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1. Understanding metabolic disorders  
 
Metabolic homeostasis is defined as the balance between catabolic (energy-producing) 

and anabolic (energy-consuming) processes. In the past century, the large increase in 
availability of food together with a reduced level of physical activity has led to a positive 
energy balance, driving the increased prevalence of obesity-related (chronic) disorders 1. 
Obesity affects most physiological functions of the human body, illustrated by a variety of 
obesity-related (chronic) disorders targeting different (metabolic) organs. Examples of 
these metabolic disorders or conditions are insulin resistance, dyslipidemia and high blood 
pressure 2. This cluster of metabolic conditions are termed Metabolic Syndrome (MetS) and 
increases the risk of chronic metabolic diseases including type 2 diabetes mellitus (T2DM), 
non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD) and certain types 
of cancer. The prevalence of diseases are expected to continue to rise 3. Chronic metabolic 
disorders significantly decrease the quality of life and are associated with high healthcare 
costs, resulting in a higher economic burden 4,5. 

These developments have spurred research aimed to elucidate mechanisms underlying 
the development of metabolic disorders. A close link between metabolic homeostasis and 
genetic mutations and (dysfunctional) transcriptional regulation by nuclear receptors (NRs) 
was found, for example in diseases such as T2DM, CVD and in ageing processes 6–9. 
Subsequently, activation of NR pathways has been discovered as a therapeutic target for 
these conditions. The family of NRs consists of ligand-activated transcription factors and 
is involved in many biological processes including cell growth, stress responses and a 
plethora of metabolic pathways 1. The increasing prevalence of metabolic disorders as well 
as the knowledge about the role of NRs in metabolism has led to a great interest in 
developing new ligands targeting NRs to treat these disorders.  

In our lab we are generally interested in the etiology of disorders of (energy) metabolism, 
and in this thesis we specifically focus on the relation between dyslipidemia and 
unconjugated hyperbilirubinemia. To this end, we characterized novel animal models and 
investigated the potential role of several NRs in the pathophysiology of these disorders and 
whether or not targeting NR could be a potential therapeutic intervention strategy. 
 

2. Nuclear receptors as therapeutic targets 

2.1. Nuclear receptor structure and target gene regulation 
  

The family of NRs consist of 48 members which act as receptors for a variety of 
lipophilic compounds including steroid hormones, thyroid hormone, vitamins A and D, 
lipids, bile acids and xenobiotics 10,11. Regulation of target genes by activated NRs can be 
executed in different ways. Some NRs are resident in the cytosol as a complex with 
chaperone proteins, and translocate upon activation by their ligands to the nucleus where 
they can bind to the promotor region of target genes to regulate transcription. These include 
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the steroid receptors such as the androgen receptor (AR), estrogen receptor (ER), 
glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and progesterone receptor 
(PR) and typically regulate transcription of downstream targets by acting as homodimers 
6,10,12. 

Most of the NRs, however, reside on the chromatin in an inactive state, forming a 
complex with histone deacetylases (HDACs), and are activated upon ligand binding. Ligand 
binding causes dissociation of the HDAC complex and formation of a new complex with 
histone acetyltransferases (HAT) such as p300 and CREB binding protein (CBP). This 
results in a higher chromatin accessibility and increased transcription of the target genes 
13,14. NRs that are bound to the chromatin such as the liver X receptor (LXR), farnesoid X 
receptor (FXR), peroxisome proliferator-activated receptors (PPAR), constitutive 
androstane receptor (CAR) or pregnane and xenobiotic receptor (PXR) generally form a 
heterodimer with the retinoid X receptor (RXR) in order to regulate transcription of 
downstream target genes (reviewed in 6,10). This heterodimerization with RXR allows the 
heterodimer to function as a reversible switch. In absence of a ligand, the heterodimer binds 
corepressors resulting in repression of target genes of the specific NR. Conversely, binding 
of a ligand to either the specific NR or RXR causes a conformational change of the 
heterodimer thereby liberating the corepressors and subsequently recruitment of 
coactivators, which perform biochemical reactions required for augmenting transcription 
of the target genes 15,16. These target genes are involved in a broad variety of metabolic 
pathways and are expressed in different cell types and tissues 10.  

A common feature of all NR family members is the three-dimensional structure 
consisting of several functional domains (Figure 1). The N-terminal domain (NTD, or A/B 
domain) contains a ligand-independent AF-1 transcriptional activation domain (AF-1), and 
the more central region (C-domain) is constituted of 2 zinc fingers forming the highly-
conserved DNA-binding domain. The COOH-terminal region (D/E domain) contains the 
ligand-binding domain (LBD) and a ligand-dependent activation function domain (AF-2) 
17,18. Some NRs contain at the very end of the COOH-terminal a variable stretch of amino 
acids called the F-domain 19. The AF-2 domain is responsible for activation or repression 
of the NR through binding to recruited coactivators or corepressors.  

 
 
Figure 1. Schematic representation of the general domain structure of NRs. The A/B domain is located on the 
N-terminus region and contains the ligand-independent transcription activation function region 1 (AF-1). The central 
C-domain contains the DNA-binding domain (DBD). Finally, the COOH terminal region (D/E domain) contains the 
ligand-dependent transcriptional activation functional region 2 (AF-2) and is involved with recruitment of cofactors 
and heterodimerization with RXR. Adapted from 6. 

Individuals with MetS often show comorbidities such as NAFLD and T2DM 20, and 
although the etiology is different, various NRs including PPARs play a role in the underlying 
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pathogenic pathways of these disorders. The important role of NRs in many metabolic 
pathways, together with the discovery that dysfunctional transcriptional regulation by NR 
could contribute to metabolic disorders, has led to extensive research on NRs as new 
therapeutic targets. Currently, around 13% of the Food and Drug Administration (FDA) 
approved drugs target NRs, including drugs targeting metabolic disorders such as insulin 
resistance (TZDs), dyslipidemia (fibrates) and inflammation (dexamethasone) 21. However, 
unwanted side-effects have also been reported for NR-targeting drugs because NRs have a 
complex network of transcriptional downstream targets along with partial agonism of 
ligands 22. The effects of individual NRs as well as interaction between NRs are dependent 
on the activated (metabolic) organ. 

2.2. The role of NRs in metabolic processes 
 

The liver plays a central role in glucose and lipid homeostasis, protein synthesis and in 
detoxification of endogenous and xenobiotic compounds. Activated NRs play an important 
coordinating role in these metabolic pathways and multiple NRs can be involved in one 
metabolic pathway and can perform overlapping or opposite functions. The NR family 
members LXR, FXR, CAR, PXR and PPARs all heterodimerize with RXR and are 
important players in metabolic pathways in the liver, as well as the gut, pancreas, adipose 
tissue and muscle 23,24. They provide coordination between metabolic responses across 
organ systems during the fed and fasted states 10.  

Under fasting conditions, energy is mainly retrieved from fatty acid oxidation (FAO) in 
muscles, heart and liver 25. Fatty acids (FAs) derived from adipose lipolysis can in turn 
activate peroxisome proliferator-activated receptor alpha (PPARα) in the liver, thereby 
inducing hepatic FAO in order to produce energy in the form of ATP and ketone bodies. 
Besides stimulation of FA oxidation, fasting-induced activation of PPARα also stimulates 
gluconeogenesis which is driven by the obtained energy from FAO 26. Activated PPARα 
also stimulates the production of the hepatokine fibroblast growth factor 21 (FGF21) 
which functions as a stress-signal to other organs to prepare them for an approaching 
energy-deprivation state 10,27. 

During the fed state, NRs such as FXR, LXR and PPARs are responsible for extracting 
nutrients from the gut, nutrient transportation to the liver and storage in adipose. A post-
prandial increase in glucose availability increases the concentration of insulin and insulin 
plays an important role in the fat storage and mobilization by the adipose tissue, as it 
suppresses the lipolysis of TAG 28,29. Furthermore, the post-prandial rise in bile acids (BAs) 
activates FXR which in turn exerts a negative feedback on their synthesis. FXR also 
suppresses gluconeogenesis and lipogenesis 30. After hepatic metabolism, transport to and 
utilization of lipids by peripheral tissues including adipose tissue and muscles is exerted to 
an important extent by PPARb/d and PPARg 24. LXR, FXR and PPARα are all involved 
in cholesterol and bile acid (BA) homeostasis, fatty acid metabolism and glucose and insulin 
sensitivity. The involvement of these NRs in the metabolism of cholesterol, BA, FAs, 
triglycerides as well as hepatic detoxification will be discussed below.  
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2.2.1. Cholesterol metabolism 
 

Cholesterol is an indispensable molecule for vertebrates due to its function as a major 
component of cell membranes and precursor for steroid hormones and BAs. Although 
cholesterol can be synthesized by many tissues, the liver is quantitatively the major 
production site. Cholesterol can be secreted in its sterol form via the bile or directly into 
the intestinal lumen or as a BA via the bile after a multi-enzymatic conversion, including 
7α-hydroxylase (CYP7A1) 31. The direct secretion of cholesterol across the intestinal 
epithelium into the intestinal lumen is called the Trans Intestinal Cholesterol Excretion 
(TICE). The TICE pathway was found to be regulated by different NRs which will be 
discussed in more detail in section 2.2.2. 

Maintenance of cholesterol homeostasis is under regulatory control of several NRs 
including LXR, FXR and PPARs as well as other transcription factors such as sterol 
regulatory element binding proteins (SREBPs) 32–34. Both LXR and FXR are highly 
expressed in the liver and intestine, organs that are important for cholesterol homeostasis 
35,36. Endogenous ligands for LXR are oxidized forms of cholesterol called oxysterols and 
synthetic compounds including T0901317 (T09) and GW3965 37,38. LXR exists in two 
isoforms, LXRα (NR1H3) and LXRb (NR1H2), which have a distinct tissue expression 
pattern 39. LXRα is highly expressed in the liver, intestine, adipose tissue and macrophages, 
while LXRb is ubiquitously expressed in the body 40. LXR is considered a cellular sterol-
sensor and activates pathways to eliminate or metabolize excess cholesterol, such as the 
process of reverse cholesterol transport (RCT). RCT is the transport pathway of excess 
cholesterol in the form of high-density lipoprotein (HDL) cholesterol from the peripheral 
tissues back to the liver 31,41. Excess cholesterol is then excreted from the body as neutral 
sterols (NS) or BAs via the bile. The ATP-binding cassette transporter A1 (ABCA1) is the 
rate-limiting step in the formation of HDL particles and transports cholesterol to ApoA1. 
Another ABC half-transporter, ABCG1, is also involved in RCT and transports cholesterol 
from macrophages to HDL-2 and HDL-3 particles 42–44. HDL can appear in several degrees 
of density, with HDL-3 being more dense than HDL-2 41. Both ABCA1 and ABCG1 are 
transcriptionally regulated by LXR 44–46. After being taken up by the liver via the Scavenger 
receptor class B type 1 (SR-B1), excess cholesterol can be converted into BAs or secreted 
as free cholesterol into the biliary tract.  

 
FXR also plays a role in cholesterol homeostasis, although this is complex and 

incompatible findings have been reported in literature. FXR knockout mice (FXR-/-) display 
increased hepatic and plasma levels of total cholesterol (TC). The increased TC levels in 
FXR-/- mice correspond with elevated plasma levels of very-low density lipoprotein 
(VLDL), low-density lipoprotein (LDL) and HDL 47–49. The increase of HDL-C due to 
FXR deficiency is suggested to be attributable to decreased hepatic cholesterol uptake, 
through reduced expression of SR-B1 49. Activation of FXR by BAs or synthetic ligands 
such as GW4064 or obeticholic acid (OCA) decreased plasma TC, HDL, VLDL and LDL 

14

Chapter 1

150738_Blankestijn_BNW.indd   14150738_Blankestijn_BNW.indd   14 13-04-2021   13:5813-04-2021   13:58



in mice 47,49–52. Furthermore, activation of hepatic FXR increased the expression of genes 
involved in lipoprotein metabolism and RCT including SR-B1 53–55. However, in the study 
of Zhang et al., administration of the FXR ligand GW4064 to wild type mice did not affect 
plasma VLDL and LDL cholesterol levels, but TC and HDL-C levels were decreased in 
plasma 56. In contrast to results in mice, administration of the synthetic FXR ligand OCA 
to patients with NASH and healthy volunteers has been shown to increase plasma TC, 
LDL-C levels and decreased HDL-C 57,58. This increase in TC and LDL could be explained 
by an inhibited hepatic conversion of cholesterol into BA by FXR activation 57,58. The 
differences in response to OCA between mice and humans could be due to species-specific 
differences between humans and rodents; rodents mainly have HDL-C and to a lower 
extent LDL-C. 

 
Not only LXR and FXR but also PPARs were found to be an important therapeutic 

target for the treatment of hypercholesterolemia 59. PPARs can be activated by various 
species of lipids as well as chemicals specified as peroxisome proliferators. PPARs can be 
classified into three subtypes: PPARα (NR1C1), PPARβ/δ (NR1C2) and PPARγ (NR1C3) 
and these subtypes differ in tissue expression and metabolic function 60–62. The group of 
fibrates are ligands for PPARα and are used in the clinic as lipid-lowering drugs 63. 
Administration of fibrates resulted in a lower plasma LDL-C and increase in HDL in 
patients with dyslipidemia 64,65. Thiazolidinediones (TZD) are ligands for PPARg and used 
as insulin-sensitizing drugs, but were also found to increase plasma HDL and decrease TG 
levels in patients with T2DM 66,67.  

 
The process of cholesterol efflux and absorption is regulated by several NRs. The 

heterodimer ABC sub-family G5/G8 (ABCG5/G8) is expressed on the canalicular 
membrane of hepatocytes and the apical membrane of enterocytes and regulated by LXR 
and FXR, thereby coordinating apical cholesterol efflux from these cells 54,68–71. The 
Niemann-Pick C1 like 1 (NPC1L1) protein is expressed in the small intestine and is critically 
involved in intestinal cholesterol absorption 72. Around 80% of the intestinal cholesterol 
content is reabsorbed by the NPC1L1 transporter 73. The Npc1l1 gene was found to be 
directly downregulated by LXR in mice as well as in the human enterocyte cell line Caco-
2/TC7, thereby decreasing cholesterol absorption and increasing the fecal disposal of 
neutral sterols 74. The human Npc1l1 gene also contains a PPAR-response element (PPRE) 
indicating that PPARs can directly regulate human Npc1l1 expression 75. Activation of 
PPARα as well as PPARb/d reduced expression of Npc1l1 76.  

 
2.2.2. The transintestinal cholesterol excretion (TICE) pathway 

 
The TICE pathway can be stimulated through activation of LXR, FXR and PPARd, 

although the underlying mechanisms are not fully understood 54,69,77–80. Increased intestinal 
expression of ABCG5/G8 has been suggested to be involved in the increase of TICE upon 
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treatment with the LXR ligand T09 in mice 69,77. However, mice deficient of ABCG5/G8 
still showed around 60% of the fecal neutral sterol (FNS) excretion compared to their wild 
type littermates, implicating that ABCG5/G8 is not fully responsible for the TICE pathway 
69,81,82. A still unresolved question refers to the mechanism of cholesterol transport for the 
TICE pathway from the liver to the proximal intestine. Le May et al. suggested that HDL 
and/or LDL could function as a cholesterol-carrier, demonstrated by in vivo and ex vivo data 
in mice 83. Le May et al. found that TICE was increased by lovastatin in wild type mice, but 
this effect was absent in LDL-receptor deficient (LDLR-/-) mice. Mice deficient for 
proprotein convertase subtilisin/kexin type 9 (PCSK9), a protein causing breakdown of the 
LDL-receptor, showed an increased TICE pathway 83. Surprisingly, LDLR-/- mice did not 
have a decreased TICE, despite the lower hepatic LDL content 83. Taken together, the 
contribution of LDL and HDL can only partially explain TICE is and more studies are 
needed in order to elucidate how cholesterol delivery to the TICE pathway is performed.  

Van de Peppel et al. showed in mouse studies that under physiological conditions, 
cholesterol excreted via TICE is largely reabsorbed by NPC1L1 84 (Figure 2). Decreasing 
the intestinal cholesterol reabsorption can be performed by inhibition of NPC1L1 by 
ezetimibe 78,79,84,85, by decreasing the biliary secretion rate of BAs or by increasing the 
hydrophilicity of the BAs in the intestinal lumen 54. These strategies appeared effective to 
increase the net excretion of cholesterol. 

 
Figure 2. Cholesterol fluxes and the involved transporters ABCG5/G8 and NPC1L1 in the intestine. 
ABCG5/G8 is involved in apical cholesterol efflux into the intestinal lumen, and NPC1L1 is responsible for 
cholesterol (re)absorption in the small intestine. However, an ABCG5/G8-independent influx of cholesterol into the 
intestinal lumen has also been demonstrated 69,81,82. Net intestinal cholesterol balance can be calculated by subtraction 
of mean dietary cholesterol intake and biliary cholesterol excretion from the FNS excretion. Adapted from 86.   

