Cryoballoon ablation (CbAS) is one of the ablation techniques available for the eradication of Barrett’s esophagus (BE)-related neoplasia and may have better patient tolerability than the current standard of care, radiofrequency ablation (RFA) [1–4]. Another advantage of CbAS is that it preserves the extracellular matrix and therefore might allow for deeper ablation with low stricture rates [5,6].

At first, focal CbAS was introduced, with each ablation resulting in a treated area of approximately 2 cm². Although previous studies have shown that focal CbAS is feasible, safe, and effective for the treatment of short BE segments and BE islands [7, 8], treatment of long BE segments with only the focal device would be cumbersome. Further maturation of CbAS required the addition of a large-area device.

Recently, a first-in-human study has shown that the large-area CbAS technique is feasible [9]. For this first clinical study,
the Cryoballoon 90° Ablation System (CbAS90) was used. CbAS90 ablates a quarter of the esophageal circumference over a length of 3 cm per application. Technical development has now enabled amplification of the 90° spray angle to 180°, resulting in semicircumferential ablation over a 3-cm length per application. The use of this CbAS180 would facilitate ablation of larger BE areas, while decreasing the risk of overlap between ablations and shortening procedure times. The current study is the first-in-human study to assess the feasibility, dose-related efficacy, and safety of CbAS180 in patients with BE-related neoplasia.

Methods

Patients

In this multicenter prospective single-arm study, patients from five Dutch tertiary BE referral centers were included. Patients (≥18 years) with short BE segments (maximum circumferential extent of 3 cm) and an indication for ablation therapy were eligible for study participation. Ablation therapy was deemed to be indicated for patients with flat dysplastic BE or patients with residual BE after endoscopic resection of a visible lesion containing dysplasia or low risk early esophageal adenocarcinoma (i.e. an invasion depth of <500 µm, good/moderate differentiation grade, no lymphovascular invasion, negative deep resection margins) [1].

Exclusion criteria were the presence of visible lesions (any mucosal irregularity within the BE segment that raised the endoscopist’s suspicion of neoplasia), prior extensive endoscopic resection (>2 cm length and/or >50 % of the esophageal circumference), prior endoscopic ablation, esophagitis (higher than Los Angeles grade A), a stricture preventing advancement of a therapeutic endoscope, or esophageal varices.

The C2 Cryoballoon 180° Ablation System (CbAS180)

The C2 CbAS (Pentax Medical, Redwood City, California, USA) comprises a controller, foot pedal, balloon catheter, and cartridge with nitrous oxide (▶ Fig. 1a). The system is compatible with therapeutic endoscopes with a working channel diameter of at least 3.7 mm. The balloon is highly compliant and automatically adjusts to the size of the esophagus. A spray diffuser is located in the center of the balloon, and can be rotated and positioned using the foot pedal. The type of balloon catheter used determines the size of the treatment area.

For this study, the CbAS180 catheter (standard balloon shape) was used for all procedures, which enables semicircumferential ablation over a 3-cm length in a single step. After the spray diffuser has been positioned and the ablation started using the foot pedal, a continuous flow of nitrous oxide is delivered over half of the esophageal circumference, while the spray diffuser is automatically withdrawn along the 3-cm long axis of the balloon (▶ Video 1). The pullback speed of the spray diffuser determines the treatment dose and can be adjusted in the controller settings. A lower pullback speed results in a longer duration of the ablation, and thus a higher dose.
Study design

The study consisted of two phases: a dose-finding phase to establish the effective dose for CbAS180, followed by an extension phase. The effective dose was defined as the lowest dose that resulted in BE regression of ≥60% after 8 (±2) weeks in the absence of dose-related serious adverse events (DR-SAEs). DR-SAEs were defined as severe retrosternal pain (score ≥6 on both day 1 and day 7 post-treatment) and strictures requiring dilation. The starting dose was 1.0 mm/s, the lowest CE-marked dose, and this was increased by lowering the pullback speed by 0.1 mm/s until the earlier of the effective dose being determined or a DR-SAE occurring.

Six patients were treated per dose. After establishing the effective dose in the dose-finding phase, 19 additional patients were included in the extension phase, being managed in exactly the same manner to arrive at a total of 25 patients treated with the effective dose.

Treatment

All participating endoscopists have extensive experience in endoscopic treatment of BE (W.N., E.S., R.P., J.B., B.W.). All study procedures were performed with the patient under conscious sedation using midazolam and fentanyl or monitored deep sedation with propofol.

