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Modeling Phenotypic Heterogeneity of 
Glycogen Storage Disease Type 1a Liver 
Disease in Mice by Somatic CRISPR/
CRISPR-associated protein 9�Mediated 
Gene Editing
Martijn G.S. Rutten ,1 Terry G.J. Derks ,2 Nicolette C.A. Huijkman,1 Trijnie Bos,3 Niels J. Kloosterhuis,1 

Kees�C.W.A.�van�de�Kolk,4 Justina C. Wolters ,1 Mirjam H. Koster ,1 Laura Bongiovanni ,5 Rachel E. Thomas,5 

Alain�de�Bruin ,1,5 Bart van de Sluis ,1 and Maaike H. Oosterveer 1

BACKGROUND AND AIMS: Patients with glycogen stor-
age disease type 1a (GSD-1a) primarily present with life-
threatening hypoglycemia and display severe liver disease 
characterized by hepatomegaly. Despite strict dietary manage-
ment, long-term complications still occur, such as liver tumor 
development. Variations in residual glucose-6-phosphatase 
(G6PC1) activity likely contribute to phenotypic heterogeneity 
in biochemical symptoms and complications between patients. 
However, lack of insight into the relationship between G6PC1 
activity and symptoms/complications and poor understanding 
of the underlying disease mechanisms pose major challenges 
to provide optimal health care and quality of life for GSD-1a 
patients. Currently available GSD-1a animal models are not 
suitable to systematically investigate the relationship between 
hepatic G6PC activity and phenotypic heterogeneity or the 
contribution of gene-gene interactions (GGIs) in the liver.

APPROACH AND RESULTS: To meet these needs, we 
generated and characterized a hepatocyte-specific GSD-1a 
mouse model using somatic CRISPR/CRISPR-associated 
protein 9 (Cas9)�mediated gene editing. Hepatic G6pc edit-
ing reduced hepatic G6PC activity up to 98% and resulted 

in failure to thrive, fasting hypoglycemia, hypertriglyceridemia, 
hepatomegaly, hepatic steatosis (HS), and increased liver tumor 
incidence. This approach was furthermore successful in simul-
taneously modulating hepatic G6PC and carbohydrate response 
element-binding protein, a transcription factor that is activated 
in GSD-1a and protects against HS under these conditions. 
Importantly, it also allowed for the modeling of a spectrum of 
GSD-1a phenotypes in terms of hepatic G6PC activity, fast-
ing hypoglycemia, hypertriglyceridemia, hepatomegaly and HS.

CONCLUSIONS: In conclusion, we show that somatic 
CRISPR/Cas9-mediated gene editing allows for the modeling 
of a spectrum of hepatocyte-borne GSD-1a disease symptoms 
in mice and to efficiently study GGIs in the liver. This ap-
proach opens perspectives for translational research and will 
likely contribute to personalized treatments for GSD-1a and 
other genetic liver diseases. (H��������� 2021;0:1-17).

Glycogen storage disease type 1a (GSD-1a; 
MIM#232200) is a rare inborn error of 
metabolism caused by mutations in the 
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glucose-6-phosphatase (G6PC1; G6Pase-�) gene.(1) 
G6PC1 (G6pc in mice) encodes the enzyme that 
converts glucose-6-phosphate (G6P) into glucose in 
hepatocytes, kidney cells, and enterocytes. GSD-1a is 
biochemically characterized by (fasting) hypoglycemia, 
hyperlipidemia, hyperlactatemia, and hyperuricemia,(2) 
which are largely attributed to hepatocyte-specific 
impairment of G6PC activity.(3) In addition, patients 
display a severe hepatic phenotype, characterized by 
hepatomegaly attributable to the accumulation of gly-
cogen and lipids. After the introduction of dietary 
management by continuous gastric drip feeding and 
subsequently uncooked cornstarch in the 1970s/1980s, 
mortality has been drastically reduced.

Development of liver tumors represents a major 
long-term complication in GSD-1a patients that 
is hepatocyte-borne,(3) starts to emerge mostly in 
the second decade of life, and affects 60%-70% of 
all patients by the age of 30� years.(4) The molecular 
mechanisms underlying the initiation and progression 
of liver tumors in GSD-1a remain largely unresolved. 
Poor metabolic control, marked by persistent and 
severe hypertriglyceridemia,(4-6) is associated with an 
increased risk for liver tumor development in GSD-1a 
patients.(7-10) Importantly, we and others have reported 
considerable variability in plasma triglyceride (TG) 
levels between individual GSD-1a patients.(7,11) This 
phenotypic heterogeneity is incompletely understood, 
but presumably related to a combination of genetic 
and environmental factors.(11) Thus, the current lack 
of complete insight into the origin of the phenotypic 

heterogeneity in symptoms and complications, as well 
as the mechanisms of liver tumor formation, pose 
major challenges to optimal health care for GSD-1a 
patients. This was recently highlighted in the top 
research priorities identified by the international liver 
GSD priority setting partnership.(12)

Recent studies by our lab and others have identi-
fied different intracellular pathways that contribute to 
GSD-1a liver disease pathophysiology,(13-21) or that may 
compensate for the primary defect in G6PC activity, 
such as alpha-glucosidase-dependent glycogen break-
down.(22) As a result, there is a growing interest to sys-
tematically investigate the contribution of specific genes 
to GSD-1a symptoms and complications in preclinical 
in vivo models. However, when using classical knock-
out animal models, simultaneous editing of multiple 
genes is typically time-, resource-, and labor-intensive 
and requires considerable animal use. In addition, most 
mouse models are homozygous for the knockout allele 
with complete defiency of hepatic G6PC activity,(23-25) 
which hampers the possibility of modeling variations 
in residual enzyme activities that are typically observed 
in GSD-1a patients.(2,6,26) This limits the translational 
value of such models with regard to the phenotypic het-
erogeneity observed in GSD-1a patients.