 
2.2.3. Bile acid metabolism  
 

BAs are natural ligands of the FXR and the Takeda G protein-coupled receptor 5 (TGR5 
or G-Protein Coupled Bile Acid Receptor (Gpbar1)) in the intestine, and function as 
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important signaling molecules through their capacity to activate these receptors 31,87. FXR 
is ubiquitously expressed but is the highest in the intestine and liver 88–90. Four splice-
variants of FXR originating from one single gene are known in rodents and humans: 
FXRα1, FXRα2, FXRα3 and FXRα4 89,91,92. FXR can not only be activated by BAs but also 
by some hydrophobic compounds such as FAs, steroids and hormones 90. Binding of BAs 
to intestinally expressed FXR causes transcriptional upregulation of amongst others the 
gene encoding fibroblast growth factor 15 (FGF15) in the terminal ileum 31,93. Subsequently, 
FGF15 travels to the liver, where it binds to the membrane-bound FGF receptor 4 
(FGFR4). The activated FGFR4 cooperates with the co-protein b-Klotho in order to 
downregulate genes involved in BA synthesis, including the rate-controlling enzyme 
cytochrome P450 7A1 (CYP7A1) 93–96. The human liver produces the primary BAs 
chenodeoxycholic acid (CDCA) and cholic acid (CA), whilst in rodents primary BAs exist 
of CA and muricholic acids (MCAs) 97. These BAs can be synthesized through two 
pathways: a classical and alternate (acidic) pathway. CYP7A1 is the rate-limiting enzyme in 
the classical BA synthesis pathway, accounting for around 75% of the hepatic BA 
production 98. The alternate BA synthesis pathway is regulated by the sterol-27-hydroxylase 
(CYP27A1), followed by sterol 7α-hydroxylase (CYP7B1) and CDCA is mainly produced 
through the alternative pathway 97,98. The feedback regulation of the homeostasis of its own 
ligands by activated FXR is an example of the control of fed-state metabolism by NRs. 
Activation of LXR in rodents has been shown to induce the expression of Cyp7a1 99. 
However, this is not conserved in humans 99,100. The Cyp7a1 and Cyp27a1 were also found 
to be downregulated by the PPARα ligand fibrate, thereby lowering BA synthesis 101. 

 
2.2.4. Lipid metabolism 
 

Opposite roles for LXR and FXR have been described in lipid metabolism. LXR can 
directly bind and activate the Sterol Regulatory Element Binding Transcription Factor 1 
(SREBF1 or SREBP-1C), one of the master regulators of fatty acid and triglyceride 
biosynthesis 102. Therefore, administration of LXR ligands such as T0901317 (T09) often 
results in hypertriglyceridemia in rodents as well as in humans. In contrast, activation of 
FXR was found to increase hydrolysis of triglycerides by downregulation of SREBP-1C, 
resulting in lowered triglyceride levels 32,103,104. In the liver, the PPARα-activating fibrates 
decrease the expression of apolipoprotein C-III (ApoCIII) and increase the expression of 
lipoprotein lipase, resulting in a decrease in serum triglyceride concentration 64,105. Fibrates 
are therefore often used to treat hypertriglyceridemia and also are effective in decreasing 
the risk of cardiovascular disease (CVD) 62,106.  

 
2.2.5. Detoxification 
 

The liver is an important site for detoxification of xeno- and endobiotics and this process 
is under regulation of several NRs including LXR, PXR and CAR 107–109. Recently, a 
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function for LXR and PPARα in the detoxification and secretion of bilirubin has been 
reported in mice 107,110,111. FXR-induced activation of the enzyme uridine 
diphosphoglucuronosyl transferase (UGT1A1) was first described by Lee et al. in wild type 
mice where UGT1A1 contains an FXRE upstream of the transcriptional start site 112. The 
UGT1 family is responsible for detoxification of endogenous and xenobiotics through 
glucuronidation. An intronic FXRE was also found in human and mouse UGT1A1 
promotor 113.   

 

3. Nuclear receptors and bilirubin disorders 
  

3.1. Bilirubin metabolism 
 
3.1.1. Synthesis and transport 
 

The liver is of great importance for the detoxification of endogenous and xenobiotic 
toxic compounds including unconjugated bilirubin (UCB) 114. The liver has a high 
expression of metabolizing enzymes and proteins which are under transcriptional regulation 
of several NRs 115. UCB is a breakdown product of heme, mainly derived from hemoglobin 
in erythrocytes 116, but UCB can also be derived in a smaller extent from mitochondrial 
heme components and myoglobin located in muscle tissue 117,118. Erythrocyte degradation 
is primarily performed by the spleen, although degradation can also take place in the liver. 
Heme is converted into the non-toxic molecule biliverdin by the enzyme heme oxygenase 
(HO) 119. In humans as well as rats and mice, biliverdin is then further metabolized into the 
toxic and hydrophobic compound UCB by the enzyme biliverdin reductase 120. Because the 
hydrophobic character complicates transport of free UCB throughout the blood, binding 
of UCB to the carrier albumin is required. This UCB-albumin complex is transported to 
the liver where UCB is released from albumin, followed by uptake into the hepatocytes. 
The UCB-albumin ratio can be disturbed under several conditions for example when UCB 
levels are extremely high, in case of hypoalbuminemia or with a lower binding capacity of 
albumin 121. This increases the concentrations of free UCB in the plasma and free UCB can 
diffuse over the blood-brain barrier, causing UCB deposition in the brain 122.  
 
3.1.2. Hepatic metabolism 
 

Hepatic uptake of UCB can occur actively by the organic anion transporting 
polypeptides (OATP)1B1/1B3 transporters in humans and OATP1B2 in rats 123 (Figure 3). 
Deficiencies or mutations in human OATP1B1/B3 results in the Rotor syndrome, a disease 
characterized by mildly increased levels of conjugated bilirubin (CB) and UCB in the serum 
124,125. The presence of CB in bile and plasma in patients with Rotor syndrome illustrates 
that hepatic UCB uptake can also take place passively 126. In the liver, UCB is conjugated 
by the enzyme uridine diphosphoglucuronosyl transferase (UGT1A1) into bilirubin 
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monoglucuronide (BMG) or bilirubin diglucuronide (BDG). The conjugation of UCB with 
one or two glucuronyl groups gives it a more hydrophilic character and facilitates secretion 
into the bile. Mutations in the Ugt1a1 gene can result in a complete or partial absence of 
the UGT1A1 protein, respectively called Crigler-Najjar type 1 (CN-1) and 2 (CN-2) 127. A 
residual activity of UGT1A1 of 20-30% caused by additional TA repeats in the promotor 
region of the Ugt1a1 gene also impairs UCB glucuronidation, resulting in mild unconjugated 
hyperbilirubinemia. This disease is called Gilbert Syndrome (GS) 128. These disorders will 
be explained in more detail in section 3.2.  

The translocation of CB across the canalicular hepatocyte membrane into the bile is 
largely performed by ATP-binding cassette transporter 2 (ABCC2, MRP2) 129,130. A 
hereditary recessive mutation in the ABCC2 gene encoding the transporter MRP2 causes 
Dubin-Johnson syndrome and patients display both CB and UCB accumulation 131,132. 
During bile duct obstruction or other conditions where CB cannot be transported into the 
bile, the basolateral transporter ABCC3 transports CB back into the blood. Expression of 
ABCC3 is low under physiological conditions but was found to be upregulated in MRP2 
deficient rats, patients with Dubin-Johnson syndrome and individuals with a cholestatic 
liver 133–135.  

When UGT1A1 expression is absent, an alternative metabolic pathway can be 
upregulated in order to decrease the accumulating levels of UCB in the body. The 
cytochrome P450 family 1A1 (CYP1A1) and 1A2 (CYP1A2) can oxidize UCB and its 
oxidation products are secreted into the bile, although these compounds are not fully 
characterized yet and further research is necessary to determine their contribution under 
these conditions 136. 

 
Figure 3. Schematic overview of hepatic metabolism of bilirubin. Unconjugated bilirubin (UCB) is transported 
to the liver as an albumin-bilirubin complex. The human transporters OATP1B1 and OATP1B3 (OATP1B2 in rats) 
transport (free = not-albumin-bound) UCB into the hepatocyte, where the enzyme UGT1A can convert UCB into 
mono- and diconjugated bilirubin (CB). Subsequently, CB is transported via ABCC2 into the bile canaliculus or 
alternatively, particularly upon accumulation by a defective biliary route of secretion, by ABCC3 back to the 
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bloodstream. An alternative pathway of bilirubin metabolism involves oxidation by Cyp1a1 and Cyp1a2, a pathway 
that has a limited activity upon absence of UGT1A1. Oxidation products of bilirubin are also secreted into the bile. 
Adapted from 312. 
 
