Tuning Pt characteristics on Pt/C catalyst for aqueous-phase reforming of biomass-derived oxygenates to bio-H₂

A.K.K. Vikla, I. Simakova, Y. Demidova, E.G. Keim, L. Calvo, M.A. Gilarranz, Songbo He, K. Seshan

Keywords: APR, Renewable, Ethylene glycol, Pt particle, Pt distribution

Abstract: Pt/C catalysts with varied Pt sizes and distributions were investigated for aqueous-phase reforming (APR) of ethylene glycol (EG) to H₂. APR experiments were performed on a continuous-flow fixed bed reactor with a catalyst loading of 1 g and EG feeding of 120 mL h⁻¹ at 225 °C and 35 bar for 7 h. The fresh and used Pt/C catalysts were characterized by XRF, BET, CO chemisorption, TEM, XTEM, and XPS. Catalyst preparation protocols changed Pt characteristics on Pt/C catalysts, leading to a distinguishable H₂ production. The rates for EG conversion and H₂ production increased linearly with mean Pt size (3–11 nm), while having a volcano relationship with the mean size of agglomerated Pt particles (17–30 nm). Pt with concentrated Pt particles on surface of Pt/C catalysts was more preferable for APR of EG than the homogeneously distributed in catalysts. Optimal performance was obtained over a Pt/C-PR catalyst, which was prepared by precipitation method, showing a superb turnover frequency of 248 mol H₂ mol⁻¹ Pt⁻¹ min⁻¹ for H₂ production from EG in APR. Besides, Pt/C catalysts also showed excellent stability. These results have shown the promise of Pt/C catalyst for APR of EG, which can be extended for bio-H₂ production via APR of biomass-derived oxygenates in waste streams.

1. Introduction

Renewable biomass-based feedstocks are hydrogen deficient and often require the use of external hydrogen to generate green fuels/ blends that are compatible with the current fossil fuels [1,2]. Aqueous-phase reforming (APR) is a promising catalytic route to generate hydrogen from dilute aqueous streams containing organic molecules [3,4]. Byproduct and waste streams from food industries or biorefineries [5] often contain dissolved organics usually in the range of 5–20 wt.%. One typical example is the aqueous phase of pyrolysis oil which contains a variety of oxygenates such as acids, aldehydes, alcohols, sugars to name a few [2,4].

APR is a challenging process for a catalyst due to the drastic hydrothermal conditions (e.g., 225–275 °C and 35–90 bar) used and complex feedstocks utilized, requiring an active and particularly stable catalyst [3]. Typically APR is carried out over supported metal catalysts, e.g., Ni [6] and Pt [7] based catalysts. Critical issues for supports and active metals (e.g., textural properties and phase changes, leaching, and sintering) [8] were often reported for APR catalysts. Recent developments have shown that Pt/C is a promising candidate for the APR of a variety of organic components [9–13].

Pt is, however, an expensive noble metal [14] and its loading on catalyst should be minimized for commercial application. This is generally achieved by altering Pt size (e.g., high dispersion [15]) and distribution (e.g., egg-shell [16]) employing different supports. Several effective and controllable means, such as varying Pt loading [17], applying various preparation, calcination, and reduction protocols [18–20], have been reported.

Changing Pt size influences catalyst characteristics, which in turn, affects catalytic performance for APR. Lehnert et al. [21] studied APR of glycerol over Pt/Al₂O₃ catalyst and suggested that C-C cleavage in oxygenates (promoting the formation of Cₓ species which can be steam...
reformed to yield H₂ [2]) occurs preferentially on face Pt atoms, which
Kirilin et al. observed a similar trend in turnover frequency (TOF) for different carbon-supported Pt catalysts for APR of xylitol [22]. However, Wawrzetz et al. [17] and Barbelli et al. [18] observed only a slightly increased TOF for Pt/Al₂O₃ catalysts with Pt size increase from 1.1 to 2.6 nm for APR of glycerol, relating it to the enhanced and simultaneous hydro-deoxygenation reactions consuming hydrogen. Ciftci et al. [23] studied Pt size domain of 1.2-4 nm and obtained an optimized performance for Pt size of ca. 2 nm for Pt/C catalysts for APR of glycerol. Chen et al. [24] screened an even wider Pt size range of 1.6–5.7 nm for Pt/Al₂O₃ catalyst for APR of low boiling point fraction of bio-oil and reported an optimized Pt size of 2.6 nm for H₂ production. These results are somehow contradictory. Nevertheless, it needs to be noted that in general, Pt size for the fresh catalysts was

