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Chapter 5 

Unbiased Protein-Ligand Binding with the 

Coarse-Grained Martini 3 Force Field 
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Abstract 

The detailed understanding of the binding of small molecules to proteins is the key for 

the development of novel drugs or to increase the acceptance of substrates by enzymes. 

Nowadays, computer-aided design of protein–ligand binding is an important tool to 

accomplish this task. Current approaches typically rely on high-throughput docking 

essays or computationally expensive atomistic molecular dynamics simulations. Here, 

we present an approach to use the recently re-parametrized coarse-grained Martini 

model to perform unbiased millisecond sampling of protein–ligand interactions of 

small drug-like molecules. Remarkably, we achieve high accuracy without the need 

of any a priori knowledge of binding pockets or pathways. Our approach is applied to 

a range of systems from the well-characterized T4 lysozyme over members of the 

GPCR family and nuclear receptors to a variety of enzymes. The presented results 

open the way to high-throughput screening of ligand libraries or protein mutations 

using the coarse-grained Martini model. 
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Introduction 

Protein–ligand binding interaction is fundamental to a large variety of cellular 

functions, including enzymatic reactions, catalysis, signal transduction, and 

regulation. The importance of protein–ligand interactions explains the ongoing 

interest to redesign these interactions, conferring novel functions or finding suitable 

drugs and molecular targets.1 A typical binding pocket consisting of 10 residues gives 

rise to 2010 possible mutations; together with an estimated amount of 1060 potential 

drug-like compounds, this composes a vast chemical space. Therefore, the potential 

for rational design is enormous. To harness this potential, a lot of progress has been 

made in the development of high-throughput experimental screening techniques 

together with computational methods.2–5 In this process, a significant increase of the 

drug design success rate arises out of the development of novel computational 

strategies. 

Current approaches typically rely on docking assays to either predict or optimize the 

ligand-binding mode.6–8 Although docking-based methods allow for high-throughput 

screening of large compound and/or protein mutant libraries, the accuracy of the 

predictions is limited. The main sources of limitation are the use of simplified energy 

(“scoring”) functions as well as the limited treatment of protein and ligand flexibility 

and solvation models. In the case of protein engineering studies, only local mutations 

around the binding/catalytic site can benefit of docking-based methods. To alleviate 

these shortcomings, molecular dynamics (MD) simulation has become a popular tool 

in the field of drug design and discovery.9,10 The MD technique is based on detailed 

interaction potentials (force fields) and, in principle, includes relevant dynamics of 

protein, ligand, and solvent provided that enough sampling can be achieved. In some 

cases, a few direct binding events of ligands can be simulated using brute force MD11–

13, but typically sampling of the relevant degrees of freedom is a limiting factor. A 

variety of enhanced sampling methods, such as replica exchange, funnel-

metadynamics, or adaptive sampling, exist to improve the sampling and to study the 

binding kinetics and pathways.14–17 In addition, when the binding mode is known, 

calculations can be performed to obtain (relative) binding free energies.18–21 In 

practice, nowadays docking and MD are often combined to increase the accuracy of 

the former method.4,10,22,23 Fully atomistic MD simulations, however, are 

computationally too expensive to allow for high-throughput applications. 

A potential solution is the use of coarse-grained (CG) force fields, which reduce the 

computational cost by uniting groups of atoms into effective interaction sites resulting 

in a substantial computational speed-up.24,25 The Martini model26 is among the most 

popular CG force fields, and has been applied to study a wide range of biomolecular 

processes including successful prediction of protein–lipid binding modes27. In some 

cases, binding of lipids to sites deeply buried inside the proteins were recovered by 
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brute force MD.28,29 Examples of protein–ligand binding with Martini are, however, 

still scarce.30–32 The question remains, therefore, whether such CG models can be 

applied to capture protein–ligand binding in general, including small organic 

compounds, such as enzyme substrates, receptor ligands, drugs, or pesticides. 

We show that the recently re-parameterized Martini 3 model33 can perform this task 

with high accuracy, based on unbiased sampling. For all the simulations presented 

here, the ligands initially positioned randomly in the solvent. We demonstrate the 

power of our approach by simulating ligand binding to different enzymes, namely 

binding of a substrate to a complex catalytic site of an aminotransferase, which is an 

important representative of biocatalytic applications and binding of the drug dasatinib 

to a member of the kinase family, the proto-oncogene tyrosine kinase (c-Src). In the 

full publication (Souza et al., 2020), additional examples of protein–ligand systems 

are given: the reversible binding of seven different ligands (binders or non-binders) to 

mutants of T4 lysozyme, spontaneous binding and unbinding of both agonist and 

antagonist ligands to the adenosine A2A receptor (A2AR) and adrenergic β2 receptor 

(β2AR) [two different members of the membrane-embedded protein family of G 

protein-coupled receptors (GPCRs)], the nuclear receptor farnesoid X receptor (FXR), 

and the AP2-associated protein kinase 1 (AAK1), all representing prominent 

pharmacological targets. 

 

Methods 

Ligand parameterization. Models for the ligands were parametrized according to the 

Martini (3.0) procedure: First, mappings were designed based on the following 

principles: (i) minimize number of CG beads used and use regular- (R-), small- (S-), 

and tiny- (T-) beads for 4-to-1, 3-to-1, and 2-to-1 (non-hydrogen) atoms-to-CG-site 

mappings; (ii) describe aromatic rings by T-beads; (iii) take into account the symmetry 

of the molecule. Secondly, Martini bead types were assigned based on the chemical 

building block they are taken to represent. Bonded interactions are then obtained based 

on atomistic models. Note that we used center of geometry (COG)-based mapping 

taking into account also the hydrogen atoms. COG-based mapping leads to better 

molecular (e.g., solvent accessible surface area, SASA) and bulk (e.g., mass densities) 

properties for the models.33 Finally, models are validated using partitioning free 

energy data and comparison to atomistic SASA values. The final mappings are shown 

in Figure 1 and full topology files are provided in the Supporting Information.  
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Figure 1. Martini 3 mappings of dasatinib and acetophenone. Color codes are: red, P-bead 

(polar); blue, N-bead (intermediately polar); yellow, C-bead (non-polar); green, X-bead (halo 

compounds). 

c-Src kinase CG model. The CG model of the kinase domain was built using a later 

development version of the Martini 3 force field and the crystal structure with the pdb 

code 1Y57 as reference (residues 290–533).34 The crystal structure contains the c-Src 

complex in active conformation bound to a des-methyl analog of the drug imatinib. 

Protonation of His, Lys, Glu, Arg, and Asp residues close to the binding site was 

defined in accordance to predicted pKa values.35 An elastic network was employed to 

keep the secondary and tertiary structure of the protein with a force constant of 700 

kJ/(mol·nm2) and a distance cutoff of 0.9 nm. Comparison of the RMSD of the 

backbone beads in CG simulations and the RMSD of Cα from atomistic reference 

simulations (Amber ff14SB force field)36 shows a good agreement. 

Vibrio fluvialis aminotransferase CG model. The CG model of Vf-TA was built 

using the open-beta version of the Martini 3 force field and the crystal structure with 

the PDB code 4E3Q as reference.37 The crystal structure contains the cofactor 

pyridoxamine phosphate (PMP) but no substrate is present in the binding pocket. An 

elastic network was employed to keep the secondary and tertiary structure of the 

protein with a force constant of 500 kJ/(mol·nm2) and a distance cutoff of 0.9 nm. No 

distance constraints were employed to maintain the quaternary structure of the 

homodimer in the CG simulations. Comparison of the pairwise distances between the 

Cα atoms of the two monomers with distances from atomistic reference simulations 

shows a good agreement. One cofactor PMP was added to each of the two binding 

pockets and bound to the protein by harmonic bonds. 

Ligand model validation. Thermodynamic integration (see Supplementary Table 5 

of the original publication for detailed settings) was used to compute solvation free 

energies (∆GØ→S) in different solvents, using the Multistate Bennett Acceptance Ratio 

(MBAR) to get the final results and associated errors.38 The free energy associated 

with transferring a solute from a solvent S1 to a solvent S2 (∆GS1→S2) was computed 

as the difference ∆GS1→Ø−∆GS2→Ø. Results are shown in Tables S5 and S6. Solvent 
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accessible surface area (SASA) values were computed with the GROMACS tool gmx 

sasa using the following command line arguments: 

gmx sasa -s molecule.pdb -o sasa.xvg -probe 0.185 -ndots 4800 

The size of the probe corresponds to the radius of a tiny (T) bead. The probe size 

impacts the absolute SASA values, but not their relative difference. Thus, to make 

SASA values comparable the same probe size needs to be used. The flag -ndots 

specifies the accuracy of the calculation: 4800 (or higher) was found to be necessary 

for accurate SASA computations. 

RMSD and binding rate of c-Src kinase. For the calculation of the ligand RMSD, 

the crystal structure of an c-Src from chicken containing dasatinib (pdb code 3G5D)39 

was aligned to the structure of the human c-Src (pdb code 1Y57) (MUSTANG 

method40, RMSD of 0.61 Å over 226 aligned residues with 98.7% sequence identity). 

