Effects of Fluorination on Fused Ring Electron Acceptor for Active Layer Morphology, Exciton Dissociation, and Charge Recombination in Organic Solar Cells

Licheng Hou, Jie Lv, Friso Wobben, Vincent M. Le Corre, Hua Tang, Ranbir Singh,* Min Kim, Fufang Wang, Haitao Sun, Wenjing Chen, Zhengguo Xiao, Manish Kumar, Tongle Xu, Weimin Zhang, Iain McCulloch, Tainan Duan, Huling Xie, L. Jan Anton Koster, Shirong Lu,* and Zhipeng Kan*

Cite This: ACS Appl. Mater. Interfaces 2020, 12, 56231–56239

ABSTRACT: Fluorination is one of the effective approaches to alter the organic semiconductor properties that impact the performance of the organic solar cells (OSCs). Positive effects of fluorination are also revealed in the application of fused ring electron acceptors (FREAs). However, in comparison with the efforts allocated to the material designs and power conversion efficiency enhancement, understanding on the excitons and charge carriers’ behaviors in high-performing OSCs containing FREAs is limited. Herein, the impact of fluorine substituents on the active layer morphology, and therefore exciton dissociation, charge separation, and charge carriers’ recombination processes are examined by fabricating OSCs with PTO2 as the donor and two FREAs, O-IDTT-IC and its fluorinated analogue O-IDTT-4FIC, as the acceptors. With the presence of O-IDTT-4FIC in the devices, it is found that the excitons dissociate more efficiently, and the activation energy required to split the excitons to free charge carriers is much lower; the charge carriers live longer and suffer less extent of trap-assisted recombination; the trap density is 1 order of magnitude lower than that of the nonfluorinated counterpart. Overall, these findings provide information about the complex impacts of FREA fluorination on efficiently performed OSCs.

KEYWORDS: fluorination, exciton dissociations, activation energy, trap assisted recombination, crystallinity

1. INTRODUCTION

The power conversion efficiency (PCE) of organic solar cells (OSCs) higher than 13% were reported with nonfullerene acceptors and novel donors’ designs. Especially, with the emergence of Y6,6 a fused ring electron acceptor (FREA), PCE up to 18.2% was obtained in single-junction OSCs. Considering the properties of OSCs such as solution-processable fabrications, flexible devices, tunable light harvesting ranges, and scalability, OSCs are a competitive candidate for complementary applications on the scenarios that the inorganic counterparts cannot be applied. In comparison with other kinds of thin-film solar cells, the major limiting factor of OSCs is the PCE, and therefore, it is of great importance to improve the OSC performance.

Besides device engineering and light management in improving the OSC efficiency, great efforts are contributed to the novel donor/acceptor material design to tune the properties of the organic semiconductors for desirable energy levels, absorption profiles, and aggregation features. Because of the strong electron-withdrawing natures and planar conformation of the molecules, fluorination substitution is one of the effective methods to manipulate these properties of organic semiconductors. When fullerene derivatives were used as the electron acceptor, the fluorination attempts were mainly on the donor materials. With fluorine (F) atom substituted in the backbone of the donors, the highest occupied molecular orbital (HOMO) energy levels is lower than that of the donors without an F substituent, which may result in improved open-circuit voltage (V_{OC}) of the fabricated OSCs. In addition, the molecular packing properties usually changed to have strong tendency to aggregate, form more face-on oriented crystallites, and improve molecular ordering, leading to improved charge carrier mobility. With these benefits, the OSCs composed of the fluorinated counterparts often have larger V_{OC}, short circuit current density (J_{SC}), and fill factor (FF), resulting from the less extent of bimolecular recombination and reduced geminate recombination.

Received: September 11, 2020
Accepted: November 20, 2020
Published: December 3, 2020

Supporting Information

See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
The positive effects by the introduction of F were also revealed in OSCs with FREAs. In this kind of OSCs, the element substitution can be both applied to the donors and the acceptors. Particularly, when the fluorination approach was applied to the FREAs, it was found that the F-substituent can down shift the lowest unoccupied molecular orbital (LUMO) energy levels, red-shift the absorption in solid films, and enhance intermolecular interactions, including the improved molecular packing properties. It is worth noting that the V_{OC} was normally lower than that of the nonfluorinated counterparts because of the lower-lying LUMO. In the operation of OSCs with fluorinated FREAs, it was reported that fluorination helped to suppress the energetic disorder and prolong the carrier lifetime and thus aid charge extraction. With increased number of the F atoms in the FREAs’ backbones, the difference of the electrostatic potential between the donor and acceptor can increase, causing enhanced donor/acceptor interactions, and PCE as high as 16.7% was achieved with such designs. Taking into account above-mentioned advantages, fluorination has great potential for constructing high-performance OSCs, and therefore, the deeper understanding of the structure–property relationships induced by fluorination is critical. It is also noted that fluorination has been widely applied in nearly all the high-performed FREAs beyond 13%. However, in comparison with the efforts allocated to the material designs and emphasis of PCE enhancement, those allocated to understand the structure–property relationships in device operations were limited. Notably, excitons and charges’ behaviors such as the activation energy for splitting the excitons, nongeminate recombination processes, charge extraction, and charge carriers’ lifetime, which directly determine the device performance and link the microstructures with the device properties of high-performing OSCs with FREAs, were less reported.

In this contribution, we examined the impact of F on the microstructure–electrical property relationships by fabricating OSCs with PTO2 as the electron donor and two FREAs O-IDTT-IC and its fluorinated analogue O-IDTT-4FIC as the electron acceptors. It was found that the pristine film of O-IDTT-IC shows preferred face-on orientation crystallites and the pristine film of O-IDTT-4FIC presents bimodal oriented crystallinity. When these morphological effects were translated into the active layers, the FF significantly changed from 56 to 74%. On the other hand, the devices with O-IDTT-4FIC as the acceptor showed higher J_{SC} and lower V_{OC} than those of the nonfluorinated counterpart, which were in line with the red shift absorption and the lower-lying LUMO level introduced by the fluorination. As a result, the devices with PTO2:O-IDTT-4FIC as the active layer achieved a PCE of 14.5%, outperforming the device with PTO2:O-IDTT-IC as the active layer (9.1%). In addition, we found that the exciton dissociation efficiency in the active layer with PTO2:O-IDTT-4FIC were much higher, and less activation energy was required to generate free charge carriers ($36.7 \text{ meV} vs 53.5 \text{ meV}$); trap-assisted recombination are the major loss channel for both device systems, whereas bimolecular recombination is negligible; the charge extraction times of both devices were comparable ($0.98 \mu s vs 0.81 \mu s$), while the devices with PTO2:O-IDTT-4FIC showed a much longer charge carrier lifetime ($3.04 \mu s vs 1.22 \mu s$), indicating significantly reduced trap-assisted recombination; the one-dimensional (1D) simulation further confirmed that the trap density in the active layer of PTO2:O-IDTT-4FIC was one order lower than that of the active layer with PTO2:O-IDTT-IC. Our findings provide information into the complex effects of FREA fluorination in high-performance OSCs.

2. RESULTS AND DISCUSSION

The molecular structures of PTO2, O-IDTT-IC, and O-IDTT-4FIC are plotted in Figure 1a. The top and side views of the ground-state geometries of O-IDTT-IC and O-IDTT-4FIC are pictured in Figure 1b,c, showing more planner conformation with F substituents. Figure 1d presents the normalized absorbance spectra of PTO2, O-IDTT-IC, and O-IDTT-4FIC...
in pristine films. The absorption of PTO2 in thin film covers from ca. 350 to 650 nm. In comparison with the solid film of O-IDTT-IC, the film of O-IDTT-4FIC shows notably higher absorption in the long wavelength range with the absorption onsets approximately at 870 nm. The absorption ranges of the donor and acceptors complement each other well. The energy levels determined by cyclic voltammetry (CV) measurement are summarized in Figure 1e. The HOMO and LUMO levels of O-IDTT-IC, and O-IDTT-4FIC are −5.57/3.93 and −5.61/−4.06 eV, corresponding to the band gap of 1.55 and 1.64 eV, respectively. The red shift absorption and lower-lying LUMO level are well in line with other reports.

As shown in Figure 1f, to demonstrate the photovoltaic performance of O-IDTT-4FIC and O-IDTT-IC in OSCs, the conventional devices with the architecture of glass/ITO/PEDOT:PSS/active layer/phenyl(2-naphthyl)-diphenylphosphine oxide (DPO)/Ag were fabricated. The optimization processes and details are described in Tables S1–S6. Figure 2a shows the current density–voltage (J–V) curves of the optimal devices, and the photovoltaic parameters of the devices. The results are averaged from 10 individual devices.

The devices with PTO2:O-IDTT-IC as the active layer yielded a V_{OC} of 0.86 V, a J_{SC} of 22.87 mA cm$^{-2}$, and an FF of 74.05%, leading to a much higher PCE of 14.51%. The lower V_{OC} from the devices with fluorinated acceptor agrees well with the lower-lying LUMO, and the improved J_{SC} is attributed to the red-shift absorption as shown in the external quantum efficiency (EQE) spectra. Besides the changes in V_{OC} and J_{SC}, the FF had an improvement of ca. 20%, and we assign this to the morphological changes which will be discussed in later sections.

Figure 2b exhibits the EQE responses of the champion devices. The spectrum of the device with O-IDTT-4FIC is wider than that of the device with O-IDTT-IC, which confirms the red-shifted absorption characteristics of O-IDTT-4FIC. In the range of 400–850 nm, the device with O-IDTT-4FIC exhibits higher response than that of the device with O-IDTT-IC, proving the higher J_{SC} measured by the solar simulator from the device with O-IDTT-4FIC. In addition, the maximum EQE response of the device with O-IDTT-4FIC is ca. 85%, which is significantly higher than the EQE of the control device (ca. 66%). On the other hand, internal quantum efficiency (IQE) characteristics, defined as the ratio of the number of charge carriers extracted from the device to the number of photons absorbed in the active layer, can provide insightful information about the electrical properties of solar cells that EQE measurements alone cannot.33 IQE is usually determined by combined simulation and experimental way, or it can be also estimated as the ratio of experimental J_{SC} to the maximum theoretical J_{SC} obtained from transfer matrix model simulation (detailed in Section S5).33 The IQE values of ca. 92% and ca. 71% were calculated for devices with O-IDTT-4FIC and O-IDTT-IC, respectively. Because IQE measurements normalize the current generation efficiency by the light absorption efficiency, the nearly 20% differences in IQE is related with the exciton dissociation and charge recombination.

To verify the origin of the distinct device performance, the excitons and the charge carriers’ behaviors that govern the device performances were examined. The excitons to the charge carrier process was monitored by performing the photoluminescence (PL) measurements on the pristine and blend films, and the normalized PL spectra are depicted in Figure 2c,d. When the donor material PTO2 was photoexcited (Figure 2c), energy transfer from the PTO2 to the acceptors happened and followed by hole transfer back; while the acceptors were photoexcited (Figure 2d), hole transfer from the acceptors to the donor happened. Thus, the PL quenching (PLQ) efficiency observed was determined by the competition of hole transfer and exciton recombination no matter which component was photoexcited. Because of the large HOMO–HOMO offset, it was observed that the PLQ efficiency of the active layer with PTO2:O-IDTT-4FIC is much higher than that of the active layer with PTO2:O-IDTT-IC.35,36 These results suggest that the excitons generated upon photons absorbed can dissociate efficiently to free charge carriers in the film of PTO2:O-IDTT-4FIC. On the contrary, the excitons generated in the film of PTO2:O-IDTT-IC recombined at a certain level according to the low PLQ efficiency, usually

![Figure 2](https://dx.doi.org/10.1021/acsami.0c16411)

Table 1. Photovoltaic Parameters of the Devices with PTO2:O-IDTT-4FIC and PTO2:O-IDTT-IC as the Active Layers

<table>
<thead>
<tr>
<th>condition</th>
<th>V_{OC} [V]</th>
<th>J_{SC} [mA cm$^{-2}$]</th>
<th>FF [%]</th>
<th>PCE [%]</th>
<th>PCE$_{max}$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTO2:O-IDTT-4FIC</td>
<td>0.86 ± 0.03</td>
<td>22.87 ± 1.15</td>
<td>74.11 ± 2.51</td>
<td>14.18 ± 0.33</td>
<td>14.51</td>
</tr>
<tr>
<td>PTO2:O-IDTT-IC</td>
<td>1.04 ± 0.02</td>
<td>15.34 ± 0.44</td>
<td>55.43 ± 1.40</td>
<td>8.92 ± 0.19</td>
<td>9.11</td>
</tr>
</tbody>
</table>

The results are averaged from 10 individual devices.
leading to poor device performance. During the exciton dissociation processes, activation energy is required to split excitons to free holes and electrons. To get the activation energy, we performed the $J−V$ measurements with varied substrate temperatures (Figure S6). When the photocurrent is plotted as a function of the inverse substrate temperatures at a certain internal electric field, Arrhenius type behavior is obtained, and the activation energy is determined by fitting the photocurrent with Arrhenius equation presented in Figure 3a,b. Two visible features were noticed that (i) the activation energy of the device with O-IDTT-4FIC at a certain internal electric field is lower than that of the device with O-IDTT-IC at the same electric field, and (ii) when the internal electric field is higher, the activation energy is lower. For example, at an internal electric field of 2×10^4 V cm$^{-1}$, the activation energy of the device with O-IDTT-4FIC is 18.8 meV, which is much lower than the activation energy of the device with O-IDTT-IC (29.8 meV). Moreover, when we plotted the activation energy as a function of the square root of the internal electric field, it is observed that the activation energy follows the Poole–Frenkel-type dependence in the lower electric field regime.

By fitting the Poole–Frenkel part, we obtained that the activation energy of the devices with O-IDTT-4FIC and IDTT-IC at zero electric field are 36.7 and 56.5 meV, respectively (Figure 3c,d). Taking into account the exciton recombination and the activation energy needed, the charge carrier generation in the devices with O-IDTT-4FIC is undoubtedly higher than that of the devices with O-IDTT-IC. When the free charge carriers are generated in the active layer, charge recombination plays an important role on whether the charges can be extracted or not. Thus, we next turned to check the recombination patterns in the fluorinated and control devices. By measuring the $J−V$ curves with varied incident light intensities (Figure S7), the fate of free charge carriers in the device is studied. The information of nongeminate recombination can be obtained from the relationships of J_{SC} and V_{OC} as a function of the incident light intensity.

In Figure 4a, J_{SC} of the fluorinated and control devices was plotted as a function of the incident light intensity (I_{in}) in a double-logarithm scale. It was reported that the J_{SC} and I_{in} follow a power law of $J_{SC} \propto I_{in}^\alpha$, and thus, the experimental data were fitted. The α value of 1 was fitted for both devices, indicating that the charges are extracted prior to bimolecular recombination in both devices at short-circuit condition. As depicted in Figure 4b, V_{OC} as a function I_{in} was plotted in a semi logarithm. The solid lines are the fit to the expression of the form $V_{OC} = \frac{1}{n} \times \ln(I_{in}) + \text{constant}$.
Table 2. Parameters Used in the Drift-Diffusion Simulations of the Devices with O-IDTT-IC and O-IDTT-4FIC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>PTO2-O-IDTT-IC</th>
<th>PTO2-O-IDTT-4FIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (