The effect of prednisolone on symptom severity in schizophrenia

Nasib, Lyliana G; Gangadin, Shiral S; Rossum, Inge Winter-van; Boudewijns, Zimbo S R M; de Witte, Lot D; Wilting, Ingeborg; Luykx, Jurjen; Somers, Metten; Veen, Natalie; van Baal, Caroline

Published in:
Schizophrenia Research

DOI:
10.1016/j.schres.2021.01.024

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
The effect of prednisolone on symptom severity in schizophrenia: A placebo-controlled, randomized controlled trial

Lyliana G. Nasib a,⁎, Shiral S. Gangadin a,b, Inge Winter-van Rossum a, Zimbo S.R.M. Boudewijns a, Lot D. de Witte c, Ingeborg Wilting d, Jurjen Luykx a,c,†, Metten Somers a, Natalie Veen e, Caroline van Baal h, René S. Kahn a,c, Iris E. Sommer b

a Department of Psychiatry, University Medical Center Utrecht, Utrecht University, UMC Brain Center, Utrecht, the Netherlands
b University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neurosciences, Groningen, the Netherlands
c Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, the United States of America
d Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, the Netherlands
e Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
f Outpatient Second Opinion Clinic, GGNet Mental Health, Warnsveld, the Netherlands
g GGZ Delfland, Delft, the Netherlands
h Department of Biostatistics and Research Support, University Medical Center Utrecht, Utrecht, the Netherlands

Keywords:
Inflammatory hypothesis
Treatment
Glucocorticosteroids

1. Introduction

Over the past decade, results from genetic, post-mortem, epidemiological studies and randomized clinical trials (RCTs) have suggested that immune dysregulation plays a role in the pathogenesis of schizophrenia (Çakici et al., 2019; Jeppesen and Benros, 2019; Misiak et al., 2018). Over the past two decades, results from genetic, post-mortem, epidemiological studies and randomized clinical trials (RCTs) have suggested that immune dysregulation plays a role in the pathogenesis of schizophrenia (Çakici et al., 2019; Jeppesen and Benros, 2019; Misiak et al., 2018; Eik-Nes, 1956; Polatin et al., 1955). So far, no placebo-controlled trials have been performed studying the effects of corticosteroids have not been studied in patients with schizophrenia, possibly due to the risk for developing neuropsychiatric side-effects (Fardet et al., 2012, 2007).

© 2021 Published by Elsevier B.V.
Prednisolone is a potent glucocorticosteroid, that has been used for decades to treat a variety of severe or chronic diseases with a larger underlying inflammatory component such as Crohn’s disease, colitis ulcerosa and multiple sclerosis (Carter et al., 2004; Smets et al., 2017). The compound interferes with both the innate and adaptive immune system, can easily pass the blood brain barrier (BBB) and its safety profile is well-known (Fardet et al., 2012), making this a good candidate for a proof-of-concept trial to test the inflammation hypothesis.

To our knowledge, this is the first placebo-controlled proof-of-concept trial exploring the effect of a glucocorticosteroid on symptom severity in patients with schizophrenia. In this study, six weeks prednisolone treatment was tested as augmentation therapy in addition to antipsychotic medication, to reduce symptom severity, as measured with the Positive and Negative Symptom Scale (PANSS (Kay et al., 1987)) total score. To ensure patients safety, several procedures were implemented in this trial to protect their wellbeing.

2. Methods

2.1. Study population and setting

A detailed description of the study design has been published previously (Nasib et al., 2020). This randomized, placebo-controlled, double-blind study was conducted in four centers in the Netherlands and Belgium (listed in Supplement 1). All patients provided informed consent. Eligible patients were aged 18–70, diagnosed with schizophrenia, schizoaffective disorder, schizophreniaiform disorder, schizoaffective disorder or psychosis NOS no longer than 7 years ago, as confirmed with Mini International Neuropsychiatric Interview 5.0.0 Plus (M.I.N.I. 5.0.0 Plus (Sheehan et al., 1998)), treated with a stable dose of antipsychotic medication for at least three weeks and a minimum PANSS total score of 60. Additionally, female patients of childbearing potential needed to utilize a proper method of contraception. Patients were excluded when they had a known intolerance or contra-indication for prednisolone, diabetes mellitus, heart failure, osteoporosis or systemic fungal infections, were coercively treated or treated with systemic glucocorticoids, Nonsteroidal Anti-Inflammatory Drugs (NSAIDs), used carbamazepine, rifampicine, primidone, barbiturates, phenytoine, HAART medication, or telaprevir and boceprevir in treatment of Hepatitis C, were pregnant or breastfeeding or when their BMI exceeded 30. Ethical approval was obtained in each country. The study was monitored by UMC Utrecht and Julius Clinical according to Good Clinical Practice and International Conference on Harmonization guidelines and the Clinical Trial Directive.