In order to obtain such insights, it is critical to 
model residual G6PC activity and elucidate the con-
tribution of gene-gene interactions (GGIs) to symp-
toms, complications, and interventions.(12) Previously, 
our laboratory successfully applied somatic CRISPR/
CRISPR-associated protein 9 (Cas9)�mediated 
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gene editing to systemically investigate the functions 
of hepatic genes at any desired stage of postnatal 
life.(27,28) In the current study, we applied this gene 
editing technology to generate a cohort of mice that 
displays the heterogeneity of hepatic GSD-1a, which 
can be used as a preclinical �reference population.� 
As a proof of concept for simultaneous multiple gene 
editing, we simultaneously deleted hepatocytic G6pc 
and carbohydrate response element-binding protein 
alpha (Chrebp�). Our results illustrate that somatic 
CRISPR/Cas9-mediated gene editing provides a ver-
satile preclinical platform to rapidly assess the con-
tribution of GGIs to GSD-1a pathophysiology and 
investigate the relationship between residual enzyme 
activity and disease pathophysiology.

Materials and Methods
ANIMAL EXPERIMENTATION

Male adult (9-14� weeks) hepatocyte-specific, 
Cas9-expressing mice (obtained by crossing Rosa26-
LSL-Cas9 knock-in mice [#024857; The Jackson 
Laboratory, Bar Harbor, ME] with Alb-cre mice(27)) 
were individually housed in individually ventilated 
cages with wood bedding, nesting material, and card-
board rolls in a light- and temperature-controlled facil-
ity (12-hour light/12-hour dark cycle lighting regime) 
and fed a standard laboratory chow diet ad libitum 
(RM1; Special Diet Services, Essex, UK). All experi-
mental procedures were approved by the Institutional 
Animal Care and Use Committee of the University 
of Groningen (Groningen, The Netherlands) and 
are in line with the Guide for the Care and Use of 
Laboratory Animals. For the G6pc-targeting exper-
iments, mice received three single-guide RNAs 
(sgRNAs) against exon 1 of G6pc (sgG6pc), using 
an adenoviral gene delivery system (0.1-1.0� ×� 1011 
viral particles [vp] per mouse) or the pX459 vector 
(Addgene plasmid #48139; Addgene, Watertown, 
MA) without any sgRNAs as an empty vector control 
virus (EV; �control animals�) by intravenous injection 
in 100��L of sterile PBS into the retro-orbital plexus 
under isoflurane anesthesia. The total number of ade-
noviral particles was adjusted to 1.0�×�1011 per animal 
using EV, unless stated otherwise. Fed blood glucose 
levels were measured 2� weeks after virus injection, 
and fasting blood glucose levels were measured after 

overday fasting (8:00��� to 3:00���) at 2�weeks after 
virus injection and after overnight fasting (9.30� �� 
to 8.30� ��) at 4� weeks after virus injection using 
an OneTouch Select Plus glucose meter (LifeScan, 
Inc., Milpitas, CA) or an Accu-Chek Performa glu-
cose meter (Roche, Mannheim, Germany). Overnight 
fasted (9.30��� to 11.30���) animals were euthanized 
4� weeks after virus injection for tissue collection. 
Animals were euthanized by cardiac puncture under 
isoflurane anesthesia, and tissues were rapidly excised 
and stored.

For the long-term G6pc-targeting experiment, 
mice were injected with 0.0/0.5/1.0�×�1011 vp sgG6pc 
or EV in 100� �L of sterile PBS. At regular time 
points during follow-up, mice were fasted overday 
(8:00� �� to 3:00� ��), after which blood glucose 
levels were measured as described. At certain time 
points, sgG6pc-treated mice were scanned with MRI 
(see the Supporting Information for procedures). 
Two 1.0� ×� 1011 vp sgG6pc-treated animals and two 
0.5�×�1011 vp sgG6pc-treated animals were euthanized 
before the end of the study because of humane end-
points (at 55 of 71 and 67 of 68�weeks after virus injec-
tion, respectively), yet were included in the analyses. 
In the final week of the study, the body composition 
of all animals was analyzed using an LF110 minispec 
benchtop Time Domain NMR (TD-NMR) analyzer 
(Bruker, Billerica, MA). Then, 17.5�months after virus 
injection and after 3.5� hours of fasting (8.30� �� to 
12.00���), mice were euthanized for tissue collection. 
Animals were terminated by cardiac puncture under 
isoflurane anesthesia, tissues were rapidly excised and 
stored, and hepatic tumors/lesions/cysts were counted, 
measured, and stored.

For the G6pc- and Chrebp-targeting experiments, 
mice were simultaneously injected with sgG6pc 
(0.5�×�1011 vp) and three sgRNAs targeting exon 1 of 
Chrebp� (sgChrebp�; 0.5�×�1011 vp) or EV in 100��L 
of sterile PBS. Total number of adenoviral particles 
was adjusted to 1.0� ×� 1011 vp per animal using EV. 
Nonfasted animals were euthanized at 8.30� �� for 
tissue collection 2�weeks after virus injection. Animals 
were euthanized by cardiac puncture under isoflurane 
anesthesia, and tissues were rapidly excised and stored.

ADENOVIRUS GENERATION
Procedures are described in the Supporting 

Information.
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LIVER HISTOLOGY, 
BIOCHEMICAL ANALYSIS, AND 
HEPATIC PROTEOMICS AND 
LIPOGENIC FLUX ANALYSIS

Procedures are described in the Supporting 
Information.

GENE EXPRESSION ANALYSIS 
AND ANALYSIS OF CRISPR/Cas9 
EDITING EFFICIENCY

Total RNA was isolated using TRI-Reagent (Sigma-
Aldrich, St. Louis, MO). Coding DNA was obtained by 
reverse transcription using Moloney Murine Leukemia 
Virus reverse transcriptase (Invitrogen, Waltham, 
MA) and amplified using primers and probes listed 
in Supporting Table S5. mRNA levels were calcu-
lated based on a dilution curve of a pool of all samples, 
expressed relative to cyclophilin/peptidylprolyl isom-
erase G (Ppig, Figs. 2F and 6E) or acidic ribosomal 
phosphoprotein P0 (36b4; Figs. 1B, 4B, and 4G), and 
normalized to expression level in control animals.