3.1.3. Intestinal metabolism 
 

CB is secreted via the bile into the intestinal lumen, where most of the CB is 
deconjugated into UCB by mucosal b-glucuronidase 137–139. From the intestinal lumen, UCB 
can be taken up again by enterocytes and transported back to the liver via the bloodstream, 
a process called the enterohepatic circulation (EHC) 140,141. Non-absorbed intestinal UCB 
can be metabolized into non-toxic urobilinoids by intestinal microbiota. These urobilinoids 
can also be reabsorbed by the intestine in order to be secreted by the kidneys, or are 
excreted into the feces 142,143.  

UGT1A1 is mostly present in hepatocytes, but was also found to be expressed by the 
intestine. In preterm neonates as well as humanized UGT1A (hUGT1*1) mice, an animal 
model used for neonatal unconjugated hyperbilirubinemia, hepatic Ugt1a1 expression is 
delayed in the first postnatal days 144. In hUGT1*1 mice, the expression of Ugt1a1 increases 
in the small intestine between PD14 and 21 and in the same time the serum total bilirubin 
(TB) decreases to adult levels 144,145. Induction of intestinal Ugt1a1 expression in hUGT1*1 
mice by agents such as obeticholic acid (OCA) or cadmium increases the clearance of serum 
bilirubin and counteracted systemic bilirubin accumulation in the absence of hepatic Ugt1a1 
expression 146–148. An in vivo study performed with hyperbilirubinemic Gunn rats, a rat 
model representative for CN-1, showed that transplantation of the small intestine from 
Wistar rats to Gunn rats decreased serum bilirubin levels in the latter, demonstrating that 
the intestinal expression of Ugt1a1 can aid in the clearance of serum unconjugated bilirubin 
149. The feces contains several breakdown products of (unconjugated) bilirubin, such as 
urobilinoids and include metabolites such as mesobilirubin, urobilinogen and 
stercobilirubin 150. This group of urobilinoids forms the majority of molecules in the feces 
originating from bilirubin; the parent molecule UCB is only present in small amounts 142. 
During the neonatal period, Ugt1a1 expression is low and the intestinal microbiota have not 
been fully developed yet 143,151. This increases the intestinal reabsorption of UCB, 
contributes to higher bilirubin levels in plasma (neonatal jaundice), together with the high 
metabolism of fetal hemoglobin in the neonatal period 142. Accordingly, neonatal feces 
contains more UCB compared to adult feces where urobilinoids are the predominant 
bilirubin form. 
 
3.1.4. Transintestinal bilirubin excretion  
 

Under physiological conditions, around 98% of the bilirubin secreted into the bile is CB 
and less than 2% is UCB 152. Upon accumulation of UCB in the body, UCB can also be 
excreted in small amounts into the bile despite its hydrophobic character, as well as across 
the intestinal epithelium into the intestinal lumen 153. The transintestinal secretion route 
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comprises the direct transport of UCB from the plasma over the cell wall of enterocytes 
into the intestinal lumen, thereby bypassing the hepatobiliary route. In Gunn rats, an animal 
model for CN-1, around 2 – 15% of intestinal UCB is derived from biliary secretion 
whereas 85 – 98% is coming from transintestinal bilirubin secretion 154. Transintestinal 
bilirubin excretion was thus found to be the major secretion route under unconjugated 
hyperbilirubinemic conditions, suggesting that stimulation of transintestinal bilirubin 
excretion (and/or with prevention of its reabsorption) might be a good strategy to prevent 
or treat unconjugated hyperbilirubinemia 154–156.  

 

3.2. Unconjugated hyperbilirubinemia  
 

Unconjugated hyperbilirubinemia is a common condition in infants, especially in 
preterm infants, and mainly occurs throughout the first 2 weeks of life 157. Levels of 
bilirubin in plasma, bile and tissues are a result of a balance between bilirubin production 
and breakdown or excretion. The production of UCB is higher in neonates compared to 
adults due to a high breakdown rate of fetal erythrocytes. In addition, the glucuronidation 
pathway of UCB in the liver which facilitates removal from the body is not fully matured 
in neonates because the Ugt1a1 gene is under developmental regulation 158–160. Fetuses 
between gestational weeks 17 and 30 have a low expression of hepatic Ugt1a1 (~ 0.1%), 
and between gestational week 30 and 40 the hepatic Ugt1a1 expression is around 1% of 
adult expression levels 158. After postnatal day (PD) 14, hepatic Ugt1a1 expression reaches 
levels as seen in adults 159. Therefore, the combination of a high production rate of UCB 
and a low hepatic Ugt1a1 expression results in neonatal unconjugated hyperbilirubinemia. 
In hUGT1A1 mice it was found that intestinal Ugt1a1 expression is already present before 
PD14, whereas hepatic expression is not detectable yet 144,145. Toxic accumulation of UCB 
can enter the brain, especially in neonates due to their high permeable blood-brain barrier, 
causing severe symptoms including central nervous system toxicity and brain damage. 
When left untreated, this can eventually lead to death 161.  

 
Unconjugated hyperbilirubinemia can also be caused by mutations in the Ugt1a1 gene 

resulting in a complete or partial deficiency in the UGT1A1 protein, respectively called CN-
1 and CN-2. CN-1 is a rare autosomal recessive inborn disorder with an estimated 
prevalence around 1:1000 000 127,162. No detectable levels of UGT1A1 activity are present 
in patients with CN-1 and plasma UCB levels in untreated CN-1 patients range from 300 
to 800 µM 163,164. The incidence of CN-2 is also rare (1:100 000) and CN-2 patients are 
characterized by moderate unconjugated hyperbilirubinemia with plasma levels ranging 
from 100 to 350 µM 165–167. 

 
Additional TA repeats, often 7 or more, in the TATA box of the gene promotor of 

Ugt1a1 (UGT1A1*28 allele) cause a polymorphism of (TA)7/(TA)7 instead of (TA)6/(TA)6. 
This mutation is called Gilbert Syndrome (GS) and results in a decreased expression and 
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activity of UGT1A1 128. A number of other polymorphisms in the promotor region of 
UGT1a1 exist in the Asian population and UCB concentrations in the body depend on the 
specific polymorphism 128. Individuals diagnosed with GS show mildly unconjugated 
hyperbilirubinemia (plasma UCB concentrations > 17.1 µM), but also can remain 
undiagnosed 168. The prevalence of GS is around 10% in the population and a mild jaundice 
often only is visible under fasting conditions or during sickness 169,170. Interestingly, 
individuals with GS were found to have a leaner phenotype and lower total plasma 
cholesterol as well as LDL-C levels compared to matched control individuals 171–173. 
Recently, a link between mildly elevated (unconjugated) bilirubin levels and protection 
against cardiovascular disease (CVD) has been found 171–176. Suggested underlying 
mechanisms for the protective effect of bilirubin are anti-inflammatory effects, lowering 
endoplasmic reticulum (ER) stress as well as lowering of total and LDL-C 171,177. Therefore, 
strategies that can mildly increase endogenous bilirubin levels as well as exogenous 
administration of bilirubin can be interesting to explore as new therapeutic therapies for 
CVD and metabolic syndrome. Plasma UCB levels around 30-50 µM have been associated 
with beneficial effects, although future studies should investigate what the safe threshold is 
to increase endogenous bilirubin concentrations.   

 

3.3. Animal models for unconjugated hyperbilirubinemia 
 

3.3.1. Gunn rats 
 

In the last few decades, several animal models have been used to study unconjugated 
hyperbilirubinemia in vivo. The best known animal model is the Gunn rat, a rat strain with 
a spontaneous mutation in the Ugt1a1 gene, resulting in a complete absence of UGT1A1 
activity 178. These animals display non-hemolytic jaundice and are therefore a model for 
patients with CN-1 and are used for studies investigating treatments for unconjugated 
hyperbilirubinemia 178,179. Several Gunn rat strains exist with different genetical 
backgrounds and increased plasma UCB levels. The R/APfd-j/j strain characterized by the 
group of Leyten et al. displayed an average serum bilirubin concentration ~150 µmol/L, 
and the RA/jj rat strain and the RHA/jj strain respectively presented plasma levels of ~80 
µmol/L and ~121 µmol/L 154,180,181. A more recent Gunn rat strain is the Gunn-
Ugt1a1j/BluHsdRrrc strain showing varying levels of UCB, from a mean serum UCB 
concentration of ~177 µmol/L as well as levels ~46 µmol/L in rats in this same strain 
182,183.  

Gunn rat pups have been used to study neonatal unconjugated hyperbilirubinemia 
because, in accordance to human neonates, Gunn rat pups show a neonatal peak in plasma 
UCB. After this, plasma UCB levels decrease within days to levels observed throughout 
adult life, to gradually increase again during ageing 181,184,185. Untreated Gunn rats have 
severe unconjugated hyperbilirubinemia throughout their life and show mild neurotoxic 
signs. These signs include stunting, ataxia, delay in motor development and cerebellar 
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hypoplasia 185,186. In chapter 2, we assessed the bilirubin and plasma lipid phenotype in 
wild type, heterozygous and homozygous Gunn-Ugt1a1j/BluHsdRrrc rat littermates in neonatal 
and adult conditions and determined to what extent these rats can serve as a reliable model 
to study human normo- and hyperbilirubinemia.   
 