2.2. Intervention

In consultation with physicians of various specialities (gastroenterology, immunology, rheumatology), who commonly prescribe prednisolone, a six-week titration schedule from the treatment guidelines for Inflammatory Bowel Diseases (2008) was adopted (shown in Fig. 1). Only patients with an optimal, stable dose (for at least three weeks) of antipsychotic medication were included and treating physicians were urged to keep the antipsychotic treatment as stable as possible during the six-week treatment period. Study medication was initiated with 40 mg/day, as this low to moderate dose is associated with few neuro-psychiatric side effects (Fardet et al., 2012, 2007), and was tapered off gradually to zero in six weeks. ACE Pharmaceuticals (The Netherlands) manufactured the placebo and composed the study medication kits, which consisted of six study medication boxes. Each box contained the daily dose for one week separately packed per day, sequentially numbered for the whole six-week time-period. Prednisolone and placebo tablets were identical in appearance, shape, smell and taste.

2.3. Study procedures

Fig. 2 provides an overview of the study design. After patients signed informed consent, a screening visit was performed to assess eligibility for the study. When patients met eligibility criteria, they were randomized in a 1:1 fashion to either prednisolone or placebo. Baseline data consisted of symptom severity (PANSS), global functioning (Global Assessment Functioning; GAF (Jones et al., 1995)) and depressive symptoms (Calgary Depression Scale; CDS (Addington et al., 1993)). An elaborate description of study procedures is provided in Supplement 2.

2.4. Safety procedures

As prednisolone might induce neuro-psychiatric side-effects in a dose-dependent fashion (Fardet et al., 2012, 2007), extra procedures were implemented to ensure patient safety. At each visit, potential adverse events (AEs) and concomitant medication were monitored by the study physician. In order to maintain the blinding, blood values were reviewed by study physicians prohibited from collecting any study data for those individual patients, as prednisolone might elevate blood glucose levels. For the treatment phase, stopping rules were implemented (Supplement 3). All patients received calcium (calciumcarbonate 500 mg daily) and vitamin D supplementation (cholecalciferol 400IE daily) to prevent loss of bone mass, in line with current prednisolone prescription practice.

PANSS raters were trained and certified by an experienced PANSS trainer. Raters were kept consistent per patient to avoid inter-rater differences. A Data Safety Monitoring Board was appointed to evaluate the study progress and patient safety and advise the sponsor on an ongoing basis.

2.5. Outcomes

The primary outcome of this study was the change in symptom severity expressed as the absolute change in PANSS total from baseline to end of treatment. Secondary outcomes were changes in PANSS
subscales (positive, negative and general), global functioning (GAF) and depressive symptoms (CDS) at end of treatment and the follow-up phase, compared to baseline, and long-term effect (follow-up phase) of prednisolone on symptom severity (PANSS total). Additionally, changes in dosage of antipsychotic medication or benzodiazepines of at least 25% (relative to the baseline visit) during the treatment phase was regarded a secondary outcome measure.

2.6. Sample size

A power-calculation was performed in which an effect size of 0.610 and a drop-out rate of 30% were taken into account. A total of 90 patients should be included in this study. An elaborate description of the power-calculation has been published previously (Nasib et al., 2020). In this study standardized mean differences were used as effect size.

2.7. Allocation

Randomization was performed at the Julius Center for Health Sciences and Primary Care. Block randomization was performed, stratified for gender, site and country. An elaborate description of the allocation has been published previously (Nasib et al., 2020).