To analyze CRISPR/Cas9 editing efficiency, for-
ward/reverse primer sets were designed for each (set 
of ) sgRNA(s), with the forward primer spanning the 
predicted site of Cas9 nuclease activity (approximately 
three nucleotides before the start of the protospacer 
adjacent motif sequence). When somatic gene editing 
by CRISPR/Cas9 occurs, inefficient repair will lead 
to mutations (insertion and deletion of nucleotides, 
indels) and an inability of the forward primer to bind 
to this new sequence. A lack of amplified product 
using these primer sets thus represents efficient edit-
ing with that specific (set of ) sgRNA(s).

STATISTICAL ANALYSIS
Data in figures are presented as dot plots with 

median – interquartile range (IQR), unless stated oth-
erwise. Data in tables are presented as median (range), 
unless stated otherwise. Data in heatmaps represent 
z-score normalized values. Statistical analysis was per-
formed using BrightStat (www.Brigh​tstat.com) and 
GraphPad PRISM software (GraphPad Software 
Inc., La Jolla, CA). Differences between three or more 
groups were tested by a two-tailed Kruskal-Wallis 
H-test, followed by post hoc Conover pair-wise com-
parisons. For analysis of body-weight data and fasting 

blood glucose levels in the long-term experiment, we 
applied a mixed-effects model, which accounts for 
missing values in repeated-measures ANOVA. For 
some parameters of the long-term sgG6pc study, we 
did not perform a statistical analysis because of the 
lack of an appropriate statistical test. For example, 
the� tumor incidence data do not meet the criteria 
for the chi-squared test, in which all expected val-
ues should be >1.0 and �20% of the expected values 
should be >5. Data on the number of hepatic tumors 
per mouse are not normally distributed, disqualifying 
parametric tests; however, given that this type of data 
also includes many equal ranks, a nonparametric rank-
based test (such as the Kruskal-Wallis H-test) was 
also not suitable. Analysis of the critical point in data 
on blood glucose levels and plasma TG levels in mice 
with different hepatic microsomal G6PC activies was 
performed by fitting a one-phase decay exponential 
model using nonlinear regression. With the resulting 
values for the fitted curve and the plateau and its 95% 
CI, we calculated for which value of G6PC activity 
the fitted curve would pass through the upper or lower 
limit of the 95% CI of the plateau. Correlation between 
plasma TG levels and fasting blood glucose levels was 
analyzed by Spearman�s correlation coefficient.

Results
SOMATIC GENE EDITING 
OF HEPATIC G6pc STRONGLY 
REDUCES HEPATIC G6PC 
ACTIVITY

To assess whether liver-specific G6pc editing 
induces hepatic GSD-1a in mice,(3) we injected 
hepatocyte-specific, Cas9-expressing C57BL/6J mice 
with either 0.5 or 1.0� ×� 1011 vp sgG6pc (Fig.� 1A) 
and collected plasma and liver tissue at 4� weeks 
after sgG6pc administration. Control mice received 
an empty adenovirus (EV; 1.0� ×� 1011 vp). sgG6pc 
treatment reduced the expression of hepatic G6pc 
mRNA, as determined using primers annealing to the 
sequence targeted by the sgRNAs, by 64% (0.5�×�1011 
vp) and 71% (1.0�×�1011 vp), as compared to controls 
(Fig. 1B). Hepatic G6PC protein levels were reduced 
by 79% and 87% upon administration of 0.5� ×� 1011 
and 1.0� ×� 1011 vp sgG6pc, respectively (Fig. 1B). 
To�examine whether this reduction in G6PC protein 
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expression translated into lowered enzymatic activ-
ity, we quantified G6PC activity in hepatic micro-
somal fractions. Hepatic G6PC activity was reduced 
by ~93% (0.5� ×� 1011 vp) and ~98% (1.0� ×� 1011 vp) 
upon sgG6pc administration as compared to controls 
(Fig.�1C).

HEPATIC G6pc EDITING 
RECAPITULATES GSD�1a 
BIOCHEMICAL SYMPTOMS

Next, we analyzed biochemical parameters associ-
ated with GSD-1a that have an established relation-
ship with impaired G6PC activity in hepatocytes.(3) 
sgG6pc-treated mice showed a dose-dependent 

reduction in fasting blood glucose levels (Fig. 2A), 
whereas plasma TG levels increased concomitantly as 
compared to controls (Fig. 2A). Body weights were 
similar as compared to controls (Table 1), whereas liver 
weights were titer-dependently increased at 4� weeks 
after sgG6pc injection (Fig. 2B and Supporting 
Fig.� S1A; Table 1). Food intake and blood glucose 
levels in the fed state were unaltered (Supporting 
Fig.�S1B,C). These changes recapitulate hypoglycemia 
and hypertriglyceridemia observed in fasted and poorly 
controlled GSD-1a patients as well in previously pub-
lished preclinical GSD-1a models.(14,23-25,29) Plasma 
levels of lactate, uric acid, free fatty acids (FFAs), and 
total cholesterol were also significantly increased in 
sgG6pc-treated mice, and ketone bodies tended to be 