The resulting atomistic structure of dasatinib bound to the binding site of 1Y57 was 

converted to a CG structure and minimized for one step to account for slight changes 

in the bonded parameters. The protein backbone was used for alignment of the CG 

trajectory. The CG structure of the ligand and the contact protein beads were then 

compared to the CG model of the substrate bound to the active site to obtain their 

RMSD. The binding rate of dasatinib was estimated following the procedure of Shan 

et al.11: 

𝑘𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑒𝑣𝑒𝑛𝑡𝑠

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

[𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛]
 

RMSD and stereoselectivity of Vibrio fluvialis aminotransferase (Vf-TA). To the 

best of our knowledge, no crystal structure with acetophenone present in the binding 

pocket is currently available. Therefore, to compute the ligand RMSD, the QM/MM 

optimized structure of the cofactor-bound substrate was aligned with the crystal 

structure to serve as reference. The heavy atoms of the cofactor were used for the 

alignment. The resulting atomistic structure of acetophenone was converted to a CG 

structure and minimized for one step to account for slight changes in the bonded 

parameters. The protein backbone was used for the alignment of the CG trajectory. 

The CG structures of the ligand and the contact protein beads were then compared to 

the CG model of the substrate bound in the active site to obtain their RMSD. The 

active site of Vf-TA has a large and a small binding pocket which is important to 

achieve the high stereoselectivity during the reaction. To estimate in how many 

binding events the large substituent of acetophenone (phenyl ring) is correctly 

positioned in the large binding pocket and how often it is positioned in the small 

binding pocket, the density of the CG bead representing the p-C atom with respect to 

the carbonyl group was calculated. The ratio of the p-C atom density in the large 
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pocket versus the small one is 3:1. Thus, the ligand is positioned correctly in 75% of 

the binding events. However, because the stereoselective reaction step occurs not 

directly after the substrate binding to Vf-TA,41 a reorientation of the substrate could in 

principle still occur during the next reaction steps to achieve the high stereoselectivity. 

 

Results 

Ligand model validation. When we do coarse-graining, we want the CG molecule to 

reproduce as much as possible the conformational dynamics of the atomistic molecule. 

This can be achieved by fine-tuning the bonded parameters of the CG model (i.e., 

bonds, angles, and dihedrals) until they match the reference atomistic model. 

Additionally, we want the resulting CG molecule to be able to reproduce properties 

that cannot be directly fine-tuned by modifying the bonding parameters of the CG 

mapping scheme. For this study, we used partition coefficients (Martini vs 

experimental values) and solvent accessible surface area (SASA; Martini vs atomistic 

simulation) to validate the final models. For acetophenone, we found the free energy 

of transfer between octanol and water (9.2 kJ/mol) to closely match the experimental 

value (9.0 kJ/mol)42, and the SASA obtained from CG simulations (3.42 nm2) closely 

matched the SASA values obtained from fully atomistic simulations (3.69 nm2). For 

dasatinib, we could not find experimental measurements of partition coefficients, but 

we did measure the SASA of the CG model (8.76 nm2) and compared it to the SASA 

of the atomistic reference (9.00 nm2).  

Binding to kinases. As a first showcase for this thesis chapter, we consider the human 

proto-oncogene tyrosine-protein kinase (c-Src) which regulates signal transduction in 

cells.43 Tyrosine kinase dysfunction is linked to many diseases, and is of particular 

interest for cancer treatment. Regulation of tyrosine kinases is known to be governed 

by the presence of multiple allosteric binding sites, which have become the target of 

many pharmaceuticals.44 Here, we investigate the binding of the antileukemia drug 

dasatinib (Figure 2A) of which the experimental binding mode is known and its 

binding has been previously simulated at atomistic level.11 Furthermore, dasatinib as 

a larger organic molecule compared to the previously investigated ligands, is endowed 

with four rings with high relative flexibility. It represents a differently challenging 

system where the ligand not only needs to find the binding site but also orient itself 

correctly in a specific conformation. The protein was solvated in ~14,500 CG water 

beads, and one dasatinib molecule was added in the box, resulting in a substrate 

concentration of 0.96 mM (Figure 2A). The chlorobenzene part of dasatinib binds 

deeply inside the highly conserved ATP pocket, while the piperazine ring remains in 

the outer part in contact with the solvent. Inverse binding poses, i.e., poses where the 

piperazine ring is buried in the active site whereas the chlorobenzene ring stays in the 
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solvent, were rarely observed. Using a higher dasatinib concentration (i.e., five 

dasatinib molecules per box) lead to strong aggregation around the hinge region 

between the two kinase domain lobules (Figure S1), although binding to the ATP 

pocket still occurred. We found an excellent agreement in the RMSD of the bound 

ligand compared to the crystallographic binding pose (pdb code: 1Y57)34, with an 

average RMSD of 3.0 Å (Figure 2B), while the RMSD of the atomistic simulation was 

2.0 Å.11 5 out of 10 independent 30 µs replicas resulted in dasatinib binding with a 

total of 11 individual binding events observed in the aggregate 300 µs simulation time. 