3.3.2. Ugt1a1 knock-out mice  
 

Ugt1a1-/- mice have a comparable mutation in the Ugt1a1 gene as Gunn rats 187. 
However, these mice display higher plasma UCB levels and when left untreated, Ugt1a1-/- 
mice die between PD5-11 and are therefore in constant need of UCB-lowering therapy to 
prevent lethality 187. The small size of Ugt1a1-/- mice complicates the assessment of tissues 
and the constant need of therapy limits the usability of the Ugt1a1-/- mouse to study new 
treatments for adult hyperbilirubinemia. Nevertheless, the Ugt1a1-/- mouse model has been 
shown to be very useful to study developmental effects of bilirubin and bilirubin-induced 
brain toxicity 188,189.  
 
3.3.3. Humanized UGT1A mice 
 

Recently, humanized UGT1A (hUGT1*1) mice were developed by deleting the complete 
murine UGT1A family, followed by replacement with the human UGT1A locus consisting 
of 9 UGT1A family members 144,190. In contrast to the Ugt1a1-/- mouse model, hUGT1*1 
mice show a milder hyperbilirubinemia and these mice do not die prematurely. Because 
UGT1A1 in these mice is under control of the endogenous human promoter, the UGT1A1 
expression profile of hUGT1*1 mice resembles the human expression profile. Neonatal 
hUGT1*1 mice have a peak in plasma UCB around PD14 and after PD21, the hUGT1*1 
mice become normobilirubinemic when reaching adulthood 144. This model contains an 
important beneficial feature because it allows the investigation of human UGT1A1 
stimulation during neonatal unconjugated hyperbilirubinemia. Human Ugt1a1 can be 
upregulated by the constitutive androstane receptor (CAR), pregnane X-receptor (PXR), 
aryl hydrocarbon receptor (AhR), glucocorticoid receptor (GR) and PPARα 109,191,192. 
Administration of ligands for these NRs in hUGT1*1 mice can be used to investigate how 
UCB levels are affected by activation of these NRs and could potentially lead to new 
therapeutic strategies to ameliorate (neonatal) unconjugated hyperbilirubinemia 107.   
 
3.4. Therapeutic interventions for unconjugated hyperbilirubinemia  

 
3.4.1. Phototherapy 
 

Over the years, different therapeutic strategies for unconjugated hyperbilirubinemia have 
been developed and these strategies can be targeted to different causes of this disorder. 
Phototherapy (PT) is the golden standard for unconjugated hyperbilirubinemia in patients 
with CN-1 and preterm neonates and has been used for many years 193. During PT, blue 
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light-emitting diodes (LED) with a range of 450 – 470 nm is used to permeate the skin to 
reach UCB in the superficial capillaries and interstitial spaces 194–196. When exposed to light, 
bilirubin can undergo three different processes 197. The first is photo-oxidation of bilirubin 
into polar molecules that are more water-soluble and therefore are excreted from the body 
via the urine 198. The second process is the conversion of the toxic bilirubin isomer (4Z,15Z) 
into more water-soluble and less toxic isomers (4Z,15E, 4E,15Z and 4E,15E) through 
configurational isomerization 195,199. The third process is the structural isomerization of 
bilirubin into the compound lumirubin which is irreversible, in contrast to the reversible 
process of configurational isomerization 200,201. The reversion of photosiomers into 4Z, 15Z 
isomers makes them prone for reabsorption from the intestinal lumen, undergoing 
enterohepatic circulation 140. On the other hand, the generation of irreversible lumirubin, 
what also can be secreted into the bile, comprises quantitatively the main route of bilirubin 
disposal from the body after exposure to light or phototherapy 202.   

Especially for patients with CN-1, the long-lasting exposure to PT between 10 – 14 
hours a day is a serious burden and has profound effects on their social life 203,204. 
Furthermore, PT becomes less effective over the years due to increased skin thickness or 
body surface to weight ratio, as well as by decreased hepatic clearance of lumirubin 203,205. 
Therefore, alternative or adjuvant strategies for PT have been studied in the recent years. 
Eventually, liver transplantation is the inevitable treatment for patients with CN-1, but this 
is obviously still a treatment with associated morbidity and even mortality. Recently, the 
possibility of adeno-associated virus (AAV) vector-mediated gene therapy for CN-1 has 
been investigated 206,207. Liver-specific gene transfer of the human Ugt1a1 gene in Gunn 
rats as well as in Ugt1 mutant mice has been effective in lowering plasma UCB 208–211. This 
therapy appears very promising for CN-1 patients, however around 30% of CN-1 patients 
show anti-AAV immunity which decreases the efficacy of gene therapy and limits the use 
in the clinic 212.   
 
3.4.2. Stimulation of UGT1A1 activity 
 

The Ugt1a1 gene is under transcriptional control of several NRs and other transcription 
factors 213,214. CN-2 patients have a remaining UGT1A1 activity between 4-10% and 
treatment with phenobarbital has been used for many years in CN-2 patients to ameliorate 
unconjugated hyperbilirubinemia through upregulation of the expression and activity of 
UGT1A1 127,213. The underlying mechanism of phenobarbital was later found to be through 
activation of the constitutive active receptor (CAR) by binding to the phenobarbital-
responsive enhancer module of UGT1A1 (gtPBREM) 108,215. The beneficial effect of 
phenobarbital as a supplemental treatment besides PT on (neonatal) unconjugated 
hyperbilirubinemia has been demonstrated in several clinical trials 216–221. Although 
phenobarbital alone or combined with PT is very effective in lowering serum bilirubin, it 
has adverse sedative and behavioral effects 222. UGT1A1 activity can also be increased by 
dexamethasone, a ligand for the GR, as well as through activation of PXR 223.  
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The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor in 
different tissues including the liver, intestine, lungs and lymphocytes 224. A role for AhR in 
bilirubin metabolism was proposed after the discovery that both biliverdin and bilirubin are 
ligands for AhR and that AhR can bind to the promotor region of Ugt1a1 225,226. One of the 
main target genes of AhR is the cytochrome P450 family 1A (Cyp1a) which was found to be 
involved in the hepatic oxidation of UCB as an alternative catabolic pathway under 
hyperbilirubinemic conditions 136. Activation of Ugt1a1 by CAR, PXR, GR and AhR is 
exerted through binding of these transcription factors to the gtPBREM 213.  
 
3.4.3. Inhibition of enterohepatic UCB reuptake 
 

The intestine is an important site in bilirubin metabolism where reuptake, deconjugation 
as well as conjugation (intestinal epithelium) and conversion of UCB into urobilinoids 
(intestinal lumen) takes place. Intestinal excretion of UCB and urobilinoids into the feces 
is a very efficient pathway to lower bilirubin levels in the body, but this is counteracted by 
intestinal reabsorption of UCB. During fasting, the motility of the intestine is decreased 
and this can result in a reduced fecal output of compounds including bile salts and bilirubin 
metabolites 227. Furthermore, a decreased motility is accompanied by a higher intestinal 
transit time for compounds including UCB, promoting the possibility for reuptake of UCB 
in the intestinal lumen for enterohepatic circulation (EHC) back to the liver 228. A higher 
EHC of UCB causes accumulation of UCB in the blood, and it has been shown that fasting 
was associated with increased plasma UCB levels and decreased fecal bilirubin excretion in 
Gunn rats, as well as in patients with hemolysis, obstructive jaundice and individuals with 
Gilbert Syndrome 228–231. Several strategies have been used to interrupt the EHC of bilirubin 
to reduce hyperbilirubinemia. Shortening of the intestinal transit time for UCB by 
administration of polyethylene glycol (PEG) decreased plasma UCB levels and increased 
fecal UCB output in Gunn rats 230. Administration of PEG in addition to PT even further 
decreased plasma UCB levels compared to control Gunn rats or rats treated with PEG 
alone. Interestingly, while short-term administration of PEG (36 hours) increased fecal 
UCB output, a steady-state in fecal UCB excretion was reached only after 2 weeks of PEG 
administration 230.  