FIG. 1. In vivo somatic gene editing for hepatic G6pc leads to a strong reduction in hepatic G6PC activity. (A) Schematic representation 
of the single-vector adenoviral system to target G6pc in hepatocytes of Cas9-expressing mice. (B) Relative hepatic mRNA levels of G6pc, 
using primers recognizing the sequence edited by sgG6pc, and relative protein abundance of G6PC in mice treated with 0.0/0.5/1.0�×�1011 
vp of sgG6pc. Total number of adenoviral particles here was not adjusted to 1.0�×�1011 per animal. (C) Hepatic microsomal G6PC activity 
in mice treated with 0.0/0.5/1.0�×�1011 vp of sgG6pc, expressed as the percentage (%) relative to the average G6PC activity of animals 
treated with EV. Data are presented as median – IQR. Differences between groups were tested by a two-tailed Kruskal-Wallis H-test, 
followed by post hoc Conover pair-wise comparisons. *P�<�0.05; **P�<�0.01; ***P�<�0.001, indicates significance compared to 0.0�×�1011 
sgG6pc (EV). ^P�<�0.05; ^^P�<�0.01; ^^^P�<�0.001, indicates significance compared to 0.5�×�1011 sgG6pc. Abbreviations: ITR, internal 
terminal repeat.
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FIG. 2. Hepatic G6pc editing recapitulates hepatocyte-associated GSD-1a biochemical symptoms. (A) Overnight fasting blood glucose 
levels and plasma TG levels at 4 weeks after treatment with 0.0/0.5/1.0�×�1011 vp of sgG6pc. (B) Relative liver weight and relative hepatic 
G6P and glycogen content at 4 weeks after treatment with 0.0/0.5/1.0�×�1011 vp of sgG6pc. (C) Representative photos of H&E, PAS, 
and ORO stainings of livers of mice treated with 0.0/0.5/1.0�×�1011 vp of sgG6pc. For ORO staining, total number of adenoviral particles 
was not adjusted to 1.0�×�1011 per animal. (D) Heatmap presenting z-score normalized peptide levels of proteins involved in glycolysis 
and glycogen metabolism in mice treated with 0.0/0.5/1.0�×�1011 vp of sgG6pc. Data on GPI, ALDOB, GAPDH, PGK1, ENO1, PKLR, 
GYS2, PYGL, and AGL represent the average of two peptides (see also Supporting Table S6). Total number of adenoviral particles here 
was not adjusted to 1.0�×�1011 per animal. X indicates missing values. (E) Relative hepatic TG, cholesteryl-ester, and free cholesterol 
content in mice treated with 0.0/0.5/1.0�×�1011 vp of sgG6pc. (F) Left: heatmap presenting z-score normalized mRNA expression levels 
of hepatic fatty acid synthesis and �-oxidation enzymes in mice treated with 0.0/0.5/1.0�×�1011 vp of sgG6pc. Right: hepatic acetyl-CoA 
pool enrichment and de novo synthesis of palmitate (C16:0) and oleate (C18:1) content in mice treated with 0.0/0.5/1.0�×�1011 vp of 
sgG6pc. Data are presented as median – IQR (excluding heatmaps). Differences between groups were tested by a two-tailed Kruskal-
Wallis H-test, followed by post hoc Conover pair-wise comparisons. *P�<�0.05; **P�<�0.01; ***P�<�0.001, indicates significance compared to 
0.0�×�1011 sgG6pc (EV). ^P�<�0.05; ^^P�<�0.01; ^^^P�<�0.001, indicates significance compared to 0.5�×�1011 sgG6pc. Supporting Table S8A,B 
contains raw values and statistics for data presented in heatmaps (D,F). Abbreviations: Acaca, acetyl-CoA carboxylase 1; Acacb, acetyl-CoA 
carboxylase 2; Acadl, acyl-CoA dehydrogenase long chain; Acadm, acyl-CoA dehydrogenase medium chain; Acads, acyl-CoA dehydrogenase 
short chain; Acadvl, acyl-CoA dehydrogenase very long chain; Acly, ATP citrate lyase; Acox1, acyl-CoA oxidase 1; ALDOA, aldolase A; 
ALDOB, aldolase B; AGL, amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase; Cpt1a, carnitine palmitoyltransferase 1a; DNL, 
de novo lipogenesis; Elovl6, ELOVL fatty acid elongase 6; ENO1, enolase 1; ENO3, enolase 3; Fabp1, fatty acid binding protein 1; Fasn, 
fatty acid synthase; GAA, alpha glucosidase; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; GPI, glucose-6-phosphate isomerase; 
GYS2, glycogen synthase 2; PGAM1, phosphoglycerate mutase 1; PGK1, phosphoglycerate kinase 1; PGM2, phosphoglucomutase 2; 
PKLR, pyruvate kinase L/R; Ppara, peroxisome proliferator-activated receptor alpha; PYGL, glycogen phosphorylase L; Scd1, stearoyl-
CoA desaturase 1; STBD1, starch-binding domain 1; UGP2, UDP-glucose pyrophosphorylase 2.

BA

EDC

F

��
��

��
��

��
��

��
��

�
��

��
�

��
��

�
�
��

��
��

���
�

��
��

�

��
��

���
��


�



��
�	

���
�

�

�
�
�

��
��

���
��

���
��

�

�
��

��
��

��
��

	�
��

	�
��

��
�

��
����

��
�

�

�

�

�

�

�

�

�

�

 

�

 �

�

�

�

�

�

�

�

�

�

�

���

���

 ��

 ��

��

�
�›� �›�  ›� �›� �›�  ›� �›� �›�  ›� �›� �›�  ›� �›� �›�  ›�
�  ���������� �  ���������� �  ���������� �  ���������� �  ����������

���

���

���

�  ���������� �  ����������

�  ����������

�  ����������

�  ���������� �  ���������� �  ����������

�  ����������

�›� �›�  ›�

�›� �›�  ›� �›� �›�  ›� �›� �›�  ›�

�›� �›�  ›�

�›� �›�  ›�

�›� �›�  ›�

���

 ��

 ��

��

�

�›� �›�  ›� �›� �›�  ›�

�
�


��
�


��
�

�
�


��
��

�

��
��


��
��

��
�


��
	�

��
�

��
��

��
��

��
�

���
���

�����
�����
�����

��� 
���� 

��� 
����
����
����
����
����
����

���
���

���� 

 �

�

�

�

�

�

 �

�

�

�

�

�

��

��

 �

 �

�

�

�›��

�› �

�› �

�›��

�›��

��›��

�
 
�
� 

������	����������	�������
��������

��� ���

���

���

���
������

���
���

���

���

���

���

���

� �

�
��

�

���

��
��

��
���

��
��

	�
��

�

��
��

�

��

���
��

��
��

��
���

��
��

�
	�

��
��

��
��

��
��

��
���

��
��

�
 �

� 
��

�
��

��
�

��
���

��
��

�
 �

� 
��

�
��

��
�

��
���

��
��

���

���

���

���

�

�

�������
�������

����
����

�����
�����

��
�
��
	��
����

�����
�����
��
��
�����
����


�����
�����

����	�





HEPATOLOGY,  Month 2021RUTTEN ET AL.

