, hemoglobin, potassium, lactate, sodium, 
arterial  HCO3, arterial  pCO2, arterial pH, arterial  pO2, arterial satura-
tion, methylated hemoglobin, HbCO
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validated by experts, and vital signs were recorded from the bedside  monitor12,13. Patients with more than 10% 
missing data (i.e. variables for which no measurements were registered at any moment during ICU stay) were 
excluded from the analysis. Missing laboratory data were imputed using a rolling mean based on ICU-specific 
 values14. For other variables, iterative imputation with 10 iterations (a method similar to multivariate imputation 
by chained equations) was  used15.

Feature extraction (mean and variance concatenated over the whole time-series) was employed to represent 
the time-series data. Table 1 shows the average number of co-morbid conditions per patient per cluster, calculated 
based on the information on co-morbidities.

Outcome. To define and assess clinically relevant differences between clusters, mortality at three time points 
(in-ICU, as well as at 30 and 90 days) was taken as a primary outcome. Kaplan Meier curves were used to visual-
ize the mortality per cluster during and after ICU stay. The secondary outcome was the development of severe 
AKI (stages 2 or 3). Additionally, differences in the development of any stage of AKI, need for vasopressors, ICU 
length of stay, development of shock, and need for renal replacement therapy are also reported.

Development and comparison of different clustering methodologies. Most clustering algo-
rithms, such as k-means clustering and hierarchical clustering, are not designed to process high-frequency, 
dynamic  data1. Different strategies have been developed to facilitate this, including combining K-means and HC 
with a time-series processing methodology such as dynamic time warping (DTW), as well as using clustering 
algorithms which represent data in a different way, such as deep embedding clustering (DEC)16,17. In both these 
approaches, described in more detail in the Supplementary information files, features such as mean and vari-
ance are extracted from the time-series data and subsequently fed into a clustering algorithm. In this study, we 
compared a DEC model to two “traditional” clustering algorithms, k-means and hierarchical clustering (HC), as 
well as a combination of HC and dynamic time warping (HC-DTW).

Deep embedded clustering algorithms utilize autoencoder neural networks to learn a certain representation 
of the data, and then use this representation to form  clusters16. Despite its frequent use in for clustering analyses 
in other fields, there are but a few reports of analysis of medical data using  DEC18. The DEC model developed 
in this study combined a multilayer perceptron (MLP) autoencoder, which is a type of neural network, and a 
custom clustering layer with the k-means clustering algorithm. The clustering layer reconstructs features created 
by the MLP autoencoder, and converts it to cluster label probabilities represented by Student’s t-distribution. The 
clustering layer weights represent the cluster centroids and are initialized using k-means algorithm. To improve 
cluster purity, a centroid-based target distribution is constructed by squaring the encoded vectors and normal-
izing them by frequency per cluster. Finally, the algorithm is trained to minimize Kullback–Leibler divergence 
loss for a maximum of 8000 iterations with 0.01 tolerance threshold.

Once clusters were computed for all four algorithms, validity assessments were  conducted19. Internal validity 
assesses whether the structure of the clustering is intrinsically appropriate for the data. Patients clustered in the 
same cluster should have similar data, whereas patients from different clusters should be as distinct as possible 
from those in other clusters. Here, the Silhouette index was used to internally validate k-means, HC, and HC-
DTW. For DEC, cluster-wise stability was computed by resampling the dataset 100 times and computing the Jac-
card similarities to the originally defined clusters as well as entropy  scores20–22. External validity assesses whether 
clustering results match some a priori expected data structure. When the true cluster labels are known, this is 
done by comparing the clustering output to a given “correct”  clustering1,23. Since no “true” labels are available 
when attempting to identify new putative patient clusters, the clinical recognizability of these clusters was used 
as surrogate of external validity. Lastly, to compare the different methodologies, the potential clinical utility of 
the clustering was assessed by examining the distribution of patients across the different clusters and whether 
the different clustering configurations identified between-group differences in the input features.

Cluster membership prediction and feature importance analysis for cluster characteriza‑
tion. A gradient boosting algorithm (XGBoost) was trained to predict cluster membership over 10-folds for 
each of the 100 clustering configurations resulting from  DEC24. Then, SHapley Additive exPlanations (SHAP) 
values were computed on the run with the highest accuracy to represent the feature importance of each variable 
in the model. SHAP values are widely used in game theory to determine the contribution of particular features 
to the difference between the actual and the mean  predictions25. Positive and negative SHAP values signal that 
variables contribute positively or negatively to cluster membership, respectively. Finally, clusters were character-
ized based on the between-cluster differences in input variables and outcomes, and feature importance values. 
The admission and discharge diagnoses of all patients were analysed and relevant clinical information to aid in 
the characterization was extracted. A full schematic overview of the analysis is provided in Fig. 1.

Statistical analysis. Descriptive characteristics for the study population were reported as means with 
standard deviations and proportions for continuous and categorical variables, respectively. Differences in input 
variables and outcomes between clusters were determined using analysis of variance and chi-squared tests. Haz-
ard ratios for mortality per cluster were computed, and the p-value for comparison against the full cohort was 
calculated using the log-rank test. A p-value below 0.05 was considered significant. All clustering and further 
statistical analyses were performed using Python with PyCharm as interface (version 2019.3.5).
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Results
Study population and outcome. Of the 1075 patients included in SICS-I, 743 had less than 10% missing 
data and were included in the analysis. Both the numbers of variables and the numbers of measurements per 
variable varied per patient, with on average 21 measurements of each variable per patient. The average number 
of measurements per variable per patient, and the average time between measurements for each variable across 
all patients are presented in Supplementary Table S2. Patient characteristics, clinical examination variables, and 
outcomes are reported in Table 2. Complete data on laboratory variables and outcomes can be found in Sup-
plementary Tables S3–S6, and Supplementary Figs. S9–S10. After 30 and 90 days, 166 and 205 patients (22.3%) 
had died, with no patients lost to follow-up.

Performance of different clustering methodologies. Across k-means, HC, and HC-DTW, the sil-
houette score was highest when patients were divided into only 2 clusters (Supplementary Table S1). When 3–6 
clusters were considered, silhouette scores were still similar, but lower, across algorithms. However, the high sil-
houette scores are explained by all three algorithms always grouping most patients into one of the clusters, even 
when the dimensionality (and hence the noise) of the inputs was reduced using principal component analysis. 
As shown in Supplementary Table S1, all three methods tended to cluster around 90% of patients in only one 
cluster, regardless of the number of clusters. In contrast, clusters generated by DEC showed balanced cluster 
membership distribution irrespective of the putative number of clusters (Supplementary Table S1) and identi-
fied significant between-cluster differences for the majority of the input features (Supplementary Tables S3–S5). 
Amongst the seven different possible clustering configurations generated by DEC, stability was highest for six 
clusters (Supplementary Figs. S1–S8). The tenfold cross-validation XGBoost model predicted cluster member-
ship with 83% accuracy, with sensitivity ranging from 64 to 90% and specificity from 85 to 100% (Supplementary 
Table S7, Supplementary Fig. S11).

Feature importance analysis and cluster characterization. Sixty-eight patients with high preva-
lence of respiratory failure or infection (34%), as well as sepsis (21%), were assigned to cluster 1 (Fig. 3, Sup-
plementary Table S3). These patients had a long ICU stay, and the highest rate of worsened respiratory condition 
after 24 h (Fig. 2, Supplementary Tables S3–S5 and Supplementary Fig. S9). Feature importance analysis identi-
fied increased alkaline phosphatase, gamma-GT, bilirubin and lactate as having the greatest impact on cluster 

Figure�1.  Schematic overview of the different steps in the analysis. Patient selection, integration of different 
data sources, data processing with feature extraction (FE) or dynamic time warping (DTW), comparison of the 
four clustering algorithms, selection of the best algorithm based on patient distribution and internal validity 
measures, training of the classifier for attributing true labels to the clusters and calculating feature importance 
with SHAP, and cluster characterization based on input data from diagnoses, feature importance, and differences 
in outcomes including mortality, AKI, and other clinical events.
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membership predictions (Supplementary Fig. S12). Higher values for the former three variables drove predic-
tions towards cluster membership, while a high lactate was associated with non-membership. Patients in this 
cluster were not at increased mortality risk (ICU, 30-day or 90-day; Table 3 and Fig. 4).

Table 2.  Clinical characteristics for the 743 patients, including patient characteristics, clinical examination 
data, co-morbidities and medical history, and outcomes. a Denotes variables not included as input for clustering 
analysis.

Patient characteristics

Age (years) 62 [61, 63]

Gender (% female) 63.3

APACHE IV Score 76.9 [74.8, 79.2]

SAPS II Score 46.9 [45.7, 48.0]

BMI 26.7 [26.4, 27.1]

Surgical patient (%) 35.0

Previous admission to ICU (%) 11.6

Clinical examination

Cardiac index > 2.2 (%) 42.7

Mottling (% with severe, > 4) 3.1

Mechanically ventilated at admission (%) 61.8

Worsened respiratory condition after 24 h (%) 12.4

Urine output in previous 6 h (ml/kg/h) 0.9 [0.84, 0.95]

CRT prolonged (%) 29.9

EMV score 11.27 [10.9, 11.63]

Co-morbidities and medical history

History of CVD (%) 5.0

History of CKD (%) 6.9

History of cirrhosis (%) 3.4

History of COPD (%) 12.4

Previous dialysis (%) 1.4

History of diabetes (%) 20.3

History of hematological malignancy (%) 4.0

History of metastatic disease (%) 3.6

History of myocardial infarction (%) 8.2

History of respiratory failure (%) 4.9

Admission diagnosis by organ systema

Cardiovascular 32.8

Gastrointestinal 14.2

Genito-urinary 1.2

Haematological 1.4

Metabolic 2.3

Musculoskeletal/skin 0.9

Neurological 15.0

Respiratory 19.5

Transplant 5.1

Trauma 7.7

Outcomesa

In-ICU mortality (%) 19.4

30-day mortality (%) 22.3

90-day mortality (%) 27.6

No AKI (%) 79.7

AKI stage 1 (%) 59.8

AKI stage 2 or 3 (%) 44.3

Required vasoactive medication (%) 48.6

Any type of shock (%) 51.6

Required RRT (%) 10.1

ICU length of stay (days) 6.0 [5.4, 6.6]
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Cluster 2 (n = 100) included the highest percentage of surgical patients (48%, Fig. 2, Supplementary Table S3), 
including the largest post-transplant group, and cardiac and vascular procedures (Fig. 3, Supplementary Table S6). 
Almost 40% of patients presented with acute or chronic cardiac condition, with 63% having a low cardiac index 
(Fig. 3, Supplementary Table S6). Accordingly, troponin T, lactate dehydrogenase (LDH), creatine kinase (CK) 
and inflammatory variables were increased (Fig. 2, Supplementary Table S4, Supplementary Fig. S9). Patients in 
this cluster had higher mortality rates (ICU, 30-day, and 90-day; HR 1.55 [95% CI 1.26–1.91], 1.39 [1.12–1.71], 
and 1.30 [1.06–1.61], respectively) and were at increased risk of stage 2 or 3 acute kidney injury (HR 1.26 [95% 
CI 1.03–1.59]) (Fig. 3, Table 3, Supplementary Table S6). Higher values for arterial oxygen  (pO2), LDH, lactate, 
troponin and calcium were associated with cluster membership, while low  pO2, LDH, and ASAT values drove 
predictions towards non-membership (Supplementary Fig. S13).

Cluster 3 (n = 46) consisted of patients with diverse disease etiology, from liver disease and transplant (24%), 
to cardiac arrest (11%), sepsis (10%) and respiratory failure (10%). These patients were the youngest and had 
the highest severity scores at admission (Fig. 2, Supplementary Table S3). Like cluster 2, laboratory variables 
showed significant elevated troponin T, LDH, CK and inflammatory values (Fig. 2, Supplementary Table S4 
and Supplementary Fig. S10). During clinical examination, this group recorded the lowest urine output values 
(0.58 ml/kg/h), 43% had delayed capillary refill time, and 11% had severe mottling (Fig. 2, Supplementary 
Table S3). Almost 35% of patients required renal replacement therapy (RRT), and 91% developed AKI, with a HR 
of stage 2 or 3 AKI of 1.67 [95% CI 1.24–2.25]. These patients also needed the highest vasopressor dose, and had 

Figure�2.  Heatmap of patient characteristics, clinical examination and co-morbidity data per cluster. Bars 
on the right show the colour scale representing the proportion of patients with each characteristic regarding 
demographics, clinical examination, and co-morbidities. For continuous variables, such as SBP or urine output, 
it represents a scaled value from highest cluster mean (1.0) to lowest cluster mean (0.0).
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the highest mortality (ICU HR 1.80 [1.33–2.42], 30-day HR 1.66 [1.23–2.23], and 90-day HR 1.58 [1.17–2.12]) 
(Table 3, Fig. 4). High liver enzymes, LDH, and troponin drove predictions towards cluster membership (Sup-
plementary Fig. S14).