Table 1

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Support supplier and preparation method</th>
<th>EG concentration (%)</th>
<th>Temperature (°C)</th>
<th>Pressure (bar)</th>
<th>TOF-H₂ (min⁻¹)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/Al₂O₃</td>
<td>γ-Al₂O₃ supplied by Argonide</td>
<td>1</td>
<td>225</td>
<td>29</td>
<td>0.08</td>
<td>Cortright et al. (2002)</td>
</tr>
<tr>
<td>Pt/Al₂O₃</td>
<td>supplied by Condea, Catapal B</td>
<td>5</td>
<td>225</td>
<td>26</td>
<td>5.4</td>
<td>Huber et al. (2006) [25]</td>
</tr>
<tr>
<td>Pt/Al₂O₃</td>
<td>supplied by BASF, AL-3992</td>
<td>5</td>
<td>270</td>
<td>90</td>
<td>60</td>
<td>Koichumanova et al. (2013) [36]</td>
</tr>
<tr>
<td>Pt/SiO₂</td>
<td>supplied by Cabot, EH-5</td>
<td>5</td>
<td>210</td>
<td>22</td>
<td>75</td>
<td>Davda et al. (2003) [27]</td>
</tr>
<tr>
<td>Pt/Al₂O₃</td>
<td>produced by hydrothermal conversion of Al₂O₃ supplied by BASF</td>
<td>5</td>
<td>270</td>
<td>90</td>
<td>300</td>
<td>Koichumanova et al. (2013) [26]</td>
</tr>
<tr>
<td>Pt/ZnO</td>
<td>supplied by Alfa</td>
<td>10</td>
<td>225</td>
<td>29</td>
<td>1.6</td>
<td>Shabaker et al. (2003) [28]</td>
</tr>
<tr>
<td>Pt/FeO₂</td>
<td>–</td>
<td>10</td>
<td>250</td>
<td>46</td>
<td>0.7</td>
<td>Kim et al. (2013) [29]</td>
</tr>
<tr>
<td>Pt/FeO₂</td>
<td>supplied by Aldrich</td>
<td>10</td>
<td>225</td>
<td>29</td>
<td>1.2</td>
<td>Shabaker et al. (2003) [30]</td>
</tr>
<tr>
<td>Pt/FeO₂</td>
<td>–</td>
<td>10</td>
<td>250</td>
<td>46</td>
<td>1.2</td>
<td>Kim et al. (2013) [29]</td>
</tr>
<tr>
<td>Pt/FeO₂</td>
<td>supplied by Aldrich</td>
<td>10</td>
<td>225</td>
<td>29</td>
<td>4.9</td>
<td>Shabaker et al. (2003) [28]</td>
</tr>
<tr>
<td>Pt/ZrO₂</td>
<td>–</td>
<td>10</td>
<td>250</td>
<td>46</td>
<td>1.4</td>
<td>Kim et al. (2013) [29]</td>
</tr>
<tr>
<td>Pt/ZrO₂</td>
<td>supplied by Alfa</td>
<td>10</td>
<td>225</td>
<td>29</td>
<td>11.1</td>
<td>Shabaker et al. (2003) [28]</td>
</tr>
<tr>
<td>Pt/CeO₂</td>
<td>Ce₁₋ₓZrₓOₓ supplied by Sol-Gel method</td>
<td>10</td>
<td>225</td>
<td>29</td>
<td>6.7</td>
<td>Huber et al. (2006) [25]</td>
</tr>
<tr>
<td>Pt/TiO₂</td>
<td>supplied by Degussa, P-25</td>
<td>10</td>
<td>225</td>
<td>29</td>
<td>9.4</td>
<td>Shabaker et al. (2003) [28]</td>
</tr>
<tr>
<td>Pt/Al₂O₃</td>
<td>supplied by Condea, Catapal B</td>
<td>10</td>
<td>225</td>
<td>29</td>
<td>25.2</td>
<td>Liu et al. (2011) [31]</td>
</tr>
<tr>
<td>Pt/Al₂O₃</td>
<td>supplied by Grace, Catapal B</td>
<td>10</td>
<td>225</td>
<td>29</td>
<td>24.1</td>
<td>Liu et al. (2011) [31]</td>
</tr>
<tr>
<td>Pt/Al₂O₃</td>
<td>α-Al₂O₃, produced by heating AlO(OH) at 1050 °C</td>
<td>10</td>
<td>225</td>
<td>29</td>
<td>23.7</td>
<td>Liu et al. (2011) [31]</td>
</tr>
<tr>
<td>Pt/Al₂O₃</td>
<td>δ-Al₂O₃, produced by heating AlO(OH) at 850 °C</td>
<td>10</td>
<td>225</td>
<td>29</td>
<td>275</td>
<td>Davda et al. (2003) [27]</td>
</tr>
<tr>
<td>Pt/Al₂O₃</td>
<td>γ-Al₂O₃, produced by heating AlO(OH) at 550 °C</td>
<td>10</td>
<td>225</td>
<td>29</td>
<td>4.6</td>
<td>Shabaker et al. (2003) [28]</td>
</tr>
<tr>
<td>Pt/Al₂O₃</td>
<td>supplied by Cabot, EH-5</td>
<td>10</td>
<td>225</td>
<td>22</td>
<td>7.5</td>
<td>Shabaker et al. (2003) [28]</td>
</tr>
<tr>
<td>Pt/C</td>
<td>ordered mesoporous carbon, prepared using SBA-15 as template and furfuryl alcohol as carbon precursor</td>
<td>10</td>
<td>250</td>
<td>46</td>
<td>103</td>
<td>Kim et al. (2012) [32]</td>
</tr>
<tr>
<td>Pt/C</td>
<td>Sibunit carbon, supplied by Boreskov Institute of Catalysis, Pt/C-PR catalyst was prepared by precipitation method</td>
<td>2.5</td>
<td>225</td>
<td>35</td>
<td>248</td>
<td>Current work</td>
</tr>
</tbody>
</table>
reduced in H₂ at 700 °C for 5 h. Pt/C-CL catalyst was prepared using a Pt-PVP colloid via wet impregnation. After drying in air, the sample was loaded to the APR reactor (vide infra) and treated in a hot compressed water stream (HCW, 2 mL/min) at 225 °C and 35 bar for 1 h, in order to remove PVP from the catalyst [20]. Afterwards, the sample was unloaded from the reactor and dried in air.