2.8. Adverse events

During each treatment visit, AEs were monitored by the study physician using a guided checklist (as provided in Supplement 4) including all AEs reported in the prednisolone summary of product characteristics. Additionally, all spontaneous reports of AEs and serious adverse events (SAEs) were reviewed by a study physician at all visits.

2.9. Statistical analysis

Analyses were performed using IBM SPSS Statistics version 25.0. (IBM, 2017) Patient characteristics at baseline were compared between groups using Independent t-Tests (continuous variables), χ² tests (categorical variables) and Fisher’s exact tests (categorical variables with less than 5 observations per group). The applicable assumptions were checked visually by evaluating boxplots and Q-Q plots of the residuals. Levene’s test was used to test for homogeneity of variance. The analyses for the primary and secondary outcomes were performed with mixed models, which allowed us to use all data including the data from discontinued patients. Three nested mixed models were fitted to test the effects of the interaction between treatment and time (measured as number of weeks after baseline) and of treatment as main effect respectively. These effects were tested using the Likelihood ratio test (LRT) by subtracting the −2 log Likelihoods from models with and without the relevant effect, which has a χ² distribution. All models included time (categorical), baseline score of the applicable outcome (PANSS total, PANSS subscales, CDS and GAF) and site as fixed covariates. The primary and secondary analyses were repeated as explorative post-hoc analyses in a small sub-group of patients with an elevated C-reactive protein (CRP) level, which was the original target population of this trial before removing the inclusion criteria of a CRP level > 3.9 mg/L. Tests were performed in the intention-to-treat study sample using a two-sided alpha of 0.05.

3. Results

Participants were recruited between 01 July 2014 and 01 February 2019. In total 246 potential candidates were approached for this study of which 68 patients signed informed consent and were screened for eligibility. Fig. 3 provides an overview of the study profile. 42 patients met eligibility criteria and randomly allocated to prednisolone or placebo. Thirty-nine patients finalized the treatment phase of 6 weeks. Three patients did not complete the treatment phase and discontinued study participation; one patient (randomized to placebo) discontinued after meeting a stopping rule criterion, one patient (randomized to prednisolone) was transferred to another hospital and could not be followed for this study and one patient (randomized to prednisolone) withdrew consent. Additionally, end of treatment PANSS scores were missing due to an unknown cause for three patients. Some patients did not use the study medication or concomitant medication as described in the study protocol; an overview is provided in Supplement 5.
were broadened (Supplement 6 provides an overview of changes in eligibility criteria). Additionally, potential AEs caused by prednisolone were categorized in frequency (sometimes, rarely, very rarely and frequency unknown) in the information letter, providing insight in the prevalence of the AEs. After a recruitment period of four years and seven months, the study was terminated prematurely.

3.1. Demographics

There were no relevant differences on baseline demographics between the two treatment arms, as provided in Table 1. Seven women were included in this study. Gender was unequally distributed among treatment arms (two women randomized to prednisolone, five women randomized to placebo), possibly caused by the premature termination of this trial. Patients received antipsychotic treatment as usual, with wide variations in type, brand and dose of antipsychotic. Supplement 7 provides a complete overview of comorbid neuropsychiatric disorders present at baseline, as determined with the M.I.N.I. 5.0.0 Plus.

3.2. Psychopathology

![CONSORT flow diagram.](image)

Fig. 3. CONSORT flow diagram. ‡ End of treatment PANSS scores were missing due to an unknown cause for three patients; at end of treatment there were 19 PANSS scores in the placebo group and 17 PANSS scores in the prednisolone group. * The 16 weeks after baseline follow-up visit was implemented after the commencement of the study. Therefore only a part of the patients completed this visit.

Overall, the PANSS total scores were significantly decreased at end of treatment and during the follow-up phase, compared to baseline (p < 0.001) in both treatment arms. However, at end of treatment, no significant differences in main effect and between marginal means of prednisolone and placebo groups were found in the PANSS total score (χ²(1) = 0.262, p = 0.61), with similar findings for the PANSS positive (χ²(1) = 0.382, p = 0.54), PANSS negative (χ²(1) = 0.273, p = 0.60) and PANSS general subscales (χ²(1) = 2.630, p = 0.10).

3.2.1. Severity of symptoms
3.2.2. Global functioning

In both treatment arms, GAF scores were improved at end of treatment as well as in the follow-up phase, when compared to baseline. Again, there was no significant difference between treatment arms at end-of-treatment ($\chi^2(1) = 0.741$, $p = 0.39$) nor at 52 weeks follow-up ($\chi^2(1) = 1.526$, $p = 0.22$).

3.2.3. Severity of depressive symptoms

The CDS scores were decreased at the end of treatment and during the follow-up period in both treatment arms. Significant different main effects in favor of prednisolone were found at end of treatment ($\chi^2(1) = 4.101$, $p = 0.04$) and 52 weeks after baseline ($\chi^2(1) = 7.273$, $p = 0.007$).

3.3. Concomitant medication

After the initiation of study medication, some patients started using antidepressants or benzodiazepines during the six-week treatment period. In the prednisolone treatment group, two patients initiated antidepressants and two patients initiated benzodiazepines. In the placebo group, one patient started using antidepressants and four patients initiated benzodiazepines. There were no changes in dosages of antipsychotic medication or benzodiazepines meeting the secondary outcome criteria (at least 25% relative to baseline).

3.4. Elevated C-reactive protein level post-hoc analyses

High sensitivity CRP levels were available for a subgroup of patients ($n = 33$), of which twenty patients had an elevated CRP level > 3.9 mg/L at screening; twelve patients in the prednisolone group versus eight patients in the placebo group. When comparing the PANSS total baseline scores of the elevated group ($n = 20$) and the non-elevated CRP level group ($n = 13$), a significant difference was found ($p = 0.032$) with higher PANSS total scores in the elevated CRP group. The primary and secondary outcome mixed model analyses were repeated in patients with an elevated CRP level. No significant effect was found at end of treatment on PANSS total ($\chi^2(1) = 0.341$, $p = 0.56$), PANSS positive ($\chi^2(1) = 0.419$, $p = 0.52$), PANSS negative ($\chi^2(1) = 0.021$, $p = 0.88$), PANSS general subscales ($\chi^2(1) = 0.686$, $p = 0.41$), GAF ($\chi^2(1) = 0.019$, $p = 0.89$) nor CDS ($\chi^2(1) = 0.436$, $p = 0.51$). Supplement 9 provides an overview of the change in PANSS total, PANSS subscales, GAF and CDS scores from baseline to end of treatment (six weeks after baseline).

3.5. Adverse events

No SAEs occurred during the treatment phase. In total, 12 SAEs occurred in seven patients, one of which occurred after signing informed consent and before the initiation of study medication and the remaining 11 SAEs occurred after the treatment phase. All reported SAEs were

![Fig. 4. Change in symptom severity, global functioning and depressive symptoms. Data are provided in estimated marginal mean per time point (visualized the following values for the baseline measure covariates: A. PANSS total baseline = 78.24; B. PANSS positive baseline = 19.24; C. PANSS negative baseline = 20.14; D. PANSS general baseline = 38.87; E. GAF baseline = 46.02; F. CDS baseline = 4.74). PANSS – Positive and Negative Syndrome Scale; GAF – Global Assessment Functioning; CDS – Calgary Depression Scale. PANSS Total score ranges from 30 to 210; PANSS positive subscore ranges from 7 to 49, PANSS negative subscore ranges from 7 to 49, PANSS general subscore ranges from 16 to 112; a higher score indicates more severe symptoms. GAF Score ranges from 0 to 100; a higher score indicates better global functioning. CDS Score ranges from 0 to 27; a higher score indicates more severe depression symptoms.][1]
hospitalizations for psychiatric reasons. In the prednisolone group, a total of six SAEs were reported concerning two patients who were hospitalized multiple times. In the placebo group, a total of six SAEs were reported concerning two patients who were hospitalized multiple times.

An extensive report of all reported AEs after study medication treatment commencement is presented in Supplement 10. Overall, in the prednisolone treatment arm, 55 AEs were reported versus 49 AEs in the placebo treatment arm.

