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Chapter 3

Theoretical predictions of molecular
enhancement factors
The previous chapter was concluded by introducing the finite-field method used
for calculating atomic and molecular properties in the framework of the relativistic
coupled-cluster method. In this chapter, additional aspects, which are applicable to
most electronic structure methods and thus not dependent on the exact form of the
wave function, will be introduced. In Sec. 3.1, the operators needed for calculating
the P, T -odd molecular enhancement factors will be derived. The operator needed
for calculating HFS constants has been derived in detail in Chapter 4. In Sec. 3.2,
different strategies to determining the uncertainty of the calculated parameters will
be discussed and in Sec. 3.3, some aspects related to the connection between ab initio
results and the (real) experimental world will be introduced.

3.1 P, T -odd interaction constants
In the introduction of this thesis the two P, T -odd interactions, which contribute to the
P, T -odd molecular dipole moment in paramagnetic systems, were introduced, namely
the electron electric dipole moment (eEDM) and nucleon-electron scalar-pseudoscalar
(S-PS) interactions. In Chapter 5, the corresponding molecular enhancement factors,
Wd and Ws, in BaF have been calculated and in Sec. 3.1.3, the results of Wd in YbF
will be presented. These calculations were performed with the relativistic CC method
introduced in the previous chapter with the aid of the finite-field method. The two
properties were thus obtained from the numerical derivatives:

Wd = 1
Ω

dEΩ(λde
)

dλde

∣∣∣∣
λde =0

(3.1)

Ws = 1
Ω

dEΩ(λks
)

dλks

∣∣∣∣
λks =0

(3.2)

where the factor 1
Ω comes from the definition of the effective Hamiltonian, Eq. (1.4).

EΩ(λde) and EΩ(λks) denote the perturbed energies of a given electronic state indicated
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Chapter 3 Theoretical predictions of molecular enhancement factors

by Ω, corresponding to the following total Hamiltonian in which the perturbation, being
either the eEDM or S-PS Hamiltonian, are added with corresponding perturbation
strength, λde

and λks
:

Ĥ = Ĥ(0) + λdeĤ
eEDM/de (3.3)

Ĥ = Ĥ(0) + λksĤ
S-PS/ks (3.4)

where the zeroth-order Hamiltionian is the field-free Dirac-Coulomb Hamiltonian:

Ĥ(0) =
∑
i

[
c~αi · ~̂pi + βic

2 − V̂eN
]

+ V̂ee + V̂NN (3.5)

as introduced in Eq. (2.22).
The task in the following two sections is to derive ĤeEDM and ĤS-PS from fun-

damental theory and in Sec. 3.1.3, a computational study of Wd in YbF will be
presented.

3.1.1 eEDM enhancement
The derivation of an appropriate operator for the eEDM enhancement starts by
considering the P, T -odd eEDM Lagrangian density [101,102]:

LeEDM = −ide2 Ψ̄σµνγ5ΨFµν (3.6)

which is the P, T -odd analogue of the anomalous magnetic moment. Ψ (Ψ̄) is the
Dirac (conjugate) field of the electron, σµν = i

2γ
µγν − γνγµ, γµ,ν are the Dirac

matrices, γ5 = iγ0γ1γ2γ3 and Fµν is the electromagnetic field tensor. By inserting the
expressions for σµν , γ5 and Fµν , one obtains the eEDM Lagragian density in terms of
~E and ~B:

LeEDM = deΨ̄(~Σ · ~E + i~α · ~B)Ψ (3.7)

which can be translated into the Hamiltonian (using the relations, Ψ̄ = Ψ†γ0 and
~γ = γ0~α):

ĤeEDM = −de(γ0~Σ · ~E + i~γ · ~B) (3.8)

where ~Σ =
(

0 ~σ
~σ 0

)
and ~γ =

(
0 ~σ
−~σ 0

)
. To the best of my knowledge, the only

numerical calculations of the term involving ~B was performed by Lindroth et al. [103]
considering the eEDM enhancement in the Cs atom on the Hartree-Fock level using
the Dirac-Coulomb-Breit Hamiltonian, i.e. including all terms to O(α2). The effect
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3.1 P, T -odd interaction constants

of the entire O(α2) terms, i.e. due both to magnetic interaction as well as the Breit
terms, on the enhancement factor in Cs was found to be -0.4% on the Hartree-Fock
level. Based on the findings of Lindroth et al., all calculations of enhancement factors
since then have been neglecting the interaction with a magnetic field, taking into
account only the interaction with the electric field:

ĤeEDM ≈ −deγ0~Σ · ~E (3.9)

The same will be done here, but further studies of the effect of the magnetic interaction,
in particular for heavier systems or systems of significant different nature than Cs,
would be desirable.

The operator in Eq. (3.9) takes into account the interaction between the eEDM
and both internal and external electric fields, ~E = ~Eint + ~Eext. The internal electric
field acting on electron i is due to the nuclei, I, and other electrons, j [104]:

~Eint,i =
∑
I

~riI
r3
iI

−
∑
j 6=i

~ri − ~rj
r3
ij

(3.10)

The second term is a two-electron operator which poses additional challenges to the
implementation (see Ref. 42 for a discussion hereof). Consequently, it is advantageous
to rewrite the operator into a one-electron form as was first introduced in Ref. 104:

ĤeEDM =
∑
i

2icdeβiγ5
i ~̂p

2
i (3.11)

For the derivation of the operator, the reader is referred to Ref. 104, but one aspect is
worth noting. In order to rewrite Eq. (3.8) into Eq. (3.11), the external electric field,
~Eext, should be included in the zeroth order Hamiltonian. In the method described so
far, this is not the case, since Ĥ(0) is the field-free Dirac-Coulomb Hamiltonian, Eq.
(3.5). However, even if the external electric field was included in Ĥ(0), the resulting
interaction would not be complete due to the lack of rotational degrees of freedom
as a consequence of the Born-Oppenheimer approximation (see Sec. 3.3.1). In order
to justify the use of Eq. (3.11), the interaction with an external electric field will be
treated in a second step using the Stark Hamiltonian as will be shown in Chapter 5.
This leads to the polarization factor which was discussed in the introduction.

The operator in Eq. (3.11) is P, T -odd which means that it can only be evaluated
by a Kramer-unrestricted method. In the framework of the DIRAC program, it can
consequently be evaluated at the coupled-cluster level only since the Hartree-Fock
and DFT implementations utilize Kramers-restriction which is not the case for the
coupled-cluster implementation. The same goes for the operator introduced in the
following section.
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Chapter 3 Theoretical predictions of molecular enhancement factors

3.1.2 Nucleon-electron scalar-pseudoscalar interaction
The P, T -odd interaction between electrons and nuclei takes various forms [102,105].
In paramagnetic systems, the scalar-pseudoscalar nucleon-electron (S-PS) interaction
is the dominating term which takes the form:

LS-PS = N̄N · Ψ̄γ5Ψ (3.12)

This term can be re-written in an effective Hamiltonian for nucleus I by taking the
non-relativistic limit for the nucleons:

ĤS-PS
I = iGF√

2
ZIksγ

0γ5ρ(~rI) (3.13)

where GF is the Fermi coupling constant which indicates the weak nature of this
interaction and which in atomic units is 2.2225×10−14 a.u., ZI is the atomic number
of nucleus I and ρ is the nuclear charge density. ks is the magnitude of P, T -odd
interaction which was introduced in the effective Hamiltonian in Eq. (1.4). Sometimes
the S-PS interaction is parametrized by CS which is related to ks by CS = Z

Aks where
A is the total number of nucleons. In principle, the S-PS enhancement should be
calculated for every nucleus in the system, but in practice only the heavy element(s)
will contribute due to the Z3 scaling.

3.1.3 Computational study of Wd in YbF
Paper 3 Enhancement factor for the electric dipole moment of the electron in the

BaOH and YbOH molecules, M. Denis, P. A. B. Haase, R. G. E. Timmermans,
E. Eliav, N. R. Hutzler, and A. Borschevsky, Phys. Rev. A 99, 42512 (2019)

Contributions: Calculations of Wd in YbF for comparison with the results for YbOH.

In addition to the results presented in Chapter 5, the results of Wd in YbF from a
collaboration with Malika Denis [106] will be discussed here. The main focus of this
work was to calculateWd in the triatomic systems BaOH and YbOH since the additional
vibrational degrees of freedom potentially give rise to enhanced experimental sensitivity.
An interesting question to ask in this context is how the molecular enhancement factor
differs between the triatomic and diatomic (isoelectronic) analogues, i.e BaF and YbF.
My contribution to this work was to calculate Wd in the diatomic species and in the
following an additional computational analysis compared to the results included in
Ref. 106 will be presented.