First, the BE segment was carefully inspected and the Prague C&M score was reported. Photos and videos were recorded using both white-light endoscopy (WLE) and narrow-band imaging (NBI) or blue-light imaging (BLI), depending on the endoscopy system used at the site of inclusion. Subsequently, electrocautery markings were placed at the gastroesophageal junction (GEJ) to optimally visualize the position of the balloon after inflation. The balloon catheter was then advanced through the endoscope and circumferential ablation was performed over a length of 3 cm, with two adjacent CbAS180 applications, starting from the markings at the GEJ and moving proximally (►Fig. 1; ►Video 1). The duration of the endoscopy was defined as the time between introduction and removal of the endoscope and the ablation time was defined as the time between insertion and removal of the CbAS180 catheter.

All patients were prescribed proton pump inhibitors twice daily after treatment and additional medication to achieve optimal acid control could be added.

Follow-up

Patients were contacted on days 0 (after treatment, before discharge), 1, 7, and 30 after treatment to evaluate (DR-)SAEs, retrosternal pain, dysphagia, and analgesics use. Retrosternal pain was scored on a numeric rating scale (NRS) from 0–10, with 0 indicating no pain and 10 the worst pain ever experienced. Dysphagia was evaluated using a validated score from 0–4, with 0 indicating no dysphagia and 4 complete dysphagia even for liquids [10, 11].

During the follow-up endoscopy after an interval of 8 (±2) weeks, photos and videos of the original BE segment were again recorded with both WLE and NBI/BLI. BE regression (the percentage of treated BE that had converted to neosquamous epithelium after one CbAS180 treatment) was scored by the treating endoscopist, and four biopsies were taken from the neosquamous epithelium (two per CbAS180 application, with a lower number of biopsies if there was a low BE regression percentage).

Thereafter, BE regression was evaluated by the adjudication committee, consisting of three independent BE expert endoscopists who were not involved in the study. Initially, two committee members compared pre- and post-treatment images and videos in a systematic manner to determine the regression percentage. If their evaluations differed more than 20%, or if their estimations were above or below the threshold of 60%, the third adjudication committee member additionally reviewed the images and videos. The median of the two, or three, readings was used. The adjudication committee’s determination was used for data reporting and to decide whether or not the efficacy criteria had been satisfied. The adjudicators were blinded for the evaluation of the treating endoscopist and the dosage used.

Outcomes

The primary outcomes were feasibility, efficacy, and safety. To determine feasibility, we evaluated technical success (defined as CbAS180 treatment of all of the BE as intended), device malfunctions (technical failure of CbAS180 with the need for device replacement), and the endoscopy and ablation times. Efficacy was defined as the median BE regression percentage after one CbAS180 treatment (i.e. circumferential treatment over a 3-cm length) as evaluated by the adjudication committee. Safety was defined as the incidence of DR-SAEs. Secondary outcomes were other (S)AEs, tolerability (retrosternal pain/dysphagia/analgesics use), and the presence of subsquamous intestinal metaplasia (SIM) or buried BE in the biopsies taken from the neosquamous epithelium.

Histopathological analysis

Biopsies were fixed in formalin (10%), embedded in paraffin, and stained with hematoxylin and eosin. All biopsies taken from the neosquamous epithelium during follow-up endoscopies in the extension cohort were reviewed by experienced BE pathologists for the presence of SIM.

Sample size calculation and statistical analysis

The sample size calculation was based on the primary outcome efficacy, defined as median BE regression after one treatment session. Assuming a median regression of 85% after one treatment session (based on regression rates after single RFA treatment varying between 78%–90% [12–14]), 22 patients were required to estimate the expected proportion with 15% absolute precision (lower boundary of the 95% confidence interval [CI] cannot be below 70%) with 95% confidence, which resulted in 25 patients in total incorporating a 10% drop-out rate (http://statulator.com/SampleSize/ss1P.html). With regards to safety, at a sample size of 25 patients, the lower limit of the 95% CI for the percentage of patients with strictures requiring dilation would be above 10% when six strictures had occurred (calculated with R version 3.5.1 for Windows).
Statistical analysis was performed using R version 3.6.2 for Mac (R Foundation for Statistical Computing, Vienna, Austria). For baseline descriptive statistics, continuous variables were reported as medians with 25th and 75th percentiles (p25–p75). Outcome variables were reported as medians with adjusted 95% CIs, which were obtained with simple bootstrapping with 10 000 samples.

Ethics

The Medical Ethics Committees United reviewed and approved the study protocol and subsequent amendments. Written informed consent was obtained from all patients participating in the study and all patients included before amending the protocol were notified of the changes in study design (Appendix 1s, see online-only Supplementary material). The manuscript was written in accordance with the STROBE guidelines [15].

Results

In total, 25 patients were enrolled between August 2018 and June 2020. Their baseline characteristics are summarized in Table 1.

Feasibility

Two patients (2/25; 8%) could not be treated with CbAS180 owing to unstable positioning of the balloon at the GEJ: despite optimal procedural circumstances, the balloon repeatedly slipped into the hiatal hernia. Therefore 23 patients (23/25; 92%) were treated with CbAS180 (6 in the dose-finding phase, 17 in the extension phase; Fig. 2).

The technical success rate was 88% (22/25) according to intention-to-treat analysis and 96% (22/23) on per-protocol analysis. In one patient who was treated with CbAS180, 5 mm of the BE segment was left untreated because of a device malfunction at the end of the procedure. All results hereafter are reported per protocol (n = 23).

Device malfunctions occurred in three of the 23 CbAS180 treatments performed (13%): one during set-up and two during treatment. In two patients, the procedure was successfully completed after replacement of a CbAS180 component (controller and/or balloon catheter). In the third patient, the device malfunction occurred just before completing CbAS180 treatment and 5 mm of the BE segment was left untreated, as mentioned above.

The median ablation time was 6 minutes (95% CI 5–12 minutes) and the median total endoscopy time was 21 minutes (95% CI 17–28 minutes).

Efficacy

The median BE regression after CbAS180 with the starting dose of 1.0 mm/s in the first six patients in the dose-escalation phase was 94% (95% CI 60%–97%) based on the adjudication committee evaluations. The first dose of 1.0 mm/s was therefore effective and the study was continued into the extension phase.

Overall, the median BE regression after CbAS180 (n = 23) was 80% (95% CI 60%–90%) based on the adjudication committee evaluations. Overall, the median BE regression as evaluated by the treating physicians was 90% (95% CI 70%–90%).

Six patients (6/23; 26%) had BE regression below 50%. In two of these six patients, inflammation was seen at the first follow-up endoscopy and a second treatment was postponed. Both patients reported non-adherence to their proton-pump inhibitor intake.

Safety

One patient (1/23; 4%), included in the extension phase, developed a stricture that was resolved with two dilations. No severe bleeding, perforation, or other SAEs occurred. Other adverse events were reported for five patients. Three patients had moderate strictures (circumferential scarring, passable with an endoscope) not requiring dilation. One patient contacted the hospital because of dark colored stools (no melena), which resolved spontaneously. Finally, one patient experienced heavy
chest pain on the day of CbAS180 treatment; additional analgesics were prescribed after an electrocardiogram ruled out a cardiac cause.

Tolerability

Patients reported limited retrosternal pain after CbAS180. Pain scores were highest on the day of treatment before discharge (median score of 2, 95 %CI 1–3). The course of pain and analgesic use is reported in ▶ Fig. 3. The median dysphagia score was 0 at all follow-up points (95 %CI on day 1 was 0–1 and 0–0 for all other follow-up points).

Histopathology

In one patient (1/23; 4 %), one of the four biopsies taken from the neosquamous epithelium potentially showed SIM; presence of intestinal metaplasia along with squamous epithelium. This patient had remaining BE, with a median BE regression percentage of 70 %. In all other patients, no SIM was found in any of the biopsies of the neosquamous epithelium.

Discussion

This first-in-human study suggests that CbAS180 is feasible, effective, and safe for the treatment of patients with BE-related neoplasia. Ablative therapy for dysplasia in BE often starts with a large-area device, followed by subsequent focal treatment sessions to eradicate all remaining BE. Focal CbAS has been shown to be feasible, safe, and effective [7, 8]. Therefore, the addition of a large-area device is an important prerequisite for further maturation of the CbAS technique.

CbAS180 enables the most extensive CbAS treatment currently possible. The area that is treated with a single CbAS180 application has been doubled compared with the first large-area CbAS to be introduced, the CbAS90 [9, 16]. With the CbAS180 only two applications are required for circumferential treatment, reducing the risk of overlap of ablations and shortening the procedure time.

Single-session CbAS180 at a dose of 1.0 mm/s resulted in median BE regression of 80 % (95 %CI 60%–90%), which appears comparable to that reported after single-session RFA (78 %–90%) [12–14]. The BE regression percentage after one treatment session is a surrogate end point. In clinical daily practice, the final outcome of interest is complete eradication of IM [1]. However, to achieve complete eradication of IM, multiple treatment modalities will often be combined in consecutive treatment sessions, whereas for this dose-finding study we were solely interested in CbAS180.

The stricture rate in the current study was low (4 %). It is important to note that this stricture rate is based on single-session CbAS180 with the extent of treatment limited to 3 cm. Hence, this stricture rate cannot be compared directly with the stricture rates reported for RFA with repetitive treatment sessions and stacked ablations to eradicate all BE [17]. Also, the percentage of patients that had prior endoscopic resection was lower than previously reported [18]. Because this study was designed as a dose-escalation study and the starting dose was already effective, we only evaluated a dose of 1.0 mm/s. It would be interesting to evaluate whether the dose could be lowered to optimally balance safety and efficacy.