2.3. Catalyst characterization

Pt loading was semi-quantitatively analyzed by wavelength dispersive X-ray fluorescence (WDXRF) spectroscopy on S8 Tiger (Bruker) with the powder pellet method. An undiluted sample (ca. 0.5 g) was milled and loaded in a 29-mm die. Specific surface area \(S_{BET} \) was determined from N₂ physisorption measurement at -196,15 °C on Tristar 3000 (Micromeritics) according to the Brunauer-Emmett-Teller (BET) method [34]. Pt surface area and dispersion were determined by pulse CO chemisorption on ChemiSorb 2750 (Micromeritics). The catalyst was pretreated in He at 200 °C (5 °C min⁻¹) for 1 h, followed by pulse chemisorption of CO at room temperature. Pt dispersion was calculated by assuming that the adsorbed CO to Pt ratio is 1 [35]. Pt size was measured by high-resolution transmission electron microscopy (TEM) using a CM300ST-FEG (Philips) operated at 300 kV acceleration voltage. The catalyst was ultrasonicated in ethanol, followed by deposition on a carbon-coated copper grid. Approximately 250 particles across 10 spots were counted. The same transmission electron microscope was also used to record TEM images in cross-section (XTEM) images of catalyst grains to measure the size of agglomerated Pt particles. The catalyst particles were embedded in a resin (the details are shown in Supplementary Information, SI), which allows the observation in cross-section in order to locate the Pt nano-particles concentrated on the catalyst surface. Approximately 200 Pt particles for the Pt/C-PR and Pt/C-CL catalysts, and 50 Pt particles for the Pt/C-IM catalyst were counted for analyzing the mean size of the agglomerated Pt particles. Pt content on the catalyst surface was analyzed by X-ray photoelectron spectroscopy (XPS) in a Quantera Scanning X-ray Microprobe (PHI) equipped with an AlKα monochromatic X-ray source (1486.6 eV). The catalysts with two different particle sizes of 100-250 μm (for grains as-prepared) and 20–40 μm (for powder after grinding) were analyzed.

2.4. Catalyst testing

Aqueous-phase reforming of ethylene glycol solution (2.5 wt.% in water, feeding rate of 2 mL min⁻¹) over the Pt/C catalysts (loading of 1 g) was carried out on a bench-scale continuous-flow fixed bed reactor setup (Fig. 1) at 225 °C and 35 bar for a time on stream (TOS) of 7 h. The details of the experimental setup and procedure, and of the product analyses are given in SI. Catalyst performance was defined and calculated by using Eqs. 1-8.

Conversion of EG (%) = \(1 - \frac{\text{mol of EG produced}}{\text{mol of EG in feed}} \) \times 100

Carbon yield of product (%) = \(\frac{\text{mol of carbon in liquid or gaseous product}}{\text{mol of carbon in feed}} \) \times 100

Yield of H₂ (%) = \(\frac{\text{mol of H₂ produced}}{\text{mol carbon converted}} \times \frac{1}{RR} \times X \) (conversion)

EG conversion rate (\(\text{µmol} \text{EG} \text{Å}^1 \text{min}^{-1} \)) = \(\frac{\text{µmol of EG converted}}{\text{surface area of Pt} \times \text{TOS of 30 min}} \)

H₂ production rate (\(\text{µmol} \text{H₂} \text{Å}^1 \text{min}^{-1} \)) = \(\frac{\text{µmol of H₂ produced}}{\text{surface area of Pt} \times \text{TOS of 30 min}} \)

TOF for H₂ production (mol H₂ mol⁻¹ Pt⁻¹ min⁻¹) = \(\frac{\text{mol of H₂ produced}}{\text{mol of Pt} \times \text{TOS of 30 min}} \)

Selectivity for carbon species = \(\frac{\text{mol of carbon in liquid or gaseous product}}{\text{mol of carbon in feed} \times \text{conversion of EG}} \) \times 100

Selectivity for H₂ = \(\frac{\text{mol of H₂ produced}}{\text{mol carbon converted}} \times \frac{1}{RR} \)

3. Results and discussions

3.1. Characterisation of fresh catalysts

Various methods (Section 2.2 and Table 2) have been applied to prepare the four Pt/C catalysts with distinguishable Pt particle sizes and distributions (viz., with concentrated Pt particles on the surface or in a homogeneous fashion). BET surface areas (Table 2) of fresh Pt/C-IM, Pt/C-OX, and Pt/C-PR catalysts (340 - 372 m² g⁻¹) are relatively close to
that of the Sibunit carbon support (350 m2 g$^{-1}$). However, a decreased S_{BET} was observed on the fresh Pt/C-CL catalyst (296 m2 g$^{-1}$), indicating that wet impregnation with the Pt-PVP colloid influenced textural property of the Sibunit carbon though a low amount of Pt (0.7 wt.%, Table 2) was loaded on the Pt/C-CL catalyst. This is most likely related to Pt concentrated on the catalyst surface (vide infra), due to the lower penetration of the Pt colloid into the pores of the support.

XPS analyses (Table 2, the corresponding spectra are shown in Figs. S1-S4) of the as-prepared catalyst grains (100–250 μm) and the after-ground powder (20–40 μm) show that the Pt concentration on the outer shell is higher than in the inner core of the Pt/C-IM, Pt/C-PR, and Pt/C-CL catalysts. Particularly, the difference is extremely large for the latter two catalysts, showing that the Pt concentrations on the outer surface are approximately 53 % (Pt/C-PR catalyst) and 4 times (Pt/C-CL catalyst) higher than the inner ones. Comparatively, the Pt/C-OX catalyst, which was prepared by incipient wetness impregnation followed by calcination and reduction at high temperatures, shows a similar Pt concentration on the outer surface and in the inner core. This might indicate that Pt was relatively homogeneously distributed in the Pt/C-OX catalyst, while Pt was more concentrated on the surface of the Pt/C-IM, Pt/C-PR, and Pt/C-CL catalysts.

The speculation about concentrated Pt particles on the surface of the Pt/C-PR and Pt/C-CL catalysts is further confirmed by XTEM images of the catalysts as prepared, showing that the Pt particles are more visible on the catalyst grain edge than in the core (Fig. 2C and D). XTEM images of the grain cores (Fig. 2C and D, right) display the fairly even distributed small Pt particles (< 3 nm). Comparatively, more concentrated small Pt particles are observed on the grain edges (Fig. 2C and D, left). Besides, agglomerated Pt particles with mean sizes of 11 nm and 24 nm (Table 2) are also present on the grain edges (with an approximate depth of 500 nm) of Pt/C-PR and Pt/C-CL catalysts. These are totally different from the XTEM images of the Pt/C-OX catalyst (Fig. 2B), showing that small Pt particles were evenly distributed on both the edge and in the core. No agglomerated Pt particles are observed on the Pt/C-OX catalyst, confirming the homogeneity of the Pt particles on the catalyst.

Aqueous-phase reforming of ethylene glycol over the above four Pt/C catalysts were continuously performed on a fixed bed reactor at 225 °C and 35 bar for 7 h. Catalyst performance over TOS is shown in Fig. 4A in terms of EG conversion. In general, the initial EG conversion is comparable (e.g., 37.5–39.4 %) among the Pt/C catalysts investigated, except for the Pt/C-OX catalyst which shows a relatively lower EG conversion of 26.7 %. All the Pt/C catalysts exhibited excellent stability, evidenced by only a slight drop (ca. 4–5 %) in EG conversion after TOS of 3.5 h. Negligible deactivation occurred afterwards, indicating a steady state of
the Pt/C catalysts for EG conversion. Accordingly, the products during TOS of 3.5–7 h were averaged to evaluate the representative products from APR of EG over the Pt/C catalysts.

The excellent total carbon balance closures (e.g., 97–101 %) indicate negligible coke formation during APR of EG over the Pt/C catalysts. The selectivity’s to various products are shown in Table 3. The major carbon-related products are gases, which consist of CO, CO₂ and CH₄ (Fig. 4B). A very small amount of EG was converted to liquid phase products (Fig. 4C) such as methanol, ethanol, acetic acid, glycolaldehyde and larger polyol (e.g., glycerol).
Fig. 3. TEM images and Pt particle size distributions for the fresh (left) and used (right) Pt/C-IM (A), Pt/C-OX (B), Pt/C-PR (C) and Pt/C-CL (D) catalysts.
3.3. Characterization of the used catalysts

As discussed above, the Pt/C catalysts evolved to the steady-state after a TOS of 3.5 h (Fig. 4A). To correlate the catalyst characteristics with the catalytic performance during the 3.5–7 h TOS period (Fig. 4B and C), the used Pt/C catalysts after continuous-flow APR of EG for 7 h were characterized. The four used Pt/C catalysts showed comparable BET areas (326 – 343 m² g⁻¹, Table 2) with the fresh ones, indicating insignificant changes in catalyst pore structure after 7-h TOS. In addition, the Pt loadings on the fresh and used Pt/C catalysts (Table 2) are similar, showing a negligible loss of Pt under the severe APR reaction conditions.

However, Pt particle sizes are larger on the used Pt/C catalysts than on the fresh ones according to both CO chemisorption and TEM analyses (Tables 2 and S2, and Fig. 3). The growth of Pt particles during APR reactions was often observed on supported Pt catalysts, e.g., Pt/C [13] and Pt/Al₂O₃ [8]. As a consequence, the Pt particle size distributions for the used Pt/C catalysts were broadened (Fig. 3), which is particularly significant for the Pt/C-PR catalyst (Fig. 3C). The mean Pt particle size on the Pt/C-PR catalyst was dramatically increased from 3.2 to 8.3 nm as measured by TEM (Table S2), and from 4.2 to 10.7 nm as measured by CO chemisorption (Table 2). Comparatively, the Pt/C-OX and Pt/C-CL catalysts show smaller changes on the Pt particle size. For the latter catalyst, the high-degree Pt concentration on catalyst surface with agglomerated Pt particles (Section 3.1) might have resistance to a further Pt agglomeration [37], which is reflected by the slightly increased Pt particle size (Table 2) from 24 nm for the fresh Pt/C-CL catalyst (Fig. 2D) to 30 nm for the used one (Fig. 5C). Besides, the preparation method for the Pt/C-CL catalyst also has influence on the stability, e.g., by hydrothermal treatment to remove PVP and to stabilize the nanoparticles on the support [20]. Whereas for the Pt/C-OX catalyst, the stability of the Pt particle size might be related to the high-temperature calcination and the reduction enhancing Pt and C interaction [36]. As such, a further check of the presence of the agglomerated Pt particles on the used Pt/C-OX catalyst by XTEM was not carried out, considering that no agglomerated Pt particles presented on the fresh catalyst (Fig. 2B) as well.

XTEM images of the used Pt/C-PR catalyst (Fig. 5B) show larger Pt particles (e.g., 20–40 nm) on the catalyst edge as compared with the fresh catalyst (Fig. 2C), resulting in a nearly doubled Pt particle size (Table 2). This is in good agreement with the change on mean Pt particle size (by TEM (Table S2) and CO chemisorption (Table 2)) on the Pt/C-PR catalyst after the APR reaction. Similarly, agglomerated Pt particles with a mean size of 17 nm (Table 2) were also formed on the used Pt/C-IM catalyst edge (Fig. 5A), in line with the increased mean Pt particle size from 2.7 nm (for the fresh catalyst, by CO chemisorption, Table 2) to 8.8 nm (for the used catalyst, Table 2). It needs to be noted here that no agglomerated Pt particles are observed in the core of the catalyst (Fig. 5-right), indicating the Pt agglomeration mainly took place on the surface of the Pt/C catalyst under APR conditions.

3.4. Discussion

It was demonstrated above that a stable catalytic performance in APR of EG in terms of EG conversion and H₂ production was obtained over Pt/C catalysts, which were prepared by a different method in order to alter Pt size and Pt distribution on a Sibunit carbon support. In this contribution, we have used the diluted solution to investigate the relationship between APR performance and catalyst characteristics. For such a diluted stream, the industrial implementation of APR should be further considered, e.g., the economic feature related to the energy consumption for heating the H₂O.

To recall, the Pt/C catalysts prepared by a general method as incipient wetness impregnation (viz., Pt/C-IM and Pt/C-PR catalysts), have evenly distributed Pt particles with small sizes. A high-temperature treatment, e.g. calcination followed by reduction, was applied to strengthen the interaction between Pt and carbon support. As a consequence, the Pt/C-OX catalyst showed much better stability on Pt size and Pt distribution under the severe APR conditions than the Pt/C-IM condition.
catalyst having agglomerated Pt particles on catalyst surface after 7-h APR of EG. Alternatively, the Pt/C catalysts prepared by precipitation method (Pt/C-PR catalyst) and a more novel method of impregnation of pre-prepared Pt colloid (Pt/C-CL catalyst) obtained small Pt particles, as well as agglomerated Pt particles concentrated on the catalyst grain edge. It seems that the inhomogeneous Pt distribution formed on the surface of Pt/C-PR and Pt/C-CL catalysts, and the degree of Pt concentration on the surface of the latter is higher than that of the former. Compared with the Pt/C-CL catalyst, the fresh Pt/C-PR catalyst has more amount of agglomerated Pt particles with a smaller size, resulting in a bigger mean Pt particle size (Table 2). However, these small Pt particles on the Pt/C-PR catalyst grew faster than those large Pt particles on the Pt/C-CL catalyst under the APR reaction conditions. As such, the mean Pt particle size for the Pt/C-PR catalyst increased remarkably, while only a slightly increased mean Pt particle size was observed for the Pt/C-CL catalyst.

Since all the Pt/C catalysts were prepared using the same Sibunit carbon support, any difference observed in the chemistry, e.g., product distribution, over different Pt/C catalysts (Fig. 4) should be related to Pt characteristics, e.g., Pt particle size and its distribution. In order to properly correlate the catalyst performance with the catalyst characteristics, the in-situ characterizations of the catalyst during APR is required, e.g., by an in-situ attenuated total reflectance Fourier transform infrared (ATR-IR) technique [26]. However, this is very challenging for Pt/C catalysts, due to the fact that the refractive index of carbon and the internal reflection element (ZnSe) is too similar to obtain ATR-IR spectra for carbon-supported catalysts. The fresh catalyst might change greatly under APR conditions even after a short TOS [38], leading to an inappropriate relationship between initial catalyst performance with fresh catalyst characteristics. Considering that the Pt/C catalysts evolved to a relatively steady state after TOS of 3.5 h (Section 3.2), it might be assumed that Pt/C catalyst characteristics remain stable during TOS of 3.5–7 h. Therefore, the averaged EG conversion (Fig. 4A) and H2 production (Fig. 4B) during TOS of 3.5–7 h, and the characteristics of Pt on the used Pt/C catalysts (Table 2) after TOS of 7 h were used to calculate reaction rates by using Eqs. 4–6. In addition, Pt can be taken as metallic Pt during the APR reactions, considering that the pre-reduction of the Pt/C catalysts was performed at temperatures higher than the reduction temperature of PtOx for Sibunit carbon supported Pt catalysts (e.g., T_{max} of 125 °C [22]). Even though there might be a very small fraction of PtOx.

Fig. 5. XTEM images for grains edge (left) and core (right) of the used Pt/C-IM (A), Pt/C-PR (B) and Pt/C-CL (C) catalysts.
species due to the partial oxidation during the storage and loading to the reactor [22], they would probably be reduced by the H$_2$ formed during APR at a reaction temperature of 225 °C. In order to study the effect of Pt size on catalyst performance, EG conversion and H$_2$ production rates based on the available Pt surface area (μmol$_{EG(or \ H_2)}$ ÅPt$^{-1}$ min$^{-1}$) are shown in Fig. 6A. The mean Pt particle size (Fig. 6A) and the mean size for the agglomerated Pt particles (Fig. 6B) were analyzed by CO chemisorption and XTEM, separately.

It is interesting to observe that the rates for both EG conversion and H$_2$ production increased linearly with the increased Pt particle sizes. Comparatively, the sensitivity to Pt particle size for H$_2$ production rate is higher than for an EG conversion rate, as indicated by the slopes of the fitted lines in Fig. 6A. This result is consistent with that reported by Lehner et al. [21], who also observed a higher H$_2$ production from APR of glycerol over Pt/Al$_2$O$_3$ catalysts with a bigger Pt particle size. This is most likely related to the enhanced C-C cleavage of oxygenates on more Pt surface forming H$_2$, in turn competing for C-O cleavage reaction yielding low hydrocarbons [2]. The extremely low yields of C$_1$ and C$_2$ hydrocarbons (Fig. 4B) also confirm this.

It needs to be highlighted here that the mean Pt particle sizes on the Pt/C catalysts in this study are quite big (e.g., 3–11 nm in Fig. 6A), related to the presence of large Pt particles. The correlations between Pt particle size and the rates for EG conversion and H$_2$ production (Fig. 6-B) suggest that a mean size for agglomerated Pt particles of ca. 20.7 nm is the most suitable. There is a trade-off of the size of the agglomerated Pt particles for an optimal H$_2$ production rate over Pt/C catalysts, due to the fact that the number of exposed surface Pt atoms continues to decrease as the size of agglomerated Pt particles increases. As a consequence, the Pt/C-PR catalyst, which has a number of Pt particles with small size concentrated on the catalyst grain edge, has the highest TOF for H$_2$ production of 248 mol$_{H_2}$ mol$_{Pt}^{-1}$ min$^{-1}$ (Fig. 7). Comparatively, the Pt/C-CL catalyst of which the level of Pt concentration on the surface is the highest has a much lower TOF-H$_2$ (100 mol$_{H_2}$ mol$_{Pt}^{-1}$ min$^{-1}$, Fig. 7), due to the presence of Pt particles with a large size. For the Pt/C-IM catalyst, which has the Pt particles relatively homogeneously distributed both on the grain edge and in the core of the catalyst, has a much higher TOF-H$_2$ (78 mol$_{H_2}$ mol$_{Pt}^{-1}$ min$^{-1}$, Fig. 7) than the Pt/C-OX catalyst (18 mol$_{H_2}$ mol$_{Pt}^{-1}$ min$^{-1}$, Fig. 7). This is obviously related to the bigger mean Pt particle size for the Pt/C-IM catalyst compared with the Pt/C-OX catalyst.

Of great interest is that the highest TOF-H$_2$ (248 mol$_{H_2}$ mol$_{Pt}^{-1}$ min$^{-1}$) obtained on the Pt/C-PR catalyst in this study is much higher than those reported Pt/C catalysts (Table 1) by Shabaker et al. (7.5 mol$_{H_2}$ mol$_{Pt}^{-1}$ min$^{-1}$) [28] and Kim et al. (103 mol$_{H_2}$ mol$_{Pt}^{-1}$ min$^{-1}$) [32], representing the best performance of Pt/C for APR of EG to bio-H$_2$. Furthermore, what is significant is that the TOF-H$_2$ of Pt/C-PR is close to the top two catalysts (viz., Pt/AIO(OH) catalyst with a TOF of 300 mol$_{H_2}$ mol$_{Pt}^{-1}$ min$^{-1}$ [26] and Pt/SiO$_2$ catalyst with a TOF of 275 mol$_{H_2}$ mol$_{Pt}^{-1}$ min$^{-1}$ [27]) developed for APR of EG so far.

Stability of Pt/SiO$_2$ catalyst, related to the leaching of silica under APR conditions, is a critical issue for a long-term practical application [39]. Pt/AIO(OH) catalyst might have a high tendency for coke formation during APR [40] due to the acidity of AIO(OH) support [41]. It has been demonstrated in this study that the Sibunit carbon is stable under APR conditions and coking on Pt/C catalyst is negligible during a continuous 7-h APR of EG (Section 3.2). Besides, using carbon as a carrier for supported Pt catalysts ensures that it is easy to harvest Pt for recycling after usage by burning [42]. Having a high intrinsic activity for hydrogen production and an excellent stability for long-term operation, Pt/C catalyst could definitely be an excellent catalyst for APR of oxygenates for bio-H$_2$ production.