The binding events lasted anywhere from a few hundreds of nanoseconds to 5 µs, 

adding up to 8% of time spent in the bound state. Figure 2B depicts the high-density 

regions or dasatinib around the protein. One binding pathway was found to be coming 

from the region between the two protein lobules (Figure 2B, green arrow), in 

accordance with the sole dasatinib binding path identified in an atomistic simulation.11 

However, in 7 out of 11 binding events dasatinib reached the catalytic site directly 

from the solvent (Figure 2B, blue arrow). We estimate a kon of 40 s−1µM−1, which can 

be compared to the kon of 1.9 s−1µM−1 calculated from atomistic simulations11 and 5 

s−1µM−1 from experiments45. Considering the temporal speed-up of the Martini model 

due to the smoother energy landscape (see discussion), our estimate is well in line with 

the expected values. 

 

Figure 2. Unbiased binding simulations of dasatinib to c-Src at the CG Martini level. A) 

Simulation box containing the kinase domain (residues 260–533) of c-Src and one dasatinib 

molecule (red) solvated in water (transparent blue surface). B) Crystal structure of c-Src (pdb 

code: 1Y57) with bound dasatinib (green). In addition, several CG snapshots of the bound 

dasatinib (red), the density in the main binding pocket (transparent red isosurface), and the 

density in several low-occupancy pockets (transparent gray isosurface) are shown. The two 

binding pathways observed are depicted as blue and green arrows. The histogram of the RMSD 

of dasatinib and the contact protein beads is depicted on the lower right.  
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Binding to an ω-transaminase (ω-ATA). As the second showcase for this thesis 

chapter, we studied the (S)-selective aminotransferase of Vibrio fluvialis (Vf-TA) 

which stereoselectively catalyzes the transfer of an amino group from a donor to an 

acceptor ketone.41 Due to the high stereoselectivity of the reaction, ATAs are of 

particular interest for the synthesis of pharmaceutical compounds. This second 

example is more challenging, because the active site has a small and a large pocket in 

which the substrate needs to be properly positioned to achieve the high 

stereoselectivity.46 We use acetophenone as substrate which is commonly used to 

study ω-ATAs. The phenyl and the methyl group of acetophenone bind to the large 

and the small binding pocket, respectively, which is important for the stereoselectivity. 

Because Vf-TA is a homodimer with two active sites, we include ten substrate 

molecules in a cubic simulation box with 16 nm edge length (Figure 3A). The protein 

is solvated in ~33,000 CG water beads, resulting in a substrate concentration of 4.2 

mM which is comparable to the concentration used in experimental studies.47,48 The 

binding path of acetophenone (6 ns in length) shows that the substrate is capable of 

entering the 15 Å deep tunnel to the active site during unbiased Martini simulations 

(Figure 3C). Figure 3B (left) shows the acetophenone density in the Vf-TA binding 

pocket (transparent red isosurface). In addition, several CG snapshots of acetophenone 

(red) taken from our binding simulations and the acetophenone binding pose in a DFT 

optimized binding site (green)41 are depicted. They show a good agreement with an 

average RMSD of < 4 Å (Figure 3B, right). A closer look at the binding path reveals 

that acetophenone is in contact with the residues Arg415 and Phe86 while exploring 

the tunnel towards the active site. Both amino acids are routinely mutated to tailor the 

enzyme activity of Vf-TA.46,47,49 An estimate, based on the density of the CG bead 

representing the p-C atom with respect to the carbonyl group, yields a correct 

positioning of the phenyl substituent in the large binding pocket in approximately 75% 

of the bound structures. Compared to T4 lysozyme, binding and unbinding events 

happen more often in Vf-TA with about three bindings per µs and active site (kon = 

7×108 M−1s−1 or 700 μM−1s−1). This higher frequency of binding and unbinding is 

expected for an enzyme in order to have a minimum of lag time between two catalytic 

turnovers. Typical association rate constants for enzymes are in the order of 106 – 109 