The feasibility of CbAS180 is reflected by a short procedure time (median 6 minutes to ablate the 3-cm segment) and high technical success rate (96%; 22/23). At the same time, this first-in-human application of CbAS180 also revealed opportunities for refinement of the technique. Two patients could not be treated with CbAS180 owing to unstable positioning of the cryoballon at the GEJ (2/25; 8 %). For focal CbAS, two different balloon shapes are available: the standard and pear-shaped balloon. For CbAS180, only a standard straight balloon is currently available. Development of a pear-shaped CbAS180 balloon might help to ensure stable positioning of the balloon at the GEJ and thereby lower the number of technical failures. Second, the occurrence of device malfunctions (3/23; 13 %) was noteworthy; however, continuous technical advancements decreased the frequency over the course of the study and even with these device malfunctions ablation time remained short.

One of the most important advantages of cryoballoon ablation is good patient tolerability. For focal CbAS, lower post-treatment pain and dysphagia scores are reported than for RFA [4]. The low post-treatment pain and dysphagia scores in this study are in accordance with these previous results.

Biopsies of the neosquamous epithelium were taken to evaluate the incidence of SIM after CbAS180. In one patient, one of the four biopsies of the neosquamous epithelium potentially showed SIM. Yet, whether this truly represents SIM can be disputed. A study on the presence of SIM in neosquamous epithelium after RFA showed SIM in 21 % of patients with remaining BE islands versus 0.1 % of patients without endoscopic visible BE [19]. Because the patient in this study had remaining BE (medi-
an BE regression of 70%), it could well be that a biopsy was unintentionally taken from the remaining BE. Future studies with complete eradication of IM as the final outcome after consecutive CbAS treatments will result in more reliable data on the incidence of SIM after CbAS.

This is the first-in-human application of CbAS\(^{180}\) and its relevance for the application of CbAS in daily practice is an important strength of this study. Furthermore, the study has been performed in a multicenter setting in BE expert centers and all CbAS\(^{180}\) treatments were performed by experienced endoscopists. The BE regression percentages were assessed by independent expert endoscopists using images and videos, and histopathologic evaluation of biopsies was done by experienced BE pathologists.

This study is not without limitations. First, the 60% boundary to define the effective dose in this study is arbitrary. This boundary was based on BE regression percentages after single-session RFA treatment. Studies on single-session RFA treatment report BE regression percentages between 78% and 90% [12–14], including large BE segments. In our study, with the inclusion of only short BE segments, remaining BE islands have a larger impact on the BE regression percentage. Therefore, the boundary was adjusted accordingly. Other limitations mainly concern the generalizability of the study results as a consequence of choices made with regard to the study design and have already been addressed above. Most notably, for this dose-finding study, the surrogate end point BE regression after one treatment session was used to solely focus on CbAS\(^{180}\) and, as this was the first clinical application of CbAS\(^{180}\) treatment, the extent was limited to 3 cm.

Several next steps should be considered before introducing CbAS\(^{180}\) into daily clinical practice. First, the results of the current study warrant further investigation of lower dosages for CbAS\(^{180}\). Because the lowest dose within the CE-marked range was already effective, there seems to be room to optimize the safety profile by lowering the dose. Especially as the next steps, successive CbAS\(^{180}\) treatment sessions to eradicate all BE and stacked ablations to treat larger BE segments, might increase the risk of stricture formation. Ultimately, one would want to combine CbAS\(^{180}\) with subsequent CbAS\(^{180}\) or focal CbAS treatment sessions, depending on the disease extent after initial treatment, and to evaluate the efficacy, safety, and durability with complete eradication of IM as the outcome parameter.

In conclusion, single-session CbAS\(^{180}\) appears feasible, safe, and effective and is a promising technique for the treatment of patients with BE-related neoplasia. Further research on lower dosages is needed before its widespread application in patients with longer BE segments.

Acknowledgments

We kindly thank the members of the Adjudication Committee (Prof. Bisschops, Prof. Seewald, and Dr. Haidry) for their evaluations of the regression percentages.

Competing interests

A. Overwater has received reimbursement of study-related travel costs from Pentax Medical for an IRB-approved European, multicenter prospective study. J.J.G.H.M. Bergman has received research funding from Pentax, C2 Therapeutics, Medtronic, Aqua Medical, Olympus, and Fuji-film. B.L.A.M. Weusten has received research funding from Pentax, C2 Therapeutics, and Aqua Medical. The remaining authors declare that they have no conflict of interest.

Funding

Pentax Medical of America, Inc.

Clinical trial

Trial Registration: Netherlands National Trial Register (www.trialregister.nl) | Registration number (trial ID): NL6495 | Type of study: Prospective, single-arm, multi-center study

References

Overwater Anouk et al. Novel cryoballoon 180°... Endoscopy | © 2021. Thieme. All rights reserved.