4. Discussion

This proof-of-concept study was designed to explore effects of short-term treatment with the potent and broad-acting glucocorticoid prednisolone on the symptom severity of patients with schizophrenia, schizoaffective disorder and psychosis NOS within the context of the inflammatory hypothesis (Fond et al., 2020). A six-week treatment with prednisolone in addition to a stable dose of antipsychotic medication did not have a beneficial effect on PANSS total, compared with placebo. When analyzing the secondary outcome measures (PANSS subscales, GAF and PANSS total at 52 weeks follow-up), no significant differences were found when comparing prednisolone and placebo at any of the time points. Significantly more improvement on the CDS score in placebo group was found at end of treatment and at 52 weeks follow-up. No significant differences between prednisolone and placebo in PANSS (total and subscales), GAF and CDS were found at end of treatment after performing post-hoc analyses in a subgroup of patients with an elevated CRP level.

Our results are in line with other negative trials that studied anti-inflammatory agents such as davunetide (Javitt et al., 2012), celecoxib (Rapaport et al., 2005), salsate (Luo et al., 2019) and simvastatin and ondansetron (Chaudhry et al., 2014), while conflicting with reports from trials focusing on aspirin and estrogens (Çakici et al., 2019). Although several large RCTs studying minocycline and NAC reported negative results (Conus et al., 2018; Deakin et al., 2018; Weiser et al., 2019), pooling data in a meta-analyses resulted in a beneficial effect of both compounds compared to placebo (Çakici et al., 2019). These conflicting findings have been attributed to the divergent activity in the central nervous system of these compounds, variations in anti-inflammatory potency, the extent to which compounds are able to cross the BBB and the different patient populations studied (Çakici et al., 2019).

A significantly improvement of the CDS score was found in favor of placebo at both end of treatment and at 52 weeks follow-up, this might be a result driven by the potential neuropsychiatric side-effects caused by treatment with prednisolone. According to Fardet and colleagues, the use of glucocorticoids can increase the risk of suicidal behavior and other neuropsychiatric side-effects such as depression (Fardet et al., 2012). In our study sample depressive symptoms and suicidal ideations were more often reported as AE in the prednisolone group (n = 4) compared to the placebo group (n = 1). Although, the CDS score improved in both treatment arms, the use of prednisolone might have slightly increased depressive symptoms when compared to placebo.

Given that, to our knowledge, this placebo-controlled trial is the first to investigate the effect of glucocorticosteroids on symptom severity, the optimal dose and treatment duration of prednisolone is unknown. Even though the dose and tapering schedule used in this trial were based on the Inflammatory Bowel Guidelines from 2008, it is possible that the prednisolone dose in this trial was too low and/or the treatment duration was too short in order to achieve optimal exposure in the brain and to differentiate the effect of prednisolone from placebo. This hypothesis is substantiated by the fact that the effects of prednisolone are similar to those of other anti-inflammatory drugs which were found to be effective in decreasing psychosis symptom severity, such as estrogens, minocycline and NAC (Çakici et al., 2019); these compounds are known to decrease interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, an effect also demonstrated for prednisolone (Abou-Raya et al., 2014). As these pro-inflammatory cytokines were found to be increased in peripheral blood of patients during acute exacerbation (Hong and Bang, 2020), it might be that the prednisolone dose used in this trial was insufficient, or the treatment duration too short, to achieve an effect on symptom severity.

Another set of explanations for the negative results is rooted in the study design. A clear placebo-effect was found in our trial; at end of treatment the PANSS total score was significantly decreased (p < 0.001) across treatment arms, relative to baseline. The eligibility criteria – in particular the requirement of a minimum score on the PANSS assessment – might have aided a placebo-effect. A recent meta-analysis by Leucht and colleagues indicated that placebo-response is increased in studies that utilize a minimum symptom severity score as inclusion criterion on the

Table 1
Baseline characteristics per treatment arms.

