Regional diversity in oligodendrocyte progenitor cells
Lentferink, Dennis Hendrikus

DOI:
10.33612/diss.165785295

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-12-2023
Regional differences between grey and white matter in cuprizone induced Progressive multiple sclerosis patients show substantial lesion activity that
Differentiation block of oligodendroglial progenitor cells as a cause for

References

Delayed demyelination and impaired remyelination in aged mice in the Clinical–radiological–pathological spectrum of central nervous system–Myelin-derived lipids modulate macrophage activity by Liver X Receptor

M. Lloyd, A. F. & Miron, V. E. The pro-remyelination properties of microglia in the central nervous system.

B. Neumann, B.

Chittajallu, R., Aguirre, A. & Gallo, V. NG2-positive cells in the mouse white and grey matter display distinct physiological properties.

Lytle, J. M., Chittajallu, R., Wrathall, J. R. & Gallo, V. NG2 cell response in the CNP-EGFP mouse after contusive spinal cord injury.

H. S., Levine, J. M. & Blakemore, W. F. Response of the oligodendrocyte progenitor cell population (Defined by NG2 labelling) to demyelination of the adult spinal cord.

B. Neumann, B. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells.

B. Neumann, B. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells.

Bear, M. F., Connors, B. W. & Paradiso, M. A. Neuroscience: exploring the brain. (Lippincott Williams & Wilkins, 2007).

Nave, K.-A. Myelination and support of axonal integrity by glia. Nature. 468, 244–52 (2010). doi:10.1038/nature09614

Glutamate transporter GLAST is expressed in the radial glia-astrocyte

Characterization of mammalian synemin, an intermediate filament protein

References

References

Alterations in metabolism and gene expression in brain regions during lineage tracing reveals dynamic changes in oligodendrocyte precursor cells.

References

Matrix metalloproteinases and their tissue inhibitors in Cuprizone-induced demyelination. Chondroitin sulfate proteoglycans inhibit oligodendrocyte myelination.

References

The pathology of multiple sclerosis is location-dependent: No significant Hes1 functions downstream of growth factors to maintain oligodendrocyte Class 3 semaphorins influence oligodendrocyte precursor recruitment and Sphingosine 1-phosphate receptor modulation suppresses pathogenic FTY720 rescue therapy in the dark agouti rat model of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis.

References

Id2 mediates oligodendrocyte precursor cell maturation arrest and is tumorogenic in a pdgfr-rich microenvironment. Cancer Res. 74, 1822–1832 (2014). doi:10.1158/0008-5472.CAN-13-1839

TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. **Neuron** **83**, 1098–1106 (2014). doi:10.1016/j.neuron.2014.07.027

George, N. I. & Chang, C. W. DAFS: A data-adaptive flag method for RNA-sequencing data to differentiate genes with low and high expression.