M−1s−1,50 and a few known values for the formation of the enzyme-substrate Michaelis 

complex in ATAs lie in the range of 105 – 108 M−1s−1.51–53 
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Figure 3. Unbiased simulations of acetophenone binding to Vf-TA at the CG Martini 

level. A) Simulation box containing the dimeric Vf-TA and ten acetophenone molecules (red) 

solvated in water (transparent blue surface). B) DFT-optimized structure of acetophenone 

(green) in the binding pocket aligned to the Vf-TA structure. In addition, several CG snapshots 

of acetophenone (red) and the acetophenone density in the binding pocket (transparent red 

isosurface) are shown. The RMSD histogram of acetophenone and the contact protein beads in 

relation to the DFT optimized structure is depicted on the right side. C) Binding event of 

acetophenone to the active site of Vf-TA. The colored spheres indicate the position of the 

center of mass of acetophenone. Before arriving to the active site, acetophenone passes by the 

residues Arg415 – also known as switching arginine – and Phe86. The surface of the protein is 

shown as a gray surface. The PLP cofactor bound to Lys285 marks the end of the ∼15 Å deep 

tunnel towards the active site. The atomistic substrate position corresponds to a 

superimposition of the coordinates of a DFT-optimized binding site.41 

Extra showcases. In the full publication (Souza et al., 2020), we tested the capabilities 

of the then newly-parameterized Martini 3.0 force field in seven showcase protein–

ligand systems. The presented thesis chapter only includes the details for c-Src kinase 

and Vf-TA. The other five systems are: the T4 lysozyme, the adenosine A2A receptor 

(A2AR), the adrenergic β2 receptor (β2AR), the farnesoid X receptor (FXR), the AP2-

associated protein kinase I (AAK1). A2AR, β2AR, and FXR are all transmembrane 

proteins. More details about these five systems can be found in the full manuscript. 

Nevertheless, we can summarize the most important findings from these additional 

systems as follows. 

We were able to obtain binding free energies from Martini 3 simulations of the T4 

lysozyme system with seven ligands (phenol, thieno-pyridine, benzene, indole, 

toluene, ethylbenzene, n-propylbenzene) and two mutants (L99A, L99A+M102Q) 

that closely match expected values (Figure 1e of the full publication). In the A2AR 

receptor showcase, we identified distinctive binding paths of caffeine and adenosine 
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(wherein caffeine interacts with the lipid bilayer before binding whereas adenosine 

does not), which do correspond to experimental observations and atomistic 

simulations (Figures 2d/e of the full manuscript). The simulations of the β2AR 

receptor successfully found the canonical binding poses, and two distinct binding 

paths were identified for the two ligands (adrenaline and propranolol). Furthermore, 

we identified that binding of obeticholic acid to FXR follows an induced fit 

mechanism (also suggested by previous studies), and the obtained trajectory fully 

describes the binding process in terms of interactions of the ligand with protein 

residues.  

Together, the results presented on binding of drugs and substrates to different classes 

of proteins further show the potential of our approach to accurately predict binding 

modes, binding free energies, kinetics, and binding pathways for large, flexible, and 

complex ligands. 

 

Discussion 

Applications such as structure-based drug design are particularly challenging for CG 

modeling because of several requirements: (1) high chemical specificity of pocket-

ligand interactions; (2) capability to represent all possible components of the system 

(as proteins, cofactors, drug candidates, solvent, lipids, etc.) in a coherent way; (3) 

realistic representation of conformational flexibility of each molecule in the system; 

(4) accurate thermodynamics and kinetics of binding. Currently, none of the CG force 

fields available fulfills all the requirements listed above. The examples showed in this 

work indicate that the current state of the Martini model seems to finally achieve most 

of these requirements with reasonable accuracy in relation to atomistic models. The 

key improvement in Martini 333 to enable such applications is the enhanced packing 

of the CG beads, achieved by re-balancing of the cross-interactions of different bead 

sizes54, as well as by the re-parametrization of bonded distances based on molecular 

volume and shape. As a result, protein cavities are represented more realistically and 

ligands can fit better. Besides, the expansion of bead chemical type options in Martini 

3 allows for a better coverage of the chemical space, facilitating CG modeling of rather 

complex small molecules such as baricitinib and dasatinib. 