One-hundred forty-four patients with low co-morbidity were in cluster 4, having been admitted primarily 
with neurosurgical or neurological (40%) and trauma-related (17%) diagnoses (Fig. 3, Supplementary Table S6). 
These patients presented with relatively lower APACHE IV and SAPS II scores (62 and 41), and had the short-
est ICU stay (2.8 days), lowest AKI incidence (31%), and significantly lower risk of mortality (ICU, 30-day, and 
90-day (HR 0.57 [0.48–0.68], 0.75 [0.63–0.89], 0.66 [0.55–0.78], respectively). This group also had a markedly 
reduced risk of severe AKI (HR 0.44 [95% CI 0.37–0.52]). High albumin, hemoglobin, and  pO2 values predicted 
membership, while high fibrinogen and potassium predicted non-membership (Supplementary Fig. S15).

For cluster 5 (n = 290), the main admission diagnoses were respiratory failure (19%), cardiac arrest (12%), 
neurological causes (11%), or trauma (12%). Patients in this cluster had a medium co-morbidity profile, the 
longest mean ICU stay (7.7 days), and high rates of delayed CRT at admission (35%). Worsening respiratory 
condition was frequent (14%), and COPD was a common co-morbidity (17%). High thrombocytes and potassium 
predicted cluster membership, while high values for  pO2, creatinine, bilirubin, and phosphate drove predictions 
towards non-membership for some patients (Supplementary Fig. S16). The 95 patients assigned to cluster 6 pri-
marily suffered from sepsis or respiratory infection, having been admitted to the ICU with respiratory (41%) or 
gastrointestinal diagnoses (20%). They also had high rates of distributive shock (38%), with physical examination 
showing a high cardiac index in 59% of patients, as well as high respiratory rates and heart rates. High values for 
fibrinogen, creatinine, urea, and CRP drove predictions towards cluster membership (Supplementary Fig. S17). 
Patients in these clusters were not at increased or reduced risk of mortality (Table 3).

Discussion
In this study, we set out to identify patient sub-phenotypes of clinical relevance using time-series laboratory, 
co-morbidity and clinical examination data. To do this, we compared four different clustering approaches. With 
a deep clustering algorithm, we identified six sub-phenotypes that capture differences in morbidity and in com-
monly measured clinical variables. In addition, these sub-phenotypes differed significantly in relevant clinical 

Table 3.  Mortality rates, and hazard ratios for mortality and acute kidney injury per cluster. Hazard ratios 
were compared using the log-rank test, with the full cohort used as reference. AKI acute kidney injury.

