To Tie or Not to Tie-Over Full-Thickness Skin Grafts in Dermatologic Surgery

Marsidi, Nick; Boteva, Kristin; Vermeulen, Sofieke A. M.; van Kester, Marloes S.; Genders, Roel E.

Published in:
Dermatologic surgery

DOI:
10.1097/DSS.0000000000002549

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
To Tie or Not to Tie-Over Full-Thickness Skin Grafts in Dermatologic Surgery: A Systematic Review of the Literature

Nick Marsidi, MD,* Kristin Boteva, MD,† Sofieke A.M. Vermeulen, MD,* Marloes S. van Kester, MD, PhD,* † and Roel E. Genders, MD, PhD*§

BACKGROUND Tie-over dressings are frequently used for skin grafts. Although a dressing is necessary for split-thickness skin grafts, their use in full-thickness skin grafts (FTSGs) is questionable.

OBJECTIVE This review was conducted to investigate the influence of different tie overs and dressings on graft take for FTSGs in cutaneous surgery.

MATERIALS AND METHODS An electronic database search was performed in MEDLINE, EMBASE, Web of Science, and the Cochrane library. The following search terms and comparable were used: skin transplantation, tie-over, fixation, sutures, and take.

RESULTS Fifteen articles met the inclusion criteria. Eight studies describe no use of a tie-over dressing for FTSGs. Dressing types included antibacterial dressings, foam or sponges, and bolsters. The lowest graft take was 80% (with a tie-over dressing). The highest graft take was 100% (with and without a tie-over dressing).

CONCLUSION The results show that, regardless of the technique used, the overall graft success rate is high. Although a definite recommendation could not be made, it seems that a graft without a tie-over dressing can suffice in certain circumstances.

Skin grafts are used when wounds are too large for primary closure and when reconstruction by skin flaps or healing by secondary intention is unfavorable. In some cases, skin grafts are used in combination with a local, regional, or free flap to close secondary donor defects.1 There are 2 different techniques for skin grafts: full-thickness skin grafts (FTSGs) and split-thickness skin grafts (STSGs).2 To provide a maximum chance of survival for skin grafts, a tie-over dressing is usually administered. There is an overall consensus that dressings are necessary for an STSG (especially to prevent friction), but there is doubt whether this is the case for an FTSG.

Full-thickness skin grafts are harvested with the full dermis intact in comparison with STSGs, which are harvested at the dermal level with a small portion of the upper dermis. The advantage of STSGs is that they can be meshed to a larger size3,4 to cover larger defects and to be placed on acceptor sites with less vascularity. Split-thickness skin grafts are more susceptible to scarring and contractures than FTSGs5 and, therefore, are more pragmatic than aesthetic. In facial reconstructive surgery, FTSGs are preferred because of their superior cosmetic outcome. Both skin grafts rely in the first 24 hours on “plasmatic imbibition”6 and eventually on revascularization of the graft to survive.7,8 A complication that can occur is (partial) graft failure if revascularization is obstructed by seroma or hematoma formation.9,10 To enhance the successful take of the graft, numerous dressings and fixating techniques have been suggested in the literature.11,12 They are used to provide equal pressure on the graft surface to prevent friction and to improve the attachment of the graft in the wound bed.

A well-developed method for securing skin grafts is negative-pressure therapy.13 A review of the literature showed that this technique is associated with lower reoperation rates than the standard dressing group.14 Negative-pressure therapy is usually conducted in larger defects such as burn wounds,15 areas with motion,16 or for closure of myocutaneous flaps on the extremities and trunk17 and is not a preferred method for facial reconstructive surgery.

Other graft fixation techniques for FTSGs include bastings sutures,18 tie-over bolsters (e.g., nonadherent gauze, sometimes drenched in antibacterial solutions),19 (hydrocolloid) foam,20 and surgical sponges.21 However, other authors claim that a simple tulle gras dressing is sufficient enough22 and question the pressure exerted on the graft by tie-over dressings.23

This review investigates the graft failure rate of different tie-over and skin graft dressings used for FTSGs to identify the most optimal method.
Methods

Search Strategy and Study Selection
PubMed, MEDLINE, EMBASE, and the Cochrane database were searched from inception to 9 April 2018. English, Dutch, and Spanish language articles were selected.

The following search terms and comparable were used: skin transplantation, tie-over, fixation, sutures, and take. To avoid missing articles that use different names for full-thickness grafts, skin transplantation was used as a search term covering all types of skin grafts. Details of the search can be found in Appendix 1, Supplemental Digital Content 1, http://links.lww.com/DSS/A420. Titles and abstracts of retrieved articles were screened by 2 authors (K.B. and S.A.M.V.). The full text of any potentially relevant article was examined using the inclusion and exclusion criteria (N.M. and R.E.G.). Any discrepancy was resolved by consensus of the authors (N.M., R.E.G., and K.B.).