Pt concentrated on the catalyst surface with small-size Pt particles on Pt/C catalyst is advantageous for APR of a small molecule (viz., EG), which might also be significant for larger oxygenates. Further
exploitation of Pt/C catalyst for APR of the aqueous phase of pyrolysis oil or other waste aqueous oxygenate streams is thus recommended. On the other hand, a large amount of CO (e.g., carbon yield of 18–25 %, Fig. 4B) were also formed during APR of EG over Pt/C catalysts. This indicates an inefficient water-gas shift (WGS, CO + H₂O → H₂ + CO₂) reaction, in line with the low yield of CO₂ (Fig. 4B). Therefore, bio-H₂ production over Pt/C catalysts via APR could be further improved, e.g., by adding a second metal such as Ni to enhance WGS reaction (e.g., Pt-Ni/Al₂O₃ catalyst for APR of EG [43]).

4. Conclusions

Catalyst preparation protocols, including the incorporation of the metal precursor (e.g., incipient wetness impregnation, precipitation, and impregnation of Pt colloid) and further treatment (e.g., high-temperature calcination and reduction), affect Pt size and Pt distribution (homogeneous Pt distribution and with concentrated Pt particles on the surface).

Pt/C catalysts showed excellent H₂ yields (up to 24.1 %) for aqueous-phase reforming of ethylene glycol and excellent catalyst stabilities with a slight drop (ca. 4–5 %) in EG conversion (ca. 37.5–39.4 %) after 3.5-h TOS. The characteristics of the used catalysts after 7-h APR of EG, which were in a steady-state, were used to correlate the catalyst performance. The linear relationships between mean Pt particle size (in a range of 3–11 nm investigated) and the rates for EG conversion and H₂ production were observed.

Pt/C-PR catalyst, which was prepared by the precipitation method, had small Pt particles distributed in the catalyst as well as large Pt particles concentrated on the catalyst grain edge after TOS of 7 h. Pt/C-PR catalyst showed the highest turnover frequency for H₂ production (TOF-H₂ of 248 molH₂ molPt⁻¹ min⁻¹) among the four Pt/C catalysts investigated. This was attributed to the preferred Pt particles concentrated on the catalyst surface with the biggest mean Pt particle size (ca. 10.7 nm) and the appropriate mean size of agglomerated Pt particles (ca. 21 nm). This superb TOF-H₂ and the excellent stability of the Pt/C catalyst make it promising for APR of EG as compared with the state-of-the-art Pt catalysts, viz., Pt/Al₂O₃(OH) (TOF-H₂ of 300 molH₂ molPt⁻¹ min⁻¹) and Pt/SiO₂ (TOF-H₂ of 275 molH₂ molPt⁻¹ min⁻¹) catalysts. Pt/C catalysts are therefore recommended for APR of other model oxygenates (e.g., hydroxyacetone) present in waste streams and also APR of real waste streams (e.g., the aqueous phase of pyrolysis oil) to make renewable and green H₂.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

A.K.K. Vikla: Investigation, Conceptualization, Methodology, Validation, Writing - original draft, Writing - review & editing. I. Simakova: Resources, Validation, Supervision, Writing - review & editing. Y. Demidova: Investigation, Resources, Validation. E.G. Keim: Investigation, Resources, Validation, Writing - review & editing. L. Calvo: Investigation, Resources, Validation. M.A. Gilarrazn: Resources, Supervision, Writing - review & editing. K. Seshan: Supervision, Writing - review & editing, Funding acquisition.

Acknowledgments

The research was funded by European Union Seventh Framework Programme (FP7/2007-2013) within the project SusFuelCat under grant agreement No. 310490. Dr. Vikla would like to thank Ing. B. Geerdink for his technical and emotional support when carrying out the APR experiments, and also Ing. Benno Knaake for his expertise in maintaining the high-pressure reactors. Prof. L. Lefferts is thanked for preliminary discussions. Besides, Mrs. K. Altena-Schildkamp is thanked for BET and CO chemisorption measurements. Mr. Tom Velthuizen is thanked for XRF characterization, and Mr. Gerard Kip for XPS analysis at MESA + NanoLab. IS acknowledges with support from Ministry of Science and Higher Education of the Russian Federation.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2020.117963.

References