Outcome/cluster % Hazard ratio with 95%CI p-value

In-ICU Mortality %

Cluster 1 19.1 0.99 [0.77–1.26] 0.916

Cluster 2 30.0 1.55 [1.26–1.91] < 0.001

Cluster 3 34.8 1.80 [1.33–2.42] < 0.001

Cluster 4 11.1 0.57 [0.48–0.68] < 0.001

Cluster 5 17.9 0.92 [0.81,1.06] 0.254

Cluster 6 16.8 0.87 [0.70,1.07] 0.191

30-day mortality

Cluster 1 19.1 0.85 [0.67–1.10] 0.218

Cluster 2 31.0 1.39 [1.12–1.71] 0.002

Cluster 3 37.0 1.66 [1.23–2.23] < 0.001

Cluster 4 16.7 0.75 [0.63–0.89] 0.001

Cluster 5 22.4 1.00 [0.86–1.15] 0.972

Cluster 6 17.9 0.80 [0.65–0.99] 0.042

90-day mortality

Cluster 1 26.5 0.96 [0.75–1.23] 0.763

Cluster 2 36.0 1.30 [1.06–1.61] 0.012

Cluster 3 43.5 1.58 [1.17–2.12] 0.002

Cluster 4 18.1 0.66 [0.55–0.78] < 0.001

Cluster 5 27.6 1.00 [0.88–1.15] 0.996

Cluster 6 26.3 0.95 [0.77–1.18] 0.673

AKI stage 2 or 3

Cluster 1 50 1,13 [0.88–1.45] 0.343

Cluster 2 56 1.26 [1.03–1.59] 0.027

Cluster 3 73.9 1.67 [1.24–2.25] < 0.001

Cluster 4 19.4 0.44 [0.37–0.52] < 0.001

Cluster 5 45.2 1.02 [0.89–1.17] 0.780

Cluster 6 48.4 1.09 [0.88–1.35] 0.421
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events rates (such as need for RRT and use of vasopressors) as well as mortality, with one group at low mortality 
risk, and two at higher mortality risk compared to average.

As the first study evaluating the combination of clustering such a broad range of ICU data including demo-
graphic, co-morbidity, clinical examination, and laboratory data with feature importance analysis to characterize 
patient sub-phenotypes in a minimally-selected ICU population, we draw several conclusions.

We found that traditional clustering algorithms such as k-means and HC were highly susceptible to the vari-
ation in data and outliers generated by the inclusion of a large number of laboratory variables. Previous studies 
using these algorithms with other, mostly low-dimensional datasets had not reported this issue, and do not show 
the large imbalance in cluster size we observed for k-means and HC in this  study2,6,7. Interestingly, we identified 
the same issue with HC-DTW despite the use of a computationally-expensive technique like DTW to make 
time-series sequences of different length more uniform, and therefore suitable for clustering. Deep embedded 
clustering, on the other hand, provided a balanced patient distribution across clusters using the extracted features 
alone. Despite the large amount of data and the moderate cohort size, we managed to achieve stable clusters, and 
use these labels to train a classifier to identify the features driving cluster membership predictions.

The findings from variable importance analysis provided interesting, adjuvant data for the interpretation of the 
clusters identified during this analysis. Previous clustering analyses have based interpretation of the phenotypes 
found on differences in means of the variables measured, or by listing variables related to each cluster based on 
relative  importance2,6,7. Here, we complemented the descriptive statistics of each cluster with SHAP values to 
establish the directionality of the association between high and low values of a variable and cluster member-
ship. For example, membership of clusters with higher mortality risk was associated with increased ASAT and 

Figure�3.  Heatmap of outcomes and clinical end-points per cluster. Bars on the right show the colour scale 
representing the proportion of patients within the cluster with the outcome (upper panel) or the discharge 
diagnosis (lower panel).
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LDH, which are known biomarkers of myocardial ischemia and have also been shown to be positively correlated 
with ICU  mortality14,26–29. Likewise, patients were more likely to be in the cluster with the lowest mortality risk 
(cluster 4) when their albumin, hemoglobin, and  pO2 values were higher, as well as when their liver function 
was better. These associations are supported by literature, including the addition of albumin measurements to 
APACHE  scores30–33.

The results of our study suggest that this clustering methodology is superior to most widely used approaches 
for clustering of critically ill patients for several reasons. Firstly, it can process time-series data, unlike k-means, 
HC, or even HC with dynamic time warping. A recent study using clustering analysis to define cardiovascular 
phenotypes suggested that incorporating serial measures to study transitions from one phenotype to another 
during ICU stay would provide additional insight to their analysis, which was limited to static  variables6. Simi-
larly, clustering studies on treatment response in critically ill patients would benefit substantially from processing 
time-series data, as opposed to one-time treatment  administration7.

Secondly, departing from a “minimally-selected” patient cohort, we identified six clusters which differed 
significantly in mortality and AKI risk, and were also clinically recognizable and describable. Caution has been 
advised when interpreting the results of clustering analyses, especially when identifying “novel” sub-pheno-
types, and rightfully  so3. Clustering algorithms will inevitably partition patients into clusters, and, as with most 

Figure�4.  Kaplan–Meier curves stratified per cluster for mortality during and after ICU stay. Survival curves for 
all six clusters, with the number of patients at risk at 30 and 90 days per cluster.
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unsupervised machine learning techniques, it remains hard to establish what variables drove this partition. 
It was with this in mind that we set out to cluster patients using a methodology which could identify clusters 
with significantly different outcomes and simultaneously provided some validation of the results and additional 
insight into the variables associated with each cluster. This pipeline of clustering, training a classifier on the stable 
cluster labels, and extraction of SHAP values therefore helped “open the black box” and characterize clusters in 
more detail.