Due to the complicated electronic structure associated with the Yb atom, the single-
reference CC method does not give reliable results, indicated by large T1-diagnostic
values which is a measure for the quality of the CC wave function [107]. Instead, the
multi-reference FSCC method was used. In the case of YbF, both sector (0,1) and
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Table 3.1 Wd in YbF [1025 Hz
ecm ], calculated at the FSCC level with different basis

sets and using the 4-component and X2C Hamiltonians.
basis set Wd

4C
vdz 1.057
vtz 1.144
vqz 1.156

X2C
vqz 1.144
aeqz 1.144
s-aug-vqz 1.144

(1,0) were tested, starting from YbF+ and YbF– , respectively. Before discussing the
effects of basis set and relativity on the calculated Wd, the suitability of the FSCC
method for treating YbF should be determined.
The obvious way to assess the quality of a CC wave function is to look at the

convergence of the results when increasing the excitation rank. The current FSCC
implementation is however limited to single and double excitations and such a study
is thus not feasible. Instead, we consider two alternative strategies, namely the
comparison of the results obtained with sector (0,1) to those from sector (1,0) as
well as the size of the employed model space. The difference in Wd when using
the two sectors was found to be 1.3% on the X2C/vqz level. The similarity of the
(0,1) and (1,0) results indicate that the FSCC method provides stable results and
is more suitable than the single-reference approach. The dependence on the chosen
model space was tested by comparing a model space containing only the valence σ
orbital to one containing 5 additional virtual orbitals, resulting in a difference of 1.1%.
This difference indicates that the result using the smaller model space is sufficiently
converged to perform the basis set study at this level, but for highest accuracy the
larger model space should of course be used. Extending the model space even further
is not expected to have any significant effect.
The next aspect to discuss is the effect of the basis set on Wd. In Tab. 3.1, Wd is

shown using different quality of basis sets at the FSCC (0,1) level. Due to the high
computational cost of the aeqz and s-aug-vqz basis sets, these calculations, along with
the vqz for comparison, were performed at the X2C level. It turns out that neither
additional tight nor additional diffuse functions have any significant influence on the
value of Wd. It should be noted here that the vqz basis set in the case of the Yb atom
has more tight functions than for example in the case of the Ba atom. The reason for
this is that there is no logical separation between the valence and core-valence space
in the case of Yb. Compared to the s-block elements, one would consider the valence
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 UDF [113]
 RDHF + CP [89]
 DF [114]
 RASCI [114]
 MBPT(2) [115]
 RASCI* [116]
 DF [117]
 CCSD, QZ, LECC [117]
 GHF-ZORA [42]
 GKS-ZORA/B3LYP [42]
 CCSD, TZ, LECC [118]
 FS-CCSD, QZ, FF [this work]

Figure 3.1 Graphical representation of reference values for Wd in YbF as a function
of year published.

region as consisting of 6s, 4f and 5d and the core-valence with the additional 5s, 5p
and 4d shells. However, due to the compact nature of the 4f shell, the 4f and 5s5p4d
shells should be treated together [108] and all mentioned orbitals are considered as
part of the valence space.
Considering now the general quality of the basis set we see a converging behavior

when increasing the cardinal number. This is different to the behavior of Wd in BaF
which showed a zig-zag dependence, see Chapter 5. The difference between the
results obtained with the vqz and vtz basis sets is 1.0% which, together with the
results from the additional tight and diffuse functions, indicates that the basis set is
reasonably converged at the vqz level.
Lastly, the results obtained with the 4-component and X2C methods should be

compared. The difference at the vqz level is 1.0% and is slightly larger than in the case
of Wd in BaF (0.4%), Chapter 5, which is to be expected due to Yb being heavier.
In the study on BaF, we also tested the effect of including the Gaunt interaction, i.e.
taking into account higher order relativistic effects in the electron-electron interaction
compared to the Coulomb interaction. This interaction can be calculated at the
Hartree-Fock level only and we consequently chose not to consider this effect here,
since the Hartree-Fock wave function provides a poor description of the multi-reference
YbF system.