8

The reduction in hepatic G6PC levels and activity in 
sgG6pc-treated mice was paralleled by increased pro-
tein expression of most glycolytic enzymes, whereas 
enzymes involved in glycogen metabolism, such as 
UDP-glucose pyrophosphorylase 2 (UGP2), glycogen 
synthase 2 (GYS2), and glycogen phosphorylase L 
(PYGL), tended to be increased (Fig. 2D). In addi-
tion, Oil Red O (ORO) staining showed increased 
neutral lipid storage upon sgG6pc treatment (Fig. 2C), 
in agreement with increased hepatic TG and cho-
lesteryl ester contents (Fig. 2E; Table 1). Hepatic free 
cholesterol and hepatic phospholipid contents were 
reduced in sgG6pc-treated mice compared to controls 
(Table 1), whereas total hepatic free cholesterol con-
tent was slightly increased because of increased liver 
weight (Fig. 2E; Table 1). The increases in hepatic 
TG and cholesteryl ester content were paralleled by 
increased hepatic mRNA levels of genes involved in 
glycolysis and de novo lipogenesis (Fig. 2F) as well 
as by reduced hepatic acetyl-CoA pool enrichment 
(a measure for acetyl-CoA pool turnover; Fig. 2F), 
increased de novo synthesis of palmitate (C16:0) and 
oleate (C18:1; Fig. 2F), and increased elongation of 
pre-existing palmitate to oleate (Table 1). sgG6pc-
treated mice showed an increase in hepatic stearate, 
vaccinate, and oleate contents, whereas eicosapenta-
noate, docosapentanoate, and docosahexanoate levels 
were reduced (Supporting Table S1). Hepatic mRNA 
levels of genes involved in fatty acid oxidation tended 
to be increased by 0.5�×�1011 vp of sgG6pc and nor-
malized by 1.0�×�1011 vp of sgG6pc (Fig. 2F).

HEPATIC G6pc EDITING 
PERMANENTLY INDUCES FASTING 
HYPOGLYCEMIA AND CAUSES 
LIVER TUMOR DEVELOPMENT

To examine whether long-term hepatic G6pc editing 
results in liver tumor development, we performed a 75-
week follow-up of 0.5 and 1.0�×�1011 vp sgG6pc-treated 
mice and controls. This follow-up period corresponds 
to 40-45� years in humans, an age at which >70% of 
GSD-1a patients have developed liver tumors.(4) 
Starting ~20� weeks after sgG6pc administration, mice 
injected with 1.0� ×� 1011 vp sgG6pc showed a signifi-
cantly lower body weight as compared to controls (Fig. 
3A). Body composition analysis revealed that sgG6pc-
treated mice exhibited a significant reduction in 

absolute fluid and lean mass and a lower relative fluid 
mass as compared to control mice (Table 2). To validate 
that fasting hypoglycemia persisted over time, fasting 
blood glucose levels were repeatedly analyzed. Indeed, 
fasting blood glucose levels were dose-dependently 
reduced in sgG6pc-treated compared to control mice 
during the entire follow-up period (Fig. 3A). MRI 
identified potential sites of liver tumor development at 
55 (1.0�×�1011 vp of sgG6pc) and 68�weeks (0.5�×�1011 
vp of sgG6pc) post-sgG6pc administration (Fig. 3B). 
At 75� weeks post-sgRNA administration, sgG6pc-
treated mice showed lower body weights, reduced 
blood glucose levels, and enlarged livers as compared 
to controls (Table 2; Fig. 3B). The total number and 
relative incidence of hepatic tumors of different sizes 
(Fig.�3C,D; Table 2), as well as the incidence and num-
ber of hepatocellular carinoma (HCC) per mouse (Fig. 
3C; Table 2), tended to be increased in sgG6pc-treated 
mice. In addition, the average number of hepatic tumors 
(hepatocellular carcinoma [HCA], HCC, and hepa-
toblastoma [HB]; Fig. 3C) tended to be increased in 
sgG6pc-treated mice. Immunohistochemical stainings 
indicated that HB showed reduced alpha-fetoprotein 
(AFP), hepatocyte paraffin 1 (Heppar1), and cytoker-
atin 19� (CK19) and comparable glypican-3 (GPC3) 
expression as compared to nontumor tissue (Supporting 
Fig. S2). Moreover, HCA and HCC sections showed 
variable staining for AFP and reduced CK19 stain-
ing. GPC3 and Heppar1 stainings were variable in 
HCA, whereas they were increased in HCC sections 
(Supporting Fig. S2).

HEPATIC CRISPR/Cas9�MEDIATED 
GENE EDITING ENABLES 
SIMULTANEOUS MANIPULATION 
OF HEPATIC G6pc AND 
MLX� INTERACTING PROTEIN�LIKE

To explore whether our approach allows for simul-
taneous in vivo editing of multiple hepatic candidate 
genes in GSD-1a, we coadministered sgRNAs against 
G6pc and MLX-interacting protein-like (Mlxipl; 
Fig.� 4A). The latter gene encodes ChREBP�, a 
glucose-sensitive transcription factor that is activated 
in GSD-1a and protects against fatty liver develop-
ment in hepatocyte-specific G6pc-knockout mice.(13) 
Two weeks after sgRNA administration, we confirmed 
efficient editing of both hepatic G6pc and Chrebp� 
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(Fig. 4B). Moreover, the induced hepatic Chrebp� 
mRNA levels in sgG6pc-treated mice were normal-
ized to values observed in controls after receiving 
the combination of sgG6pc and sgChrebp� (Fig. 4B). 
Consistent with our previous work,(13) simultaneous 
editing of hepatic G6pc and Chrebp� induced more 
severe hepatomegaly as compared to sgG6pc treatment 

alone, as shown by further increases in liver weight 
(Fig. 4C,E; Supporting Table S2), hepatic G6P and 
glycogen contents (Fig. 4D; Supporting Table S2), 
and hepatocyte vaculopathy (Fig. 4E). Simultaneous 
editing of hepatic G6pc and Chrebp� also further 
increased hepatic TG content (Fig. 4F) and normal-
ized lipogenic gene expression (Fig. 4G).

FIG. 3. Hepatic G6pc editing permanently induces fasting hypoglycemia and promotes liver tumor development. (A) Left: body weight 
of mice treated with 0.0/0.5/1.0�×�1011 vp of sgG6pc at 0-75 weeks after sgG6pc treatment. Right: overday fasting blood glucose levels 
at 2-67 weeks after treatment with 0.0/0.5/1.0�×�1011 vp of sgG6pc. Statistical significance was tested by using a mixed-effects model, 
which accounts for missing values in repeated-measures ANOVA. Data are presented as mean – SEM. *P�<�0.05; **P�<�0.01; ***P�<�0.001, 
indicates significance compared to 0.0� ×� 1011 sgG6pc (EV). ^P� <� 0.05; ^^P� <� 0.01; ^^^P� <� 0.001, indicates significance compared to 
0.5�×�1011 sgG6pc. (B) Left: representative macroscopial T1- and T2-weighted MRI images (at 68 and 55 weeks after sgG6pc treatment, 
respectively). Right: representative macroscopical liver photos at 75, 67, and 71 weeks after sgG6pc/EV treatment, respectively. (C) Left: 
quantification of the number of HCCs, HCAs, and HBs per mouse in mice 55-75 weeks after treatment with 0.0/0.5/1.0�×�1011 vp of 
sgG6pc. Right: mean number of HCCs/HCAs/HBs per group. Data are presented as mean – SEM. (D) Quantification of the number of 
hepatic tumors (HCA, HCC, and HB) >5, >10, and >15 mm per mouse in mice 55-75 weeks after treatment with 0.0/0.5/1.0�×�1011 vp 
of�sgG6pc. Data are presented as mean – SEM. (C,D) Statistical significance was not tested because of the lack of an appropriate statistical 
test (see Materials and Methods).
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plasma TG levels were titer-dependently increased 
upon sgG6pc administration (Fig. 5A), with a plateau 
value of 0.658� mmol/L (Fig. 5B, dashed lines; 95% 
CI, 0.3995-0.9064), and with hepatic G6PC activi-
ties below ~24% resulting in significant increases of 
plasma TG levels as compared to the plateau value 
(Fig. 5B, red dot). Plasma TG levels were inversely 
correlated to fasting blood glucose levels (Supporting 
Fig. S3B).

VARIATIONS IN RESIDUAL 
HEPATIC G6PC ACTIVITY 
TRANSLATE INTO SEVERITY 
OF HEPATOMEGALY AND 
HEPATIC G6P AND GLYCOGEN 
ACCUMULATION

We also investigated the impact of variable 
residual hepatic G6PC activities on hepatomegaly. 

FIG. 4. Hepatic CRISPR/Cas9�mediated gene editing enables simultaneous manipulation of hepatic G6pc and Mlxipl. (A) Schematic 
representation of the single-vector adenoviral system to target Mlxipl (Chrebp�) in hepatocytes of Cas9-expressing mice. (B) Left: relative 
hepatic mRNA levels of G6pc and Chrebp�, using primers recognizing the sequence edited by sgG6pc and sgChrebp�, in mice treated with 
sgG6pc and with/without sgChrebp�. Right: normalized relative hepatic Chrebp� mRNA levels in mice treated with sgG6pc and with/
without sgChrebp�. (C) Relative liver weight in mice treated with sgG6pc and with/without sgChrebp�. (D) Relative hepatic G6P and 
glycogen content in mice treated with sgG6pc and with/without sgChrebp�. (E) Representative macroscopical liver photos and H&E 
stainings of liver sections from mice treated with sgG6pc and with/without sgChrebp�. (F) Relative hepatic TG content in mice treated 
with sgG6pc and with/without sgChrebp�. (G) Heatmap presenting z-score normalized mRNA expression levels of hepatic fatty acid 
synthesis and TG synthesis enzymes in mice treated with sgG6pc and with/without sgChrebp�. Data are presented as median – IQR 
(excluding heatmap). Differences between groups were tested by a two-tailed Kruskal-Wallis H-test, followed by post hoc Conover pair-wise 
comparisons. *P�<�0.05; **P�<�0.01; ***P�<�0.001, indicates significance compared to EV-treated mice. ^P�<�0.05; ^^P�<�0.01; ^^^P�<�0.001, 
indicates significance compared to sgG6pc-treated mice. Abbreviations: Acaca, acetyl-CoA carboxylase 1; Acacb, acetyl-CoA carboxylase 2; 
Acly, ATP citrate lyase; Elovl6, ELOVL fatty acid elongase 6; Fasn, fatty acid synthase; gRNA, guide RNA; ITR, inverted terminal repeats; 
Mttp, microsomal triglyceride transfer protein; Pklr, pyruvate kinase L/R; Scd1, stearoyl-CoA desaturase 1.
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Individual mice exhibiting <60% residual hepatic 
G6PC activity showed activity-dependent increases 
in liver weight, whereas body weight was not 
affected (Fig. 6A; Supporting Table S3). This was 
associated with more pronounced hepatocyte vacu-
lopathy (Fig. 6B) and activity-dependent increases 
in hepatic G6P and glycogen contents (Fig. 6C). 
Moreover, residual hepatic G6PC activities below 
~41% resulted in hepatic TG and cholesteryl ester 
accumulation (Fig. 6D and Supporting Fig. S3C; 
Supporting Table S3). Increased mRNA levels of 

enzymes involved in glycolysis and de novo lipogen-
esis, reduced hepatic acetyl-CoA pool enrichments, 
increased de novo synthesis of palmitate (C16:0) and 
oleate (C18:1), increased elongation of pre-existing 
palmitate to oleate, and increased hepatic concen-
trations of oleate were also observed in an activity-
dependent fashion (Fig. 6E-F; Supporting Tables S3 
and S4). Hepatic mRNA levels of fatty acid oxida-
tion enzymes tended to be increased upon sgG6pc 
treatment up to ~5% residual activity, after which 
they normalized (Fig. 6E).

FIG. 5. sgG6pc administration dose-dependently induces fasting hypoglycemia and hypertriglyceridemia. (A) Overnight fasting blood 
glucose levels and plasma TG levels in mice with different hepatic microsomal G6PC activities attributable to sgG6pc treatment. (B) 
Left: fasting blood glucose level plotted against hepatic microsomal G6PC activity. Nonlinear regression showed a plateau blood glucose 
value of 4.875 mmol/L (dashed line) with a 95% CI of 4.574-5.200 (dotted lines), and that a hepatic G6PC activity <~20% resulted in 
a significant reduction of the blood glucose value as compared to this plateau value (red dot, intersection of nonlinear fit-curve and 95% 
CI). Right: fasting plasma TG level plotted against hepatic microsomal G6PC activity. Nonlinear regression showed a plateau plasma TG 
level of 0.658 mmol/L (dashed line), with a 95% CI of 0.3995-0.9064 (dotted lines), and that a hepatic G6PC activity <~24% resulted 
in a significant increase of plasma TG levels as compared to this plateau value (red dot, intersection of nonlinear fit-curve and 95% CI). 
Data in (A) are presented as median – IQR. Differences between groups were tested by a two-tailed Kruskal-Wallis H-test, followed by 
post hoc Conover pair-wise comparisons. *P�<�0.05; **P�<�0.01; ***P�<�0.001, indicates significance compared to mice with >60% G6PC 
activity. ^P�<�0.05; ^^P�<�0.01; ^^^P�<�0.001, indicates significance compared to mice with 20%-60% G6PC activity. +P�<�0.05; ++P�<�0.01; 
+++P� <� 0.001, indicates significance compared to mice with 10%-20% G6PC activity. #P� <� 0.05; ##P� <� 0.01; ###P� <� 0.001, indicates 
significance compared to mice with 5%-10% G6PC activity. G6PC activity control value (x-axis) is the average activity in mice treated 
with EV.
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Discussion
In the current study, we successfully used somatic 

CRISPR/Cas9-mediated gene editing to generate 
a mouse model for hepatic GSD-1a. This approach 
recapitulates the key biochemical symptoms of 
GSD-1a, hepatomegaly, and liver tumor formation. 
We also show that it allows one to efficiently study 
GGIs and, importantly, to model phenotypic hetero-
geneity observed in GSD-1a patients.

Heterogeneity in biochemical symptoms and 
long-term complications and limited insight into 
the molecular mechanisms underlying liver tumor 
development pose major challenges to the long-term 
health of GSD-1a patients.(12) Here, we report that 
mice with <60% hepatic G6PC activity displayed 
hepatomegaly and enhanced hepatic glycogen stor-
age, hyperlactatemia, hepatic ChREBP activation, 
acetyl-CoA pool turnover, as well as a slight increase 
in de� novo oleate synthesis. These changes are most 
likely attributable to hepatic G6P accumulation, 
excess glycogen storage, and enhanced glycolysis. On 
the other hand, fasting hypoglycemia, hypertriglyceri-
demia, and hepatic steatosis (HS) were evident only in 
mice with <25%-40% G6PC activity. These results are 
in line with data from full-body G6pc-null mice and 
hepatocyte-specific G6pc-knockout mice that received 
G6pc gene therapy.(30-33) In addition, our findings are 
consistent with the phenotype of heterozygous G6pc-
null mice, which do not show fasting hypoglycemia 
or hypertriglyceridemia.(23) The correlation between 

hypertriglyceridemia/HS and hypoglycemia in the 
current study further supports our previous work 
showing that hypoglycemia in hepatocyte-specific, 
G6PC-deficient mice arrests VLDL-TG catabo-
lism and enhances hepatic FFA influx, resulting in 
more pronounced hypertriglyceridemia and HS.(34) 
Taken together, we propose that the relationship 
between hepatic G6PC activity and hypertriglyceri-
demia and HS is predominantly determined by the 
degree of hypoglycemia, rather than solely depen-
dent on enhanced intrahepatic glycolysis and de novo 
lipogenesis.

Recent studies from several laboratories including 
ours have generated insights in transcriptional and 
posttranscriptional dysregulation of biochemical path-
ways in GSD-1a mouse models.(13-17,21,22) Yet, our 
approach has several advantages over existing mod-
els, given that it allows the systematic investigation 
of the contribution of distinct genes and their tar-
get pathways to disease symptoms and complications 
in vivo. The successful concomitant knockdown of 
hepatic G6pc and Chrebp� in the current study con-
firms that multiple gene editing in vivo is feasible 
in mice using CRISPR/Cas9 technology.(35,36) As a 
result, cross-breeding of genetically modified mice, 
as well as repetitive administration of short hairpin 
RNAs or antisense oligonucleotides, either or not in 
combination with tamoxifen injections,(14,24) can be 
avoided.(35,36) This reduces labor-, time-, and cost-
intensive experimentation while, at the same time, 
limiting animal discomfort.