 
A different strategy to decrease intestinal reabsorption of UCB is through intestinal 

entrapment of UCB by compounds including agar, cholestyramine, charcoal, calcium 
phosphate and zinc salts 153. Agar and cholestyramine are often used as binders of bile salts, 
but are also effective in lowering plasma UCB in Gunn rats, although conflicting results 
were found in neonatal studies 232. Charcoal functions as a binding matrix for UCB and 
reduces plasma UCB in the first postnatal days. However, charcoal is a non-selective binder 
and binds to essential nutrients in the intestine as well and often causes obstipation. These 
severe side effects of charcoal limits its clinical application in humans 153.  
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Calcium phosphate has a high affinity for bilirubin in the intestine and the decrease in 
plasma bilirubin levels in Gunn rats could be ascribed to an increase in fecal UCB, especially 
during the first three days of treatment 233,234. After this period, fecal bilirubin excretion 
reached a steady-state while plasma UCB remained lower compared to controls 233. The 
application of zinc salts inhibits the EHC of UCB in hamsters 235, Gunn rats 236 and 
individuals with Gilbert’s Syndrome 237. However, PT is associated with already increased 
serum zinc levels in neonates with severe unconjugated hyperbilirubinemia (total serum 
bilirubin > 18 mg/dL) 238. Therefore, administration of zinc salts in combination with PT 
could possibly lead to zinc toxicity, making it not suitable as a therapeutic strategy for severe 
unconjugated hyperbilirubinemia. The EHC of bilirubin was also found to be interrupted 
by increasing fecal fat excretion through administration of a high fat diet (HFD) or orlistat, 
an inhibitor of lipases 155,164,239,240. This will be discussed in more detail below (section 3.4.5).  
 
3.4.4. Bile acids  
 

The transintestinal excretion of bilirubin is considered as the main elimination pathway 
under unconjugated hyperbilirubinemic conditions, although the efficiency of this pathway 
is counteracted by intestinal UCB reabsorption 154–156. Decreasing the EHC of UCB can be 
achieved by intestinal ‘entrapment’ of UCB as discussed above, or through increasing 
intestinal fat content. Intestinal absorption of fats and lipids are regulated by the total BA 
pool, as well as the composition of the BA pool. Cholic acid (CA) is a very hydrophobic 
bile acid and can stimulate intestinal cholesterol absorption through forming mixed micelles 
241. Hydrophilic BAs such as muricholic BAs, have a lower solubilization capacity and, 
accordingly, increasing the amount of hydrophilic BA by FXR activation has been 
associated with a higher fecal neutral sterol (FNS) output 54.  

UCB is a hydrophobic compound and bile salts were found to bind to UCB in vitro and 
in the bile 242. It has been demonstrated that administration of the hydrophilic bile acid 
ursodeoxycholic acid (UDCA) alone or combined with phototherapy lowered plasma 
bilirubin levels in hyperbilirubinemic Gunn rats 156,234. Administration of UDCA lowered 
plasma bilirubin levels 156,243 and has been used as a therapy for cholestatic liver diseases as 
well as neonatal unconjugated hyperbilirubinemia 243,244.  
 
3.4.5. Dietary fat and intestinal fat content 
 

A transintestinal secretion pathway has been described for both cholesterol (TICE) and 
UCB 78,239,245. The TICE pathway can be stimulated by activation of LXR, FXR, PPARd 
and plant sterols, thereby lowering plasma cholesterol levels and increasing fecal neutral 
sterol (FNS) output 54,69,77–80. An increased fecal fat and neutral sterol secretion can also be 
achieved by administration of respectively the lipase inhibitor orlistat or a high dietary fat 
intake (HFD). Recently, we demonstrated that increasing fecal fat excretion could lower 
plasma UCB levels in Gunn rats 155,239,240 as well as in CN-1 patients 164. It has been 
hypothesized that the increase in fecal UCB and subsequent decrease in plasma UCB levels 
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upon higher intestinal fat concentrations is the result of UCB “capturing” by fatty acids, 
meaning that the reabsorption of UCB is decreased upon its association with non-absorbed 
fat in the intestinal lumen 155,171. 

The underlying mechanisms for the transintestinal bilirubin excretion and its possible 
interaction with the TICE pathway have not been fully elucidated yet. Based on the findings 
that LXR and FXR activation can stimulate TICE, we hypothesize that this might also hold 
true for the stimulation of transintestinal bilirubin excretion. In chapter 3 we investigated 
if stimulation of the FNS output by activation of LXR and FXR could also stimulate 
transintestinal bilirubin excretion, resulting in hypobilirubinemic effects in Gunn rats.  

 
3.5. Metabolic functions of bilirubin 
 

Recently, the involvement of bilirubin in several metabolic pathways including 
cholesterol metabolism, inflammation, fat oxidation and glucose and insulin homeostasis 
has been reported 177,246–249. Together with the finding that mild unconjugated 
hyperbilirubinemia, as seen in individuals with GS, decreases the risk of cardiovascular 
disease this led to the hypothesis that administration of (unconjugated) bilirubin can be 
used as a new therapeutic strategy for metabolic disorders. The study of Stec et al. showed 
that bilirubin can directly bind to PPARα and increases its transcriptional activity 111. This 
is ascribed to the structure of bilirubin, containing a pyrrole-ring like structure, resembling 
other ligands for PPARα such as WY-14643 and fenofibrate. In this study, wild type (WT) 
and PPARα knock-out (KO) mice on HFD were treated with bilirubin, and WT mice 
showed a reduced body fat percentage, a phenomenon which was blunted in PPARα KO 
mice. 

The protein AMP-activated ser/thr kinase (AMPK) functions as an important energy 
sensor in eukaryotic cells and plays a role in a plethora of metabolic pathways. Depletion 
of the energy source ATP activates AMPK, which subsequently suppresses the synthesis 
of cholesterol and fatty acids, as well as gluconeogenesis 250. Additionally, the PPAR-gamma 
coactivator 1 alpha (PGC-1α) is activated by AMPK and regulates browning of adipose 
tissue and thermogenesis 251. In the diet-induced obesity (DIO) mouse model, 
administration of bilirubin could reduce body weight, blood glucose levels as well as 
cholesterol levels. These beneficial effects of bilirubin were ascribed to an upregulated 
expression of PPARg 252. Upregulation of PPARg is accompanied by an increase in 
adiponectin, a hormone that is produced by the adipose tissue and that increases insulin 
sensitivity and FAO. In this study it was observed that adiponectin was increased acutely 
and remained increased up to 7 weeks after two weeks of bilirubin administration, together 
with beneficial effects on plasma lipid profile and insulin sensitivity. PPARg plays a 
significant role in adipocyte differentiation, adipogenesis and lipid metabolism as well as in 
insulin sensitivity, making PPARg an interesting target for treatment of insulin resistance, 
obesity and cardiovascular diseases 253,254. The study of Mölzer et al. showed that levels of 
several biomarkers of energy metabolism (PPARα, PPARg, PGC-1α and AMPK) were 
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higher in individuals with GS compared to healthy control subjects 251. However, a recent 
paper by Gordon et al. showed that bilirubin selectively binds to the LBD of PPARα and 
not to PPARb or PPARg 255. When bound to PPARα, bilirubin causes a switch from 
corepressors to co-activators resulting in higher mitochondrial activity in an adipose cell 
line as well as in white adipose tissue (WAT) of DIO mice 255 and remodeling of WAT. 
Taken together, these findings suggest that bilirubin can be a promising new therapeutic 
target for the treatment of metabolic diseases.  

 

4. The role of NRs in dyslipidemia and peroxisomal function 
 
4.1. NRs and dyslipidemia 
 

Interaction between organs such as the liver, intestine and adipose tissue is very 
important for the maintenance of energy homeostasis. This maintenance is for an important 
part coordinated by the NRs LXR, FXR, PPARs, PXR and CAR. As stated above, altered 
transcriptional regulation by NRs can be involved in the pathophysiology of metabolic 
disorders such as insulin resistance, dyslipidemia and high blood pressure 2,25. On the other 
hand, NRs can also be the target of therapeutic intervention. The cluster of these conditions 
are termed MetS which is characterized by abdominal obesity, increased triglyceride levels, 
lower (HDL) cholesterol, elevated blood pressure and fasting glucose 256. Dyslipidemia is 
defined by an increase in total cholesterol, increased serum triglycerides (TG) and 
apolipoprotein B, as well as increased small dense low-density lipoprotein cholesterol 
(sdLDL-C), TG and a decrease in HDL-C 256,257. Atherogenic dyslipidemia increases the 
risk to develop atherosclerotic cardiovascular disease (CVD), a disease with a high mortality 
rate worldwide 258,259.  
 