<table>
<thead>
<tr>
<th></th>
<th>Prednisolone (n = 21)</th>
<th>Placebo (n = 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (sd)</td>
<td>32.24 (10.60)</td>
<td>28.0 (7.11)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td>19 (90.5%)</td>
<td>16 (76.2%)</td>
</tr>
<tr>
<td>Disease type, n (%)</td>
<td>5 (23.8%)</td>
<td>1 (4.8%)</td>
</tr>
<tr>
<td>Psychosis NOS</td>
<td>13 (61.9%)</td>
<td>16 (76.2%)</td>
</tr>
<tr>
<td>Schizophrenia</td>
<td>3 (14.3%)</td>
<td>4 (19.0%)</td>
</tr>
<tr>
<td>Schizoaffecive disorder</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Duration of illness in years</td>
<td>2.01 (1.46)</td>
<td>2.26 (2.30)</td>
</tr>
<tr>
<td>Symptom severity, mean (sd)</td>
<td>4.09 (3.52)</td>
<td>3.44</td>
</tr>
<tr>
<td>PANSS total</td>
<td>81.23 (13.23)</td>
<td>75.24 (10.54)</td>
</tr>
<tr>
<td>PANSS positive subscale</td>
<td>20.52 (5.48)</td>
<td>17.95</td>
</tr>
<tr>
<td>PANSS negative subscale</td>
<td>20.90 (6.32)</td>
<td>19.38</td>
</tr>
<tr>
<td>PANSS general subscale</td>
<td>39.81 (8.23)</td>
<td>37.9 (7.46)</td>
</tr>
<tr>
<td>Major depressive disorder - lifetime, n (%)</td>
<td>5 (23.8%)</td>
<td>2 (9.5%)</td>
</tr>
<tr>
<td>Major depressive disorder - lifetime, n (%)</td>
<td>6 (28.6%)</td>
<td>7 (33.3%)</td>
</tr>
<tr>
<td>Suicidality, n (%)</td>
<td>8 (38.1)</td>
<td>7 (33.3)</td>
</tr>
<tr>
<td>Substance abuse or dependence in the past 12 months, n (%)</td>
<td>5 (23.8)</td>
<td>4* (19.0)</td>
</tr>
<tr>
<td>Highest education, n (%)</td>
<td>Primary school 0 (0)</td>
<td>3 (14.3)</td>
</tr>
<tr>
<td></td>
<td>High school 5 (23.8)</td>
<td>1 (4.8)</td>
</tr>
<tr>
<td></td>
<td>Vocational education 6 (28.6)</td>
<td>6 (28.6)</td>
</tr>
<tr>
<td>BMI, mean (sd)</td>
<td>24.45 (2.47)</td>
<td>24.43</td>
</tr>
<tr>
<td>GAF, mean (sd)</td>
<td>41.57 (15.47)</td>
<td>50.48</td>
</tr>
<tr>
<td>CDS, mean (sd)</td>
<td>5.38 (4.71)</td>
<td>4.09 (3.52)</td>
</tr>
<tr>
<td>Antipsychotic (%)</td>
<td>Amisulpride 1 (9.1)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Arripizaprole 3 (11.5)</td>
<td>2 (9.1)</td>
</tr>
<tr>
<td></td>
<td>Clozapine 1 (3.8)</td>
<td>3 (14.3)</td>
</tr>
<tr>
<td></td>
<td>Clozapine 7 (26.9)</td>
<td>2 (9.1)</td>
</tr>
<tr>
<td></td>
<td>Etumine 1 (3.8)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Flupentixol 1 (3.8)</td>
<td>3 (13.6)</td>
</tr>
<tr>
<td></td>
<td>Haloperidol 0 (0)</td>
<td>2 (9.1)</td>
</tr>
<tr>
<td></td>
<td>Olanzapine 7 (26.9)</td>
<td>6 (27.3)</td>
</tr>
<tr>
<td></td>
<td>Paliperidone 1 (3.8)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Penfluridol 1 (3.8)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Phenergan 0 (0)</td>
<td>1 (4.5)</td>
</tr>
<tr>
<td></td>
<td>Quetiapine 1 (3.8)</td>
<td>1 (4.5)</td>
</tr>
<tr>
<td></td>
<td>Risperidone 2 (7.7)</td>
<td>3 (13.6)</td>
</tr>
<tr>
<td></td>
<td>Zipropentoxil 1 (3.8)</td>
<td>1 (4.5)</td>
</tr>
</tbody>
</table>

NOS – Not otherwise specified; PANSS – Positive and Negative Syndrome Scale; BMI – Body Mass Index; GAF – Global Assessment Functioning; CDS – Calgary Depression Scale.

* Diagnosis determined with the MINI 5.0.0 Plus.
* Total score ranges from 30 to 210; positive subscore ranges from 7 to 49, negative subscore ranges from 7 to 49, general subscore ranges from 16 to 112; a higher score indicates more severe symptoms.
* Score ranges from 0 to 100; a higher score indicates better global functioning.
* Score ranges from 0 to 27; a higher score indicates more severe depression symptoms.
* Variables contain incomplete data.
* The frequencies of antipsychotics exceed 21 as there were several patients who received polytherapy.
assessment that is also used as primary outcome measure (Leucht et al., 2019). A potential explanation for this placebo-response is baseline inflation; unintended inflation of the scores indicating symptom severity in order to meet the inclusion criterion, followed by an automatic decrease in the next assessment score in the placebo group and a true reduction in the score of the treatment group (Alphs et al., 2012; Leucht et al., 2019). Increase in placebo effects over the past years has been reported among patients with schizophrenia (Alphs et al., 2012). Another explanation for the observed placebo-effect might be the weekly visits during the treatment phase, associated with frequent social interaction and intense clinical follow-up. A final potential cause for the inability of prednisolone to distinguish its effects from placebo, may be a ceiling effect caused by the continued use of antipsychotics. Even though patients were required to be on a stable dose of antipsychotic treatment before initiating study medication, we cannot preclude that their symptoms continued to improve as a function of delayed response to their antipsychotic medication. This may have created a ceiling effect, making it impossible for prednisolone to induce an additional effect on symptom severity over and above the effect of antipsychotics.

Finally, it might be that prednisolone is effective only in specific subgroups of patients, which were not sufficiently represented in our patient study population. Even though associations between schizophrenia and immune dysfunction have been demonstrated in diverse lines of scientific research, a causal direction has not been established and could vary between subgroups of patients with diverging underlying pathophysiology. One could hypothesize that anti-inflammatory medication may exert optimal effect in subgroups of schizophrenia patients with a specific state of immune activation (Fond et al., 2020; Schwarz et al., 2014). Alternatively, it has been suggested that the stage of the illness may influence the extent to which anti-inflammatory medication might be effective. A recent review by Fond and colleagues compared cytokine levels in peripheral blood between first episode patients, patients with acute exacerbation of chronic schizophrenia and chronically ill schizophrenia patients and found more cytokine alterations in FEP patients (Fond et al., 2020). Next to this, celecoxib, minocycline and NAC seem to be more effective in the state of immune activation (Çakici et al., 2019; Zheng et al., 2017). It might be that the neuro-inflammation, early in illness stage in which anti-inflammatory agents might be beneficial had ceased by the time the patients initiated the study treatment phase.

The interpretation of these results is subject to limitations. Most importantly, fewer patients were included in this study than what was required according to the power calculation, which results in less statistical power than anticipated. Due to difficulties in recruitment it was not feasible to further extend the recruitment period and it was therefore decided to finish this study prematurely. Despite the lack of statistical power, the effect of prednisolone and placebo on symptom severity in these patients was almost similar, making it highly unlikely that the difference in number of SAEs between treatment arms found during the follow-up period. Our findings suggest that patients with schizophrenia might be able to tolerate a standard corticosteroid treatment, on the condition that a stable antipsychotic regimen is in place. Therefore, these patients may not need to be deprived of effective corticosteroid treatment such as treatment with prednisolone.

5. Conclusion

In summary, we report results of the first proof-of-concept study exploring the efficacy of a potent glucocorticoid, prednisolone, in patients with schizophrenia. As prednisolone in the current dose and treatment duration did not significantly decrease symptom severity when compared to placebo, we were unable to provide evidence supporting the inflammatory hypothesis in schizophrenia. Due to the low sample size of this study and lack of previous placebo-controlled trials, it difficult to make inferences regarding use of corticosteroids in schizophrenia patients. However, our findings do not preclude potential effects at higher dosing or longer treatment duration.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.schres.2021.01.024.