FIG. 6. sgG6pc administration dose-dependently induces hepatomegaly and hepatic metabolite accumulation. (A) Relative liver weight 
in mice with different hepatic microsomal G6PC activities attributable to sgG6pc treatment. (B) Representative photos of H&E staining 
of livers of mice with different hepatic microsomal G6PC activities attributable to sgG6pc treatment. (C) Relative hepatic G6P and 
glycogen content in mice with different hepatic microsomal G6PC activities attributable to sgG6pc treatment. (D) Relative hepatic TG 
content in mice with different hepatic microsomal G6PC activities attributable to sgG6pc treatment. (E) Heatmap presenting z-score 
normalized mRNA expression levels of hepatic fatty acid synthesis and �-oxidation enzymes in mice with different hepatic microsomal 
G6PC activities attributable to sgG6pc treatment. (F) Hepatic acetyl-CoA pool enrichment and de novo synthesis of palmitate (C16:0) and 
oleate (C18:1) content in mice with different hepatic microsomal G6PC activities attributable to sgG6pc treatment. Data are presented 
as median – IQR (except heatmap). Differences between groups were tested by a two-tailed Kruskal-Wallis H-test, followed by post hoc 
Conover pairwise comparisons. *P�<�0.05; **P�<�0.01; ***P�<�0.001, indicates significance compared to mice with >60% G6PC activity. 
^P�<�0.05; ^^P�<�0.01; ^^^P�<�0.001, indicates significance compared to mice with 20%-60% G6PC activity. +P�<�0.05; ++P�<�0.01; +++P�<�0.001, 
indicates significance compared to mice with 10%-20% G6PC activity. #P�<�0.05; ##P�<�0.01; ###P�<�0.001, indicates significance compared 
to mice with 5%-10% G6PC activity. G6PC activity control value (x-axis) is the average activity in mice treated with EV. Supporting 
Table S8C contains raw values and statistics for data presented in the heatmap (E). Abbreviations: Acaca, acetyl-CoA carboxylase 1; Acacb, 
acetyl-CoA carboxylase 2; Acadl, acyl-CoA dehydrogenase long chain; Acadm, acyl-CoA dehydrogenase medium chain; Acads, acyl-CoA 
dehydrogenase short chain; Acadvl, acyl-CoA dehydrogenase very long chain; Acly, ATP citrate lyase; Acox1, acyl-CoA oxidase 1; Cpt1a, 
carnitine palmitoyltransferase 1a; DNL, de novo lipogenesis; Elovl6, ELOVL fatty acid elongase 6; Fabp1, fatty acid binding protein 1; Fasn, 
fatty acid synthase; Pklr, pyruvate kinase L/R; Ppara, peroxisome proliferator-activated receptor alpha; Scd1, stearoyl-CoA desaturase 1.
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A number of features related to our approach war-
rant discussion. First, glucose production by kidney 
cells and enterocytes,(3,37,38) which is impaired in 
GSD-1a patients, is presumably increased in sgG6pc-
treated mice to compensate for reduced hepatic G6PC 
activity.(37,38) Moreover, whereas GSD-1a patients 
depend on dietary complex carbohydrates to main-
tain euglycemia during day and night, sgG6pc-treated 
mice do not consume additional carbohydrates during 
their (inactive) phase when lights are on. Although 
these differences between mouse models and patients 
may complicate a direct comparison between residual 
hepatic G6PC activity and GSD-1a heterogeneity, it 
is also a well-known limitation of other liver-specific 
GSD-1a mouse models. Second, we observed a higher 
prevalence of hepatic nodules/tumors in our control 
group, as compared to C57BL/6J mice in the Mouse 
Tumor Biology (MTB) database,(39) and found larger 
(>10�mm) nodules in our study in comparison to pub-
lished mouse models for hepatic GSD-1a.(24,25) We 
hypothesize that, in addition to aging-induced liver 
tumor formation,(40,41) the use of an adenoviral deliv-
ery system(42-44) may have resulted in higher tumor 
incidences in the current study. Further experimen-
tal optimization, such as the use of liposome-based 
sgRNA administration, may offer opportunities to 
reduce this potential side effect.

Patient-specific differences in residual hepatic 
G6PC activities and the degree of metabolic con-
trol translate into variations in disease symptoms 
and complications.(7-11) Currently available mouse 
models(23-25) do not allow to model such clinical 
heterogeneity that is typically observed between 
GSD-1a patients,(2,6,11,26) which limits their transla-
tional value. In contrast, in the current study, mice 
treated with different sgG6pc doses likely displayed 
a �mosaic� pattern of hepatocellular G6PC activity 
as a result of the variety of mutations induced by 
CRISPR/Cas9(45) and the number of hepatocytes 
edited. The residual hepatic G6PC activities there-
fore represent �average� values of individual hepato-
cytes. Interestingly, despite the presumed mosaic 
pattern of hepatic G6PC activity, the total residual 
activity per liver clearly correlated with disease symp-
toms observed in GSD-1a patients. This indicates 
that our model has great potential for clinical trans-
lation, and can provide insights into the relationship 
between residual hepatic G6PC activity, phenotype, 
and individualizing innovative treatments, such as 

gene therapy and mRNA therapy. Whether this also 
applies to liver tumor development (e.g., the rela-
tionship between residual hepatic G6PC activity 
and liver tumor development(46-48)) requires further 
research. Moreover, functional restoration by gene 
therapy will typically also result in mosaic patterns of 
restored hepatic G6PC activity. Therefore, we expect 
that CRISPR/Cas9-mediated G6pc editing also pro-
vides a valuable tool to predict the outcome of G6PC 
gene therapy in patients exhibiting different degrees 
of residual G6PC activity. Finally, single-cell analy-
sis of mosaic-patterned hepatocytes will potentially 
allow for the linking of specific genetic profiles to 
the tumorigenic potential of individual hepatocytes.

In conclusion, we show that CRISPR/Cas9-
mediated gene editing of hepatic G6pc in mice opens 
perspectives for translational research on hepatic 
GSD-1a and other inherited liver diseases.(27,28,35,36) 
This powerful and versatile tool allows systematic and 
efficient investigation of the contribution of specific 
genes to (patho)physiology and compensatory mech-
anisms without extensive breeding schemes. A unique 
feature of this approach is that it enables one to assess 
the relationship between residual hepatic G6PC 
activity and heterogeneity in symptoms and compli-
cations (Supporting Table S7).(23-25) By generating a 
spectrum of disease symptoms in mice, the current 
work provides a step toward the evaluation of poten-
tial therapies in a patient-specific manner, hence ulti-
mately contributing to personalized care for GSD-1a 
patients.
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