The computational study presented so far indicates that the result of Wd in YbF at
the 4c/FSCC/vqz level should be reliable to within approximately 5-10%. Without
any reliable estimation of higher order relativistic effects, which should be larger in
YbF compared to for example BaF, it is difficult to make this uncertainty estimate
more specific.
This section will be concluded by comparing the presented result to the results
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which can be found in the literature calculated with a variety of different methods
[42, 89, 109–118]. These results are shown in Fig. 3.1 and grouped according to the
level of theory. The green points correspond to CC results, the light blue points
correspond to RASCI and MBPT(2) methods, the grey points correspond to methods
with a more approximate treatment of electron correlation and the red point is the
result of the present study. Comparing only the methods treating electron correlation
at CI-level a spread of around 20% can be seen whereas the CC results have a smaller
spread of around 10%. It should however be noted that the two earlier CC results
were obtained using a single-reference method. When inspecting the results in Fig.
3.1 it is tempting to take the spread in the results as a common uncertainty. However,
these methods vary substantially in the level of sophistication and such a conclusion is
not representative of the quality of the more sophisticated methods and probably not
reliable for the less sophisticated ones. A better alternative is to establish a reliable
theoretical uncertainty for each performed calculation. This will be the subject of the
following section.

3.2 Establishing the accuracy of theoretical predictions
Now that the framework of the relativistic coupled-cluster method for calculating
P, T -odd properties has been established, it is time to discuss the uncertainty of this
method. Within electronic structure methods, it is not customary to put error bars
on ab initio results as is done in experimental physics. The main reason for this
is probably that there is no obvious way to do so which fits all ab initio methods.
Another reason could be related to the fact that researchers within the field often
have a good feeling of inherent uncertainties associated with the different methods,
but when collaborating with experimentalists, or in general non-specialists, reliable
uncertainty estimations can be very useful. In the scope of this thesis, uncertainties
on the calculated Wd and Ws parameters are necessary since they are used in the
interpretation of a precision experiment where excellent control and knowledge of all
sources of errors is crucial.

In order to determine a reliable uncertainty estimate, two strategies can be followed;
1) comparison with experimental data and 2) establishing an uncertainty estimate
based purely on a systematic computational study. These two strategies will be
discussed in the following two sections.

3.2.1 Comparison with experimental results
The usual way to determine the accuracy of a given theoretical method is to do
a so-called benchmark study where the results obtained with a (often times new)
theoretical method are compared to either experimental or higher level theoretical data.
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Chapter 3 Theoretical predictions of molecular enhancement factors

Ideally, such a benchmark study should be performed on a large set of representative
systems as was done for example in Ref. 119. The result of such a study then serves
as an indication of the overall accuracy, but it does not allow for uncertainties on
individual results.
When an uncertainty is needed on a particular result, the difference between a

theoretical and experimental determined appropriate property can serve as uncertainty
estimation. There are however cases where the property of interest cannot be measured
and where comparison with a related property or system can be used. For example
when studying properties of superheavy elements for which experimental data is
scarce, the results for lighter homologues are then compared to experimental data and
the discrepancy is used as the uncertainty on the result for the superheavy element.
Another example is the interpretation of atomic parity violation in Cs where the
comparison between calculated and experimental hyperfine structure (HFS) constants
dictated the uncertainty on the calculated parity violating matrix element, which
cannot be measured, needed to extract the weak charge from measurements [35,120].

In the search for molecular P, T -violation, the situation is similar to that of atomic
parity violation, in the sense that the molecular enhancement factors Wd and Ws are
necessary to relate a measurement to the fundamental P, T -odd properties. However,
Wd andWs cannot be measured and the motivation for the work presented in Chapter
4 on HFS constants in 137BaF (i.e. coupling to 137Ba nucleus) was to compare the
calculated HFS constants to experiment in order to get an indication of the uncertainty
of the calculated P, T -odd enhancement factors [121]. The reason for using the HFS
constant to benchmark Wd and Ws is that it probes the electronic wave function in
the vicinity of the Ba nucleus. This is also the part of the wave function that Wd

and Ws are most sensitive to due to relativistic effects and the strong electric field
associated with the large nuclear charge of Ba.

3.2.2 Theoretical uncertainty estimate
A theoretical uncertainty estimate is not at all common practice when using ab initio
methods. One reason for this is that it takes a very systematic method to establish a
reliable scheme. However, the most popular theoretical method is based on density
functional theory (DFT) where correlation is taken into account by the exchange-
correlation functional, the form of which is unknown and is thus not systematically
improvable. Another reason is that such an uncertainty estimate relies on an extensive
computational study which is not feasible especially if many systems are being treated
or expensive methods are being used.

However, this subject recently seemed to get more attention for example in the group
of Christoph Jacob where, until now, uncertainties due to the employed molecular
geometry were investigated using sophisticated methods for uncertainty quantification
[122]. Also in the field of atomic and molecular physics, theoretical uncertainties on
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Figure 3.2 Illustration of a quality assessment of standard ab initio methods inspired
by Fig. 1 in Ref. [74]. The origin corresponds to a non-relativistic Hartree-fock method
with a minimal basis set.

calculated properties sometimes appear, even though the method for obtaining these
is often not obvious [42,44,123–127].

For the past few years, in our group we have been working on a scheme for calculating
reliable uncertainty estimates in a systematic fashion. This scheme can best be
explained by considering the graphical illustration of a standard ab initio method
depicted in Fig. 3.2 which shows the three cornerstones of such a method: The basis
set, treatment of electron correlation and of relativity. When moving along each axis,
the quality of the treatment improves. In the case of electron correlation and basis
set the step-wise improvement is systematic when CC theory and cardinal number
optimized basis sets are used. The step-wise inclusion of relativistic effects is less
systematic and the associated uncertainty is thus the hardest to estimate, as will
become clear later. The idea of the scheme is to estimate what is still missing relative
to a given point on each of the axes. If for example a QZ basis set is used, the effect of
going to 5Z and higher can then be estimated by considering the difference between the
TZ and QZ result. We usually take half of this difference as the uncertainty estimate
since a converging behavior can be expected. Note that the illustration in Fig. 3.2
could in principle have more dimensions representing for example the treatment of the
nuclear structure, nuclear motion, for which an example will be shown in Chapter 5,
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solvent effects, etc.
In the remaining chapters of this thesis, theoretical uncertainty estimates have

been determined for P, T -odd molecular enhancement factors, Chapter 5, and HFS
constants, Chapters 4 and 6. In the case of the latter, comparison with experimental
results was performed in order to test the validity of the estimated uncertainty. In
the case of ground state HFS constants, Chapter 4, the estimated uncertainties were
between two and five times larger than the deviation from experimental results. This
indicates that the estimated uncertainties are on the conservative side which was the
intention in the first place. In the case of excited state HFS constants, Chapter 6,
the uncertainty estimate was only 1.5 times larger. This smaller margin is partly due
to not including the higher order relativistic effects in the uncertainty estimate for the
excited states since the Gaunt interaction cannot be evaluated on the FSCC level.

Even though the scheme presented in this section seems to give reliable uncertainty
estimates there is definitely room for improvement, for example by applying more
sophisticated uncertainty quantification methods, as in Ref. 122, to the basis set and
electron correlation uncertainties. In addition, the uncertainty stemming from the
treatment of relativity remains a challenge since the Breit and QED interactions are
generally not available in molecular electronic structure codes. In the case of QED
effects, this has however very recently changed [128,129] and it will be interesting to
see what the effects are on the properties studied in this thesis.

3.3 Connecting theoretical results with experiment

At this point, the relevant aspects of predicting molecular properties with ab initio
methods have been covered. The input of such a calculation, in addition to the
choice of method, basis set and required property, is a molecular structure, i.e. a
set of coordinates which specifies the location of the individual atoms. During the
calculation, unless a geometry optimization takes place, these coordinates are kept
fixed and the molecule is static, i.e. it cannot vibrate, rotate or translate. Compared
to the situation in the lab, this is of course a very crude approximation. It furthermore
prevents complete studies on for example the interaction of a molecule in a given
rotational state with an external electric field due to the lack of rotational degrees
of freedom in the calculation. The motivation for treating the electronic degrees of
freedom separately, known as the Born-Oppenheimer approximation, will be briefly
introduced in the following section and in Sec. 3.3.2 the framework which takes care
of the connection between ab initio parameters and for example the rotational degrees
of freedom, namely effective Hamiltonian theory, will be discussed.
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3.3.1 The Born-Oppenheimer approximation
The degrees of freedom in a molecule can be divided into two groups: Electronic (elec)
and nuclear (nuc). By realizing the huge difference in mass between the electrons
and nuclei, one can in most cases assume that the electrons will respond practically
instantaneously to any change in the position of the nuclei. This is known as the
Born-Oppenheimer approximation. Consequently, the wave functions of these two
groups can be treated separately and the total wave function of the system can be
written as the product:

ψtot({~ri}, {~RN}) = ψelec({~ri}; {~RN})ψnuc({~RN}) (3.14)

and the total energy as the sum:

Etot = Eelec + Enuc (3.15)

Above, {~ri} denotes the coordinates of all the electrons in the systems and {~RN} of all
the nuclei. The electronic wave function, ψelec depends parametrically on the positions
of the nuclei as indicated by the ";". This separation of variables allows one to divide
the total Schrödinger equation (assuming for now a non-relativistic treatment) into an
electronic and nuclear Schrödinger equation which can be solved separately.
The ab initio method discussed so far deals with the solution of the electronic

part only, but there are many cases where also vibrational and rotational degrees
of freedom, which belong to ψnuc, need to be taken into account. One example has
already been mentioned, namely the study of P -violation in chiral molecules, where
differential P -violating shifts of vibrational transitions were studied with ab initio
methods (Paper 10). Another example will appear in Chapter 5 where vibrational
effects on P, T -violating molecular enhancement factors were calculated and included
in the uncertainty estimate. In both of these cases, the vibrational analysis was
performed in a two-step fashion; First the potential energy surface (PES) of a given
vibrational mode was obtained with ab initio methods and in a second step, the
vibrational Schrödinger equation was solved within this PES. Another way of treating
vibrational effects on molecular properties is by using response theory [96].

3.3.2 Effective Hamiltonian theory
Effective Hamiltonian theory is a useful, in my opinion crucial, tool to relate properties
calculated with ab initio theory methods to those measured in experiments. This
relation is sometimes straightforward, as can be seen for ground state HFS constants
presented in Chapter 4, but can be more complicated, for example in the case of
excited states, and in Chapter 6 an entire section is devoted to the relation between the
effective Hamiltonian used in ab initio theory and the one usually used in experimental
molecular physics. In the following, the basic idea of effective Hamiltonian theory will
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be introduced. Even though the concept of an effective Hamiltonian is being used in
many areas of chemistry and physics one needs to look far for a rigorous treatment of
the subject. In the following I will follow the approach of McWeeny [130,131].
Consider the perturbed Hamiltonian:

Ĥ = Ĥ(0) + Ĥ
′

(3.16)

where Ĥ(0) is the field-free electronic Hamiltonian, with eigenfunctions {Φj}, and Ĥ
′ is

the operator for the perturbation of interest. The eigenfunctions, i.e. perturbed wave
functions, of Ĥ can then by expanded in terms of the unperturbed wave functions:

Ψi =
∑
j

cijΦj (3.17)

and the expansion coefficients can be obtained by solving the secular equation (here
in matrix form):

Hc = Ec (3.18)

where c is the vector of expansion coefficients, {cij}.
The essence of effective Hamiltonian theory is now to reduce this complete space

spanned by c to a form which contains only the relevant degrees of freedom needed to
describe a given situation:

Heffa = Ea (3.19)

where c has now been divided into a part containing the states of interest, a, and
the rest, b. Note that the eigenvalues of Ĥeff for the a states are the exact energies
for these states while the eigenfunctions are approximate. The effective Hamiltonian
takes the interaction with the b states into account in orders of the perturbation Ĥ ′ .
To first order, the expectation value of Ĥeff is:

〈Φa,i|Ĥeff|Φa,i〉 ≈ 〈Ψi|Ĥ
′
|Ψi〉 (3.20)

where Φa denotes an a state.
So far, the advantage of using an effective Hamiltonian has been concerned with

the reduction of the complete space to a much smaller one, containing only the
relevant states. But also the operators in the effective Hamiltonian are often simplified
compared to the correct quantum mechanical operator Ĥ ′ . The resulting effective
Hamiltonian then consists of simple angular momentum operators with well defined
eigenfunctions as well as a set of numerical parameters. Also electric and magnetic
fields can be included.

A few examples of terms in the effective Hamiltonian, which will return in Chapters
4 and 5, are the HFS Hamiltonian, ~IA~S, and the Stark Hamiltonian, −~d · ~Eext, where
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~I and ~S are the nuclear and electron spin, A is the HFS tensor and ~d is the molecular
dipole moment. There are two strategies for determining A and ~d. In experimental
research these parameters are usually fitted by comparing the energy spectrum of
the effective Hamiltonian in an appropriate basis to the measured energy spectrum.
However, these parameters can also be calculated with electronic structure methods
as derivatives of the electronic energy with respect to the perturbation. The effective
(spin) Hamiltonian consequently provides the necessary link between experimental
and theoretical research.
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