Given the improvements in accuracy in Martini 3, another key advantage of CG 

models in general is their computational performance. For instance, Martini CG based 

docking of biomolecular complexes can be around one order of magnitude faster 

compared to atomistic models, as recently demonstrated for the Haddock program.55,56 

Benchmarks tests performed with the program package Gromacs (version 2018)57 

showed that Martini based MD simulations of protein-ligand systems can be 110–350 
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times faster than all-atom simulations, with the performance gain increasing with 

growing system size (see Supplementary Discussion of the full manuscript and 

Supplementary Table 2 of the full manuscript). Considering diffusion-controlled 

processes such as ligand binding, the smoother potential landscape of Martini can also 

provide 2–3 times faster association/dissociation to the proteins (Supplementary Table 

3 of the full manuscript). 

In addition, faster protein dynamics can play an important role in induced-fit 

processes, as exemplified by the binding of the obeticholic acid to FXR and the 

dasatinib binding to c-Src kinase. The latter shows a ~8 times speed-up in association 

rate constant compared to atomistic simulations. Another performance advantage can 

be achieved by coarse-graining in the chemical space, as recently demonstrated by 

Menichetti et al.58. Because certain Martini CG moieties can represent more than one 

chemical fragment at the same time, virtual screening using fragment-based strategies 

could lead to an improvement in performance of three to four orders of magnitude. 

The combination of increased performance, smother potential surfaces, and coarse-

graining of the chemical space can bring virtual screening protocols to speed-ups in 

the order of 105–107 compared to approaches based on atomistic models. 

The main limitation to achieve such a high-throughput screening pipeline is the 

currently limited set of available ligand parameters for Martini. The development of a 

curated and validated database for Martini CG ligands is therefore of paramount 

importance. Such ligand databases in combination with automated tools to generate 

CG models59,60 (https://github.com/marrink-lab/cartographer) can expand the 

accessible chemical space of Martini to millions of compounds. Other aspects that can 

limit the accuracy of the model in certain applications, and that should be kept in mind, 

are: (1) the poor representation of protein flexibility by elastic network models; (2) the 

hydration of pockets by water molecules that cannot be represented by CG water 

models; (3) limited accuracy at the CG level to differentiate enantiomers or to fully 

represent directionality in binding poses; (4) the approximate nature of binding 

kinetics. Most of these issues are inherent to the process of coarse-graining, but some 

of these problems can be alleviated at least to some extent. For instance, protein 

flexibility can be greatly improved by the combination of Martini and Gō-like 

models.61,62 Hydration of pockets can be modeled by the usage of smaller water beads, 

as it was already applied in the A2AR and β2AR case (see Supplementary Methods of 

the full manuscript). Polarizable Martini models63,64 can be applied to cases for which 

directionally of hydrogen bonds or an improved description of the electrostatic 

interactions are necessary. Differentiation of enantiomers is a clear challenge for CG 

models, and might require two-state CG models65 or the use of multi-resolution tools 

to couple Martini to all-atom models66,67. Further refinement of the ligand pose and 

the binding pocket can be achieved by back-mapping to atomistic resolution68 as it 
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was already used in the present study in the case of the GPCRs and FXR. Concerning 

kinetics, the reduction of friction from the missing atomistic degrees of freedom 

causes a natural speed-up of the dynamics. This implies that only order of magnitude 

estimates can be provided when using a CG model such as Martini. However, trends 

for ligands with the same level of resolutions can be expected to be captured well. In 

the case of binding, diffusional encounter between the ligand and the binding pocket 

entrance largely determines the binding kinetics. Because the molecular shape of the 

ligand, the protein, and the binding pocket entrance are represented well in Martini 3, 

trends in binding kinetics are expected to be represented reasonably. Moreover, 

realizing that in particular unbinding rates of ligands from proteins often involve large 

free energy barriers, the overall accuracy of kinetic estimates for unbinding will 

mostly rely on a careful representation of the barrier energetics. Here, Martini is 

expected to perform well as the model heavily relies on reproducing free energy data 

and the correct kinetics rates might be retrieved from a rigorous estimate of the friction 

reduction.69 

 

Conclusions 

In summary, we have demonstrated that the Martini 3 force field can be used to 

simulate protein-ligand binding in a brute force approach. We have illustrated its 

capability by spanning a range of systems from the well-characterized model system 

T4 lysozyme over pharmacologically relevant receptors such as the A2AR, β2AR, and 

FXR, to a number of different enzymes, namely the aminotransferase Vf-TA and the 

kinases c-Src and AAK1. In the future, the computational performance can be straight-

forwardly increased by optimizing the ligand concentration as well as by employing 

enhanced sampling techniques. Moreover, our results pave the way to an efficient 

computational approach to quantitatively predict binding thermodynamics and 

potentially capture trends in kinetics. Because no a priori knowledge of the binding 

pocket is required and a known pocket does not influence our approach in any way, it 

entails the possibility of finding new additional pockets. In this view, we could 

envision computational competitive binding assays. Together with ongoing 

developments of an automated topology builder for Martini, the presented results open 

the way to a high-throughput screening pipeline, potentially screening millions of 

drugs and protein mutants. 
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Contributions 