Lastly, the inclusion of time-series data into clustering analyses can bring a wide range of benefits to studies 
aiming to characterize patient sub-phenotypes. It can enable the use of continuous hemodynamic monitor-
ing and laboratory data to detect variations in sensitivity to myocardial ischemia or acute kidney injury, or to 
identify groups with differential treatment responses over time. From a clinical perspective, the potential of 
accurate clustering of ICU patients to improving patient care is two-fold: it can contribute to better clinical trial 
design, and it has the potential to inform clinical monitoring and prognostication at bedside. The former idea 
is supported by recent research on ARDS that suggests sub-phenotyping based on biological markers (such as 
laboratory parameters) has the potential to identify mechanistic markers proximal to the clinical expression of 
critical disease and  syndromes34. By doing so, it can provide a more accurate alternative to clinical phenotyping, 
which is prone to misclassification and remains challenging even for well-known syndromes, as well as better 
predict treatment  response34. Given the challenges critical care trials often face to demonstrate meaningful clini-
cal effects, improved randomization/allocation and design in clinical trials is especially  important35. Secondly, 
the identification of clinically meaningful clusters of ICU patients, separating patients by mechanism (cardiac, 
respiratory, infectious, or other) as well as prognosis (low vs high risk), can be leveraged from ICU admission 
and throughout ICU stay to guide and optimize staffing tasks. This would allow for not only more personalized 
care, for example, by minimizing staff contact with patients identified as belonging to clusters with “lower care 
needs”. In addition, accurate clustering could also be an effective way of summarizing the status of the patient, 
and could potentially be translated to a (triage) system possibly integrated in a clinical dashboard providing an 
overview of patients for rapid review by physicians. Naturally, it is essential to replicate and validate the find-
ings of this study before any of these steps can be taken. To this end, we have made the code used in this study 
publicly available at https:// github. com/ J1C4F8/ SICS_ DEC and are currently setting up a multicenter study to 
assess the validity of the clusters and the feasibility of their clinical application.

Our study also included some limitations. First, while the goal of the SICS-I study was to collect data from 
a minimally-selected clinical population, inclusion criteria did apply which may account for some selection 
 bias12,13. For example, patients expected to stay in the ICU for less than 24 h, due to discharge or extremely dire 
prognosis, were not included. Second, the six sub-phenotypes identified do not represent an exhaustive clas-
sification of critically ill patient subtypes. Information user in previous studies like end-of-life desires, need for 
life-sustaining therapies, and post-discharge care needs would complement our analysis, which did not include 
any variables of the disease course after the ICU except for  mortality2. Third, the SHAP values reported are from 
an intermediate XGBoost which, despite its moderately high accuracy, does not guarantee the variables identified 
by SHAP are the exact same variables that the DEC model relied on when creating the clusters. Lastly, external 
validation of the six identified clusters in an independent cohort is necessary. Future studies with larger datasets 
should look to validate and replicate our findings, and address the possibility of patients belonging to multiple 
clusters or whether the addition of other features from the time-series data, such as trend or seasonality, would 
improve the results we obtained by extracting only the mean and variance of each variable.

In conclusion, our analysis of a cohort with 743 ICU patients, based on a combination of clustering and 
feature importance analysis of co-morbidity, clinical examination, and laboratory data identified six patient 
sub-phenotypes with varying mortality and risk of severe acute kidney injury. This machine learning methodol-
ogy, which we made publicly available, is a possible solution to challenges previously encountered by clustering 
analyses in heterogeneous populations, and may help improve the characterization of risk groups in critical care.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available due to contain-
ing sensitive patient information (in particular the detailed admission and discharge diagnoses information) but 
are available for researchers who meet the criteria for access to confidential data on reasonable request. The code 
used to create the models is open and available on GitHub, at https:// github. com/ J1C4F8/ SICS_ DEC.
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