List of abbreviations

AE Adverse Event
BBB Blood brain barrier
BMI Body Mass Index
CDS Calgary Depression Scale for Schizophrenia
CRP C-Reactive Protein
GAF Global Assessment Functioning
IL Interleukin
M.I.N.I. 5.0.0 Plus Mini International Neuropsychiatric Interview
NAC N-acetylcysteine
NSAID Nonsteroidal Anti-Inflammatory Drugs
PANSS Positive and Negative Syndrome Scale
RCT Randomized Clinical Trials
SAE Serious Adverse Event
TNF Tumor Necrosis Factor

Registration

This study has been retrospectively registered on 31 October 2016 on ClinicalTrials.gov NCT02949232 https://clinicaltrials.gov/ct2/show/NCT02949232?term=corticosteroid&cond=schizophrenia&rank=3 EudraCT-number 2014-000520-14.

Role of the funding source

The study in is funded by The Stanley Medical Research Institute (grant number 12T-009 to Prof. Dr. I.E.C. Sommer). The Stanley Medical Research Institute had no role in the study design, data collection, data analyses and interpretation, writing of this report or the decision to submit the report for publication. Additionally, this study is supported by Stichting Vrienden UMC Utrecht.

CRediT authorship contribution statement

IES and RSK designed the study. IES supervised the study and obtained funding. IWvR drafted the manuscript. LNG, IES, SSG, JIL, NV and MS participated in the collection of data. LNG and ZSRMB managed the data cleaning. ZSRMB prepared the database for analyses. LNG and CvB performed the statistical analyses. All authors participated in the critical revision of the manuscript and approved the final article.

Declaration of competing interest

None of the authors declare a conflict of interest.

Acknowledgements

A special thanks for all patients who consented to the study and to Arthur van Gool, Bibi Navas Garcia, Biele de Wilde, Bodyl Brand, Charissa van Kesteren, Conrad Vissink, Ellen Singleton, Elske Willemsen, Esther de Clercq, Eva Oostra, Elske Willemsen, Floor van Duuren, Gurmeet Judge, Ineke van der Spek, Jacqueline de Vries, Janna de Boer, Jorien Lokker, Kelly van den Heuvel, Mascha Linszen, Maarten Meersman, Marjolein Kaan, Meenakshi Dauwan, Melina van der Brug, Nico van Beveren, Osana Schlee, Paul Ormel, Paula Ywema, Osana Schlee, Priscilla Oomen, Renske Blom, Rinske Gotink, Seyit Gunog, Ellen Singleton, Elske Willemsen, Floor van Duuren, Gurmeet Judge, Ineke van der Spek, Jacqueline de Vries, Janna de Boer, Jorien Lokker, Kelly van den Heuvel, Mascha Linszen, Maarten Meersman, Marjolein Kaan, Meenakshi Dauwan, Melina van der Brug, Nico van Beveren, Osana Schlee, Paul Ormel, Paula Ywema, Osana Schlee, Priscilla Oomen, Renske Blom, Rinske Gotink, Seyit Gunog, Ellen Singleton, Elske Willemsen, Floor van Duuren, Gurmeet Judge, Ineke van der Spek, Jacqueline de Vries, Janna de Boer, Jorien Lokker, Kelly van den Heuvel, Mascha Linszen, Maarten Meersman, Marjolein Kaan, Meenakshi Dauwan, Melina van der Brug, Nico van Beveren, Osana Schlee, Paul Ormel, Paula Ywema, Osana Schlee, Priscilla Oomen, Renske Blom, Rinske Gotink, Seyit Gunog, Ellen Singleton, Elske Willemsen, Floor van Duuren, Gurmeet Judge, Ineke van der Spek, Jacqueline de Vries, Janna de Boer, Jorien Lokker, Kelly van den Heuvel, Mascha Linszen, Maarten Meersman, Marjolein Kaan, Meenakshi Dauwan, Melina van der Brug, Nico van Beveren, Osana Schlee, Paul Ormel, Paula Ywema, Osana Schlee, Priscilla Oomen, Renske Blom, Rinske Gotink, Seyit Gunog, Ellen Singleton, Elske Willemsen, Floor van Duuren, Gurmeet Judge, Ineke van der Spek, Jacqueline de Vries, Janna de Boer, Jorien Lokker, Kelly van den Heuvel, Mascha Linszen, Maarten Meersman, Marjolein Kaan, Meenakshi Dauwan, Melina van der Brug, Nico van Beveren, Osana Schlee, Paul Ormel, Paula Ywema, Osana Schlee, Priscilla Oomen, Renske Blom, Rinske Gotink, Seyit Gunog,