This thesis chapter contains the modelling of Src-kinase and Vf-TA. Details about the other 

protein-ligand systems (T4 lysozyme, AAK1, A2AR, β2AR, and FXR) can be found in the full 

publication. 
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Supporting information 

Additional figure 

 

Figure S1. Agglomerate formed when adding five molecules of dasatinib (orange) per 

simulation box. The dasatinib molecules do not aggregate in the water phase, but after 500 ns 

of simulation they start to accumulate in a pre-binding region located between the two protein 

lobules. During most of the remainder of the trajectory dasatinib stays in the agglomerate, 

thereby reducing the effective concentration in the solvent. Binding rate was therefore lower 

when compared to simulations with a single ligand molecule per box. Only one binding event 

was observed in the 40 µs trajectory. 

 

Martini parameters 

DASATINIB 
;;;;;; DASATINIB 

; Martini 3.0.b.4.x CG model (v 0.35) by RA & CR 

; COG-based bonded parameters 

; Stiff model of DASATINIB 

 

[ moleculetype ] 

; Name          nrexcl 

  DASA            1 

 

[ atoms ] 

; nr    type  resnr  residue atom  cgnr charge mass                                                            

; bead's change propposed by ST 

  1     TC5     1     DASA    R1    1     0           ; benzene-like                                           

  2     SC4     1     DASA    R2    2     0           ; toluene-like 

methyl 
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  3     SX3     1     DASA    Cl    3     0           ; 

chlorobenzene-like chlorine 

  4     VS      1     DASA    V4    4     0     0     ; virtual site 

  5     SP2     1     DASA    P5    5     0           ; ST: TP2 --> 

SP2 

  6     TC6     1     DASA    S6    6     0           ; thiophene-

like sulphur 

  7     TC5     1     DASA    R7    7     0           ; benzene-like 

  8     TN6a    1     DASA    N8    8     0           ; 

thiazole/pyrimidine-like  

  9     VS      1     DASA    V9    9     0     0     ; virtual site 

 10     VS      1     DASA   V10   10     0     0     ; virtual site 

 11     TN2d    1     DASA   N11   11     0           ;  

 12     SN4a    1     DASA   N12   12     0           ;                                       

 13     TN1     1     DASA   N13   13     0           ;                                        

 14     VS      1     DASA   V14   14     0     0     ; virtual site 

 15     SC4     1     DASA   C15   15     0             ; 

cyclohexane-like  

 16     SC4     1     DASA   C16   16     0           ; cyclohexane-

like  

 17     TN1     1     DASA   N17   17     0           ;  

 18     TP1     1     DASA   O18   18     0           ; ethanol-like  

 19     VS      1     DASA   V19   19     0     0     ; virtual site 

 

[ bonds ] 

; atomi atomj   func    length  force_k 

  4     5       1       0.204   25000   ;  

  5     9       1       0.312   25000   ;  

  4     9       1       0.513   50000   ; VS_Cl-toluene to 

VS_thiazole 

 10    14       1       0.270   50000   ; VS_bridge to VS_methyl-

pyrimidine 

 13    15       1       0.319   25000   ; OR CONSTRAINT?  

 13    16       1       0.278   25000   ; OR CONSTRAINT?  

 15    16       1       0.308   50000   ; OR CONSTRAINT? 

 15    17       1       0.300   25000   ; OR CONSTRAINT?  

 16    17       1       0.300   25000   ; OR CONSTRAINT?  

 17    18       1       0.230   40000   ; OR CONSTRAINT? 

 

[ constraints ] 

; i     j       funct   length 

  1     2       1       0.364   ; Cl-toluene constraints 

  1     3       1       0.310   ; Cl-toluene constraints 

  2     3       1       0.441   ; Cl-toluene constraints 

  6     7       1       0.248   ; thiazole constraints 

  6     8       1       0.200   ; thiazole constraints 

  7     8       1       0.205   ; thiazole constraints 

 11    12       1       0.349   ; pyrimidine constraints 

 11    13       1       0.239   ; pyrimidine constraints 

 12    13       1       0.351   ; pyrimidine constraints 

 

[ exclusions ] 

; usually, exclude "first-neighbour" ring fragments 

; i     j       k      ... 
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  1     6       7       8 