4.1.1. PPARs as therapeutic targets 

 
The role of NRs in lipid homeostasis has been a great point of interest and led to new 

insights for the use of NRs as therapeutic targets for metabolic disorders. The family of 
PPARs are known for their important role in lipid metabolism, but are also involved in 
many other metabolic pathways including carbohydrate metabolism, immune response, cell 
growth, differentiation and apoptosis 260. The group of thiazolidinediones (TZD), including 
pioglitazone and rosiglitazone, are pharmacological agonists for PPARg and have clinically 
been used as insulin sensitizers in patients with T2D 261,262. In addition, piaglitazone has 
been shown to ameliorate non-alcoholic hepatic steatosis (NASH) 263,264. Statins as well as 
fibrates have been used in the clinic to treat dyslipidemia 265,266. Fibrates are agonists for 
PPARα and showed to be effective in lowering hypertriglyceridemia as well as LDL-C, but 
increased plasma HDL-C levels 64,106. Activation of PPARα could increase plasma fibroblast 
growing factor 21 (FGF21), which functions as a stress-signal to other organs to prepare 
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them for an approaching energy-deprivation state 10,27. Upregulation of FGF21 increases 
fatty acid oxidation rates and decreases VLDL-receptor expression, thereby protecting 
against hepatic steatosis in mice 267. PPARs also exert their metabolic effects by 
upregulation of peroxisomal biogenesis and stimulation of peroxisomal functions.  
 
4.2. Metabolic functions of peroxisomes  

 
4.2.1. Peroxisomes as multifunctional cellular organelles 
 

Peroxisomes were discovered in 1954 as single-membrane organelles and described as 
‘microbodies’ and were later termed peroxisomes 268. Because peroxisomes do not contain 
their own DNA, peroxisomal (matrix) proteins have to imported into the peroxisomes. 
Peroxisomal proteins involved in peroxisome biogenesis and protein import machinery 
organelles are termed peroxins and are encoded by PEX genes. Peroxisomal biogenesis 
include targeted protein import into the peroxisomal matrix, as well as insertion of 
peroxisomal membrane proteins (PMP) 269.  

Although peroxisomes are present in virtually all cells of the body, the highest numbers 
of these organelles can be found in tissues with a high rate of fatty acid or lipid oxidation 
270,271. Peroxisomes are involved in various anabolic and catabolic metabolic pathways, but 
the specific metabolic function differs per organism, tissue and cell type 272. Examples of 
these functions are biosynthesis of ether phospholipids, BAs and docosahexaenoic acid, α- 
and b-oxidation of branched-chain fatty acids and very long chain fatty acids (VLCFA) 272. 
These functions will be explained in short below.  

 

4.2.2. b-oxidation 
 

Peroxisomes are not able to produce proteins themselves and therefore rely on import 
of proteins from the cytosol. Peroxisomes are in close contact with the endoplasmic 
reticulum (ER), mitochondria, lysosomes and cytosol in order to accurately perform their 
metabolic function. Overlapping functions between peroxisomes and mitochondria have 
been described in higher eukaryotes, such as β-oxidation of several fatty acids 273–275. 
However, substrates that exclusively undergo peroxisomal b-oxidation are saturated very 
long-chain fatty acids (VLCFA) (>C22 atoms), hexacosanoic acid, pristanic acid (2,6,10,14-
tetramethylpentadecanoic acid), bile acid intermediates di- and trihydroxycholestanoic acid 
(DHCA and THCA respectively) and long-chain dicarboxylic acids. After several cycles of 
b-oxidation in peroxisomes, the formed medium-chain fatty acids (MCFA) are transported 
to mitochondria for further oxidation and processing.  

Another molecule that undergoes peroxisomal b-oxidation is pristanic acid. Pristanic 
acid is a metabolite of phytanic acid formed after one round of peroxisomal α-oxidation. It 
was found that pristanic acid can go through three rounds of b-oxidation in the peroxisome 
and eventually is converted to 4,8-dimethylnonanoyl-CoA together with two molecules of 
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propionyl-CoA and one unit of acetyl-CoA. These metabolites are transported as a carnitine 
ester or in their free form to mitochondria where they are further metabolized 276.  

 
4.2.3. α-oxidation  

 
Not all molecules are compatible with b-oxidation and need a conformational change in 

order to be further metabolized in peroxisomes or mitochondria. The saturated branched-
chain fatty acid phytanic acid is a metabolite of phytol, a widely abundant compound in 
nature and derived from chlorophyll from green plants and planktonic algae 277. Phytanic 
acid contains a methyl group at the 3-position making it not compatible for b-oxidation. 
Therefore, oxidative decarboxylation at the α-carbon of phytanic acid takes place (α-
oxidation) to form pristanic acid. The first enzymatic step of α-oxidation is the activation 
of phytanic acid to phytanoyl-CoA, performed by the enzymes ACSL1 and ACSVL1 
localized outside of the peroxisome 277. Subsequently, phytanoyl-CoA is converted into 2-
hydroxyphytanoyl-CoA by the enzyme phytanoyl-CoA 2 hydroxylase (PHYH) and further 
metabolized in pristanal by the enzyme 2-hydroxyacyl-CoA lyase (HACL1). The last step 
of α-oxidation is conversion of pristanal into pristanic acid by a so far unknown enzyme 
277. However, pristanic acid needs activation to a CoA ester in order to be metabolized by 
b-oxidation (Figure 4) 277,278.  

 

 
 

Figure 4. Peroxisomal α -oxidation of phytanic acid in peroxisomes. Adapted from 277. 
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4.2.4. Synthesis and conjugation of bile acids 
 

One of the main elimination pathways of cholesterol from the body is the conversion 
into bile acids in the liver. Cholesterol contains 27 carbon atoms and is converted into the 
bile acid intermediates di- and trihydroxycholestanoic acid (DHCA and THCA respectively) 
in hepatocytes. Both DHCA and THCA contain 24 carbon atoms and are direct precursors 
of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA). In order to 
be b-oxidized by peroxisomes, DHCA and THCA are first activated to CoA esters at the 
ER membrane, followed by entering the peroxisome through uptake by the peroxisomal 
half ABC-transporter PMP70 279. The enzyme CYP27A1 produces only (25R)-
stereoisomers of DHCA and THCA, however the peroxisomal b-oxidation is only able to 
handle (25S)-stereoisomers. Racemization of the (25R)-isomers into (S)-isomers is done by 
the enzyme α-methylacyl-CoA (AMACR) thereby allowing b-oxidation forming choloyl-
CoA and chenodeoxycholoyl-CoA. After oxidation, the enzyme bile acyl-CoA:amino acid 
N-acyltransferase (BAAT) conjugates the formed bile acids with a taurine or glycine group 
280. The taurine- or glycine-conjugated bile acids are exported out of the peroxisome and 
outside of the hepatocytes, which is mediated by the bile salt export pump (BSEP).  
 

4.2.5. Other peroxisomal functions 
 

Reactive oxygen species (ROS) are a product of oxidative metabolism in mitochondria, 
ER and peroxisomes and include radical species such as superoxide anion as well as 
hydrogen peroxide (H2O2). Peroxisomes were found to produce several types of ROS but 
also ROS-metabolizing enzymes 281–285. The peroxisomal processes responsible for the 
production of H2O2 are b-oxidation, as well as enzymatic reactions of the flavin oxidases 
and breakdown of superoxide radicals. Because most of the ROS are toxic, scavenging of 
these ROS is an indispensable process and peroxisomes are important for the production 
of ROS-degrading compounds including superoxide dismutase 1 and catalase. Catalase is 
the best-known enzyme and often used as a marker for the presence of peroxisomes. The 
discovery that catalase and H2O2 were colocalized in peroxisomes indicated that these 
organelles play an important role in the metabolism of oxygen breakdown 285,286.  

Peroxisomes also produce ether phospholipids, a special class of phospholipids 
characterized by an alkyl or alkenyl bond. Plasmalogens are a subgroup of ether 
phospholipids and are solely produced by peroxisomes by the enzymes glyceronephosphate 
O-acyltransferase (GNPAT) and alkylglycerone phosphate synthase (AGPS) 287. 
Plasmalogens exert various functions, such as acting as an endogenous antioxidant, 
mediators of membrane structure or as storages of polyunsaturated fatty acid and lipid 
mediators 288. Other functions executed by peroxisomes are glyoxylate detoxification, as 
well as metabolism of oxygen and reactive nitrogen species 272.  
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4.3. Peroxisomal disorders 
 
4.3.1. Peroxisomal biogenesis disorders (PBD) 
 

The biogenesis of peroxisomes consists of different processes including membrane 
formation, import of peroxisomal membrane and matrix proteins, growth, division and 
proliferation 289–291. Mutations in peroxisome biogenesis (PEX) genes can cause severe 
inborn disorders including Zellweger Spectrum Disorders (ZSD) and rhizomelic 
chondrodysplasia type 1, disorders characterized by an absence of functional peroxisomes 
272,292,293. ZSD are further divided into Zellweger syndrome, neonatal adrenoleukodystrophy 
and infantile Refsum disease. Although there is a high heterogeneity in the symptoms of 
ZSD, a common feature is an impaired lipid metabolism illustrated by accumulation of 
VLCFA and the branched-chain fatty acids phytanic and pristanic acid in plasma and tissues 
of patients 294. Other metabolic abnormalities in patients in ZSD are accumulation of C27 
bile acid intermediates as well as higher urinary levels of oxalate and glycolate 295. 

 
4.3.2. Single peroxisomal enzyme deficiencies (PED) 
 

Single peroxisomal enzyme deficiencies are caused by a defect in a single peroxisomal 
protein. This group comprises proteins involved in membrane transport, as well as 
executing enzymatic reactions in the peroxisomal matrix 272. Therefore, the symptoms of a 
PED depend strongly on the function of the affected or absent peroxisomal protein, for 
example in peroxisomal b-oxidation, α-oxidation, glyoxylate metabolism, ether 
phospholipid biosynthesis, BA synthesis and H2O2 breakdown. One of the most frequently 
occurring peroxisomal disorders is X-linked adrenoleukodystrophy (X-ALD), caused by a 
mutation in the peroxisomal membrane half ABC transporter encoded by the Abcd1 gene. 
The ABCD1 transporter is responsible for the import of VLCFA in the peroxisomal matrix, 
and therefore when ABCD1 is mutated, no VLCFA can enter the peroxisome to undergo 
b-oxidation. As a consequence, X-ALD patients show an accumulation of VLCFA in 
plasma and tissues 295. Other PED affecting the peroxisomal b-oxidation are D-bifunctional 
protein deficiency, AMACR deficiency as well as Sterol carrier protein X (SCP-X) 
deficiency. Refsum disease is characterized by an accumulation of phytanic acid due to a 
deficiency of the peroxisomal enzyme PHYH, involved in α-oxidation. Patients with 
Refsum disease show cerebellar ataxia, polyneuropathy and progressive retinitis pigmentosa 
296,297. 

 
4.4. Mouse models for peroxisomal disorders 
 

The use of genetically manipulated mouse models has given more insight in the etiology 
of peroxisomal disorders and the clinical phenotype. Depending on the specific 
peroxisomal protein that has been manipulated, the phenotypes of these animals differ 
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dramatically. Mice lacking the Pex5 gene died within 24 hours and Pex2-/- mice survived 
only up to 6 weeks 271. In contrast, the Phyh-/- mouse model is representative for Refsum 
disease and showed a mild phenotype with moderate accumulation of phytanic acid in 
plasma under chow diet conditions 297. But when fed with 0.1% w/w phytol, Phyh-/- mice 
showed an aberrant gait as the peripheral nervous system was affected and levels of plasma 
phytanic acid increased. Mice lacking the Scp-x gene challenged with a phytol-enriched diet 
presented an unsteady gait, developed ataxia and peripheral neuropathy 298. The deletion of 
the gene encoding ACOX1, a protein involved in the b-oxidation, led to a dramatically 
severe hepatic phenotype with increased VLCFA levels. Furthermore, these animals were 
not fertile and showed growth retardation 299.  

Examples of mouse models with a deficiency in peroxisomal proteins that do not show 
a distinctive phenotype are mice lacking 2-hydroxyacyl-CoA lyase (HACL1), a key enzyme 
in α-oxidation of phytanic acid. These Hacl1-/- mice display no divergent phenotype under 
dietary chow conditions 300. Amacr-/- mice have increased biliary and serum C27-
intermediates and lower C24 bile acids, but no alterations in phytanic or pristanic acid 
compared to wild type animals under chow conditions 301. Despite the changes in bile acid 
metabolism, no clinical phenotype was found in Amacr-/- mice 301.  

A plethora of peroxisomal proteins have not been characterized yet and this remains a 
young and relatively unexplored scientific field. 
 
4.5. Peroxisomal membrane protein 4 (PXMP4) 
 

Peroxisomal membrane proteins (PMPs) are inserted into the peroxisomal membrane 
by import machineries formed by peroxins (PEX) 269. Three PEX proteins are involved in 
peroxisomal membrane biogenesis; PEX3, PEX16 and PEX19 of which PEX19 is 
considered as a receptor for newly synthesized PMPs 302. PEX3 is located in the 
peroxisomal membrane and functions as a docking station for PEX19 and its accompanied 
protein. The PEX3/PEX19 import machinery is the most-used import pathway for PMPs 
as well as PEX proteins. The peroxisomal membrane contains several metabolite 
transporters in order to process these compounds in the peroxisome 303,304. Mutations in 
peroxisomal transporters or PMPs can result in accumulation of C27-intermediate bile 
acids, pristanic and phytanic acid and VLCFA levels 278,305,306.  

PXMP4 is an integral membrane protein of 212 amino acids and has a molecular mass 
of 24 kDa and was first isolated from rat hepatocytes 307. It is a member of the Tim17 family 
and has been linked to the development of several types of cancer 308–310. However, its 
precise role in tumor development as well as its physiological function has remained 
unknown 307. PXMP4 has found to be a target of PPARα in both mouse and human 
hepatocytes 311. Activation of PPARs was shown to stimulate the TICE pathway, however 
the exact regulation of the TICE pathway is still not fully understood. Therefore, a 
microarray was performed on several experiments where the TICE pathway was stimulated 
by activation of several nuclear receptors, including FXR, PPARδ- and α. This revealed an 
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upregulation of PXMP4 (unpublished data). In chapter 4, we aimed to address the 
metabolic function of PXMP4, using mice with a genetic deficiency in PXMP4 in 
combination with pharmacological approaches to stimulate peroxisomal activity.  
 

5. Aim and outline of this dissertation 
 

In the recent years, the role of NRs in a plethora of metabolic pathways including lipid 
metabolism, glucose homeostasis and detoxification has been described, although many 
mechanistic pathways remain to be elucidated. In our lab, we are interested in disorders of 
(energy) metabolism including unconjugated hyperbilirubinemia and dyslipidemia. Recent 
literature has shown associations between bilirubin and cholesterol and lipid homeostasis. 
The aim of this thesis is to improve our understanding of disorders of bilirubin and lipid 
metabolism and find new targets of intervention. We therefore developed and/or 
characterized new relevant model systems and addressed the potential role of NRs as 
therapeutic target.  
 

The Gunn rat is a widely used animal model for unconjugated hyperbilirubinemia and 
several strains are available that exhibit differences in bilirubin levels and response to 
treatment. Recently, several studies reported a negative association between bilirubin and 
plasma TC levels: a decreased HDL-cholesterol, LDL-cholesterol or both, has been shown 
in individuals with GS and in hyperbilirubinemic Gunn rats 172,173. In chapter 2, we assessed 
the bilirubin and lipid phenotype in wild type, heterozygous and homozygous Gunn-
Ugt1a1j/BluHsdRrrc rat littermates in neonatal and adult conditions and determined to what 
extent these rats can serve as a reliable model to study human normo- and 
hyperbilirubinemia as well as the interaction between UCB and lipids.   
 

Bilirubin detoxification and excretion is under regulatory control of several NRs 
including PXR, CAR and AhR. The transintestinal bilirubin excretion was found to be the 
major secretion route under unconjugated hyperbilirubinemic conditions and a similar 
excretion route is found for cholesterol (TICE). We previously showed that transintestinal 
UCB excretion was stimulated by increasing fecal fat excretion in Gunn rats, whereas TICE 
is stimulated through activation of nuclear receptors LXR and FXR. We hypothesized that 
transintestinal excretion of bilirubin and cholesterol are interrelated. Accordingly, we 
determined in chapter 3 whether stimulation of transintestinal or FNS excretion by NRs 
activation, could also be a therapeutic target to ameliorate unconjugated hyperbilirubinemia. 
  

The peroxisome proliferator-activator receptor alpha (PPARα) is involved in fatty acid 
oxidation and metabolism of cholesterol and bile acids and, therefore, could be involved in 
the TICE pathway. Based on transcriptome data of several experiments where the TICE 
pathway was induced, Peroxisomal Membrane Protein 4 (PXMP4) was identified as a 
potential new target. In chapter 4, we characterized the function of PXMP4 using a full-
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body knockout mouse model generated by the CRISPR/Cas9-mediated gene editing. Up 
to date, information regarding the function of this peroxisomal protein is scarce.  
 

Many processes involved in lipid metabolism are not stable during the life course, but 
may alter upon ageing. During ageing, the metabolic flexibility and functionality of organs 
including the liver and intestine decrease. Lipid handling, glucose utilization as well as 
insulin sensitivity are altered, which may result in development of CVD and T2DM. 
Although ageing in itself was not the main topic of this thesis, it is relevant to understand 
to what extent the different processes change over the life course, and to what extent a 
dietary intervention could be beneficial. Dietary protein restriction has been demonstrated 
to improve metabolic health under various conditions. In chapter 5 we studied if 
decreasing the dietary protein content affects the metabolic flexibility in aged mice. 
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