Inclusion and Exclusion Criteria
We included studies that met the following criteria: (1) patients receiving an FTSG, (2) studies reporting on the use of wound care of the FTSG, (3) studies reporting on the success/outcome of FTSGs, and (4) studies containing 10 cases or more. The exclusion criteria were as follows: (1) studies containing previously published data, (2) studies lacking an objective outcome measurement (graft take), and (3) for our study, we focused on the outcome of FTSGs used in dermatologic surgery after removal of benign or malignant skin tumors and excluded articles which exclusively used FTSGs for indications such as ulcers, burns, hand and foot surgery, radial forearm flap, fibula, and other defects. The study design for this review was registered on PROSPERO (CRD42018095586).

Data Collection Process and Risk of Bias Assessment
Methods for qualitative data analysis were specified in advance. Data extraction was performed by 2 reviewers independently (K.B. and N.M.). The following information was extracted from each included study: (1) study design, for example, the number of patients, the type of graft and fixation, hospital center and location, years of data collection, and use of antibiotics; (2) patient selection, for example, age and indication for surgery; and (3) outcome, for example, graft take, graft failure, and complications. The corresponding authors from 4 studies were contacted for missing study details and 3 responded.

A modified quality assessment tool was used (see Figure S1, Supplemental Digital Content 2, http://links.lww.com/DSS/A421). A total of 6 points were divided into 6 questions. A positive bullet was scored for each feature if mentioned in the article. Descriptive statistics were used for analyzing the data.

Results

Search Results
A flowchart of the selection process is shown in Figure S2, Supplemental Digital Content 3, http://links.lww.com/DSS/A422. A total of 1,411 articles were found in the literature search. Screening of titles and abstracts reduced the number to 362 articles. The full article read retrieved 67 articles mentioning a skin graft and take. Fifteen articles met the inclusion criteria involving only skin surgery (for details see Table S1, Supplemental Digital Content 4, http://links.lww.com/DSS/A423. Three studies used randomization, and 4 studies compared a no tie-over dressing with a tie-over dressing but did not always specify the materials used for the bolster. Two articles mentioned both STSGs and FTSGs and did not subdivide the graft take per technique. Because the ratio of FTSGs used in these articles (over 80%) was high, they were found suitable to include in this review. Thirteen studies used only FTSGs.

The graft defect size was described in different measurements of length (mm and cm) or surface area (mm² and cm²) and varied from 8 mm in length (smallest) to 52.4 cm² (largest area). Nine studies reported the use of additional antibiotics: systemic and local. Antibiotics were, however, not used consecutively in all patients, and the used drug was not always specified.

Dressings
With Tie-Over
Antibacterial Dressings
Four studies reported the use of an antibacterial dressing. One study noted this dressing in 1 patient as a light dressing. Three comparative studies used an antibacterial dressing (vs no tie-over and foam dressing) which was secured over the graft using radially arranged sutures or tie-over sutures.

Sponge or Foam
Four studies reported the use of a polyurethane foam dressing. One study stacked a larger sheet of foam on top of other foam sheets and secured the border with sutures. Another study cut foam to fit the shape of the graft and secured it in a radial spoke design. A third study used a polyurethane sponge with a surplus of 0.3 to 0.5 cm larger than the graft and secured it with staples. One study did not use a tie-over dressing but used a polyurethane foam dressing that was secured using layers of gauze and elastic tape. One study used a surgical scrub sponge saturated with povidone-iodine. The sponge was secured using the “Lilliputian technique.”

Other Techniques
Other techniques described were a Mepitel bolster dressing combined with a 3-layer compression bandage system (only...
legs25 and a tie-over bolster dressing with a noncircular above-knee plaster cast (only lower legs).26

Without Tie-Over
Nine studies reported using no tie-over dressing.27,29,31–35,39 Four studies used basting sutures: through-and-through sutures in the middle33 or central,29 paracentral,35 or quilting sutures31 to maintain approximation between the graft and recipient bed. One study31 only used sutures to approximate the wound edges; they did not use any basting sutures. A light dressing was applied in addition to an antibiotic ointment. The other study only applied a paraffin-impregnated gauze with adhesive strips after circumferentially suturing the graft to the wound bed (but 6/79 patients did have quilting sutures).12

Graft Take and Complications
Graft take was described in all 15 studies (see Table S1, Supplemental Digital Content 4, http://links.lww.com/DSS/A423). The lowest mean graft take score was 80%.31 The highest reported graft take score was 100%.32,35,39 Ten studies indicated a complication after surgery, with 20% as the highest reported complication rate.31 Reported complications of FTSGs were poor color match,35 reddening or duskeness,32,34 reaction to the suture material,32 wound infections,25,26,28,31,38 hematoma/bleeding,25,26 crusting or sloughing,27 and venous thrombosis.26 In one study, complications were not specified.30 Additional topical antibiotics (chloromycetin ophthalmic ointment 1%,31 polymyxin B and bacitracin ointment,30 and chloramphenicol ointment)25,27,39 were frequently used directly postoperatively but did not result in a better outcome. Only 1 study prescribed systemic antibiotics (co-trimoxazole twice daily for 5 days).32

Risk of Bias Assessment
The risk of bias assessment was conducted on the selected articles (see Table S2, Supplemental Digital Content 5, http://links.lww.com/DSS/A424). Two articles scored the maximum total of 6 points.23,28 Two scored28,30 5 points, both lacking a description of the evaluation assessment for graft take.30 In 10 studies, patient selection was not specified,27,31–34,36–39 and 7 studies did not describe how they evaluated the graft survival.29,30,32,33,35,37,39 Eight studies reported a follow-up evaluation besides the postoperative removal.25,26,28–30,34,35,39

Discussion
This study aimed to review the literature on the use of a tie-over dressing and to define the most optimal dressing for FTSGs in cutaneous surgery, defined as the highest graft take and the lowest complication rate. Despite all efforts, a meta-analysis could not be performed because of the heterogeneity of the data. However, our findings suggest that the overall take of grafts is more than 80%, irrespective of the technique. The rate of infection and hematoma was not always mentioned.

In 3 studies, a graft take of 100% was observed,32,35,39 but the authors did not describe how their graft take was evaluated, quantified, or at which time point of follow-up the take was measured. Based on the articles with the highest quality assessment score, the bolster dressing has a high success rate (>90%).25,28 One of these articles investigated the bolster dressing versus foam and found no significant difference.28 The foam dressing was significantly more comfortable than the bolster.23 This finding was also seen in another study (comparing the polyurethane sponge vs a tie-over bolster).30

An interesting observation from our results is graft take rates of more than 80% with no tie-over dressing. It should be mentioned that 2 of these 8 studies only reported on FTSGs around the orbita and the nose, which are anatomically curved locations and generally difficult areas to apply a tie-over bolster.32,35 Although these authors did not use a tie-over to secure their graft, they used a wound dressing which applied some pressure to ensure the graft take. The hypothesis of using no tie-over for FTSGs has been previously advocated by measuring the wound bed pressure generated by a bolster tie-over in various skin grafts ranging from 1 to 15 cm.23 This research showed that there was no significant pressure generated by the dressings. The highest measured pressure was 4 mm Hg. To decrease hematoma and seroma formation, a pressure of 25 to 30 mm Hg is required for capillary closing. It is therefore unlikely that any of the tie-over dressings described in this review creates a high enough pressure to reduce hematoma and seroma. A hypothesis that could be proposed on the mechanism of graft take is that eliminating the dead space between the graft and wound bed is more important than reducing hematoma and seroma formation by using pressure. This principle applies to both the no tie-over group and the tie-over group because most in the no tie-over groups used basting sutures.

Topical antibiotics and antibacterial dressings are frequently used. However, their use was inconsistently reported, and an infection rate was not mentioned in most articles, making it difficult to draw any conclusions on their usefulness. In another study,30 an infection rate of 23.7% was mentioned related to graft loss (found in FTSGs and STSGs used for other indications than facial reconstructive surgery). This high rate was not seen in the articles included in this review. Based on our findings, a recommendation on the use of antibiotics could not be made.

Multiple quality assessment tools were evaluated for use in our review, including the Newcastle–Ottawa Scale (NOS), ROBINS-I tool (the Cochrane group), STROBE statement, and the GRADE approach (the Cochrane group). However, these were not found suitable for observational studies only including case series. Murad and colleagues41 proposed a tool to evaluate the methodological quality of case reports/series based on the domains: selection, ascertainment, causality, and reporting. A modified version was created as a quality assessment tool. The tool, however, has not been validated.

The quality of evidence was considered low because of several reasons. Most studies showed a lack of detail.
concerning the assessment of skin graft take. The patient selection was poorly described in most articles. A standardized protocol should be conducted to effectively evaluate the results of the different tie-over dressings. Different elements such as erythema, color match, texture match, telangiectasia, necrosis, blisters, and hematoma should be evaluated to quantify and qualify graft take. Finally, a sufficient follow-up time of at least 2 weeks is needed to fully evaluate the results of a skin graft take.

Conclusion

Current studies have a high risk of bias and therefore lack reliable evidence to support a tie-over technique over another dressing for full-thickness grafts. The results, however, do show that despite the technique used, there is an overall high graft success rate. Further randomized controlled studies are needed to elucidate this question. In daily practice, a custom-made decision based on the anatomic location, graft size, and patient-related factors should be made when choosing whether or not to use a tie-over dressing.

Acknowledgments

The authors thank Mr. J.W. Schoones for his help with the literature.

References