  2     6       7       8 

  3     6       7       8 

  5     6       7       8 

  6    11      12      13 

  7    11      12      13 

  8    11      12      13 

 11    15      16      17 

 12    15      16      17 

 13    17      18 

  5     3       2         ; P5 can get too close to Cl/R2 sometimes 

causing crashes 

 

[ angles ] 

; i     j       k       funct   angle   force_k 

  1     2       9       1       109.5     180    ; P3HT-like angles 

  1     3       9       1       120.0     180    ; P3HT-like angles 

  8     6       4       1        99.5     250    ; P3HT-like angles 

from 180 

  8     7       4       1       159.0     180    ; P3HT-like angles 

  4     9      10       1       180.0     180    ; VS-VS-VS  

  6     9      10       1       100.0     180    ;  

  9    10      14       10      140.0     250    ; VS-VS-VS ; changed 

to ReB  

 10    14      12       1       119.0     170    ;       

 10    14      13       1       108.0     250    ; 

 10    14      19       1       135.0     180    ; VS-VS-VS  

 11    13      16       1       130.0      12    ; pyrimidine-

piperazine connection ; this angle may prevent the etOH from flipping 

back and forth respect to plane of rings 

 11    13      16       1       160.0      12    ; pyrimidine-

piperazine connection ; this angle may prevent the etOH from flipping 

back and forth respect to plane of rings 

  4     5       9       1       165.0     140    ;  

 13    19      17       1       160.0      50    ; without this, CG 

reproduces OK the AA. But causes instablities if angle goes below 90º 

;;  9    10      14      10       140.0      50    ; OPTIONAL ReB 

;; 10    14      12      10       119.0      50    ; OPTIONAL ReB 

 12    14      19      10       130.0      50    ; OPTIONAL ReB 

 10     11      14      1       145.0      50    ; Keep V10 in same 

plane as the pyrimidine ring                                                  

 

[ dihedrals ] 

; i   j   k    l  funct ref.angle  force_k 

  3   4   9    6   1    -90.0       18.0    1 ; Cl-toluene to 

thiazole ; changed multiplicity from 2 to 1 and sign from positive to 

negative 

  6   9   10   14  1    180.0       20.0    2 ; thiazole to methyl-

pyrimidine (orientation of sulphur) NOT SO SURE HERE ; adjusted from 

ang(135) and fc (1.0) 

  9   10  14   12  1    180.0        6.0    2 ; thiazole to methyl-

pyrimidine  

  12  14  19   16  1     45.0        4.0    4 ; methyl-pyrimidine to 

piperazine  
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  10  12  13   14  2      0.0      200.0      ; improper keep VS10 

same plane as CH3-pyrimidine 

  13  15  17   16  2    -15.0       80.0      ; improper keep 

piperazine flat  

  12  14  10   9   2      0.0        2.0      ;  

  12  14  9    6   2      0.0        2.0      ;  

 

[ virtual_sites2 ] 

; sites positioned at 1-a 

; site  from      funct    a 

   4    3   2       1    0.4344 ; dist_|3-2|=0.442 => the VS will be 

at 0.442*0.4344=0.192 nm from atom 3 (OK) 

  19   15  16       1    0.5000 ; in the middle 

 

[ virtual_sites3 ] 

; site positioned as a linear combination of 3 atoms 

; the site is in the same plane of the 3 atoms 

; site  from      funct    a    b 

  10     7  8  6   1     1.668 0.248 ; dist_|10-6| = 1.81; dist_|10-

8|=2.68 (OK) 

  14    12 11 13   1     0.335 0.329 ; dist_|14-13|= 1.64; dist_|14-

11|=1.62; dist_|14-12|=2.18 (OK) 

 

[ virtual_sitesn ] 

; site funct  constructing atom indices ; NOTE! function 1 = COG, it 

may matter sometimes 

  9     1       6       7       8  ;  

 

 

ACETOPHENONE 
;; Martini 3.0.b.4.x CG model (v 0.35) by CR 

[moleculetype] 

; molname       nrexcl 

   01K             2 

 

[atoms] 

; id    type    resnr   residu  atom    cgnr    charge 

  1   SN2a  1     01K   R1    1     0 

  2   TC4   1     01K   R2    2     0 

  3   TC4   1     01K   R3    3     0 

  4   TC4   1     01K   R4    4     0 

 

[constraints] 

; i j   funct   length 

  1 2       1     0.255 

  1 4       1     0.438 

  2 3       1     0.285 

  2 4       1     0.285 

  3 4       1     0.285 

 

[dihedrals] 

; i j k l  funct  ref.angle   force_k 

  1 2 3 4    2      180.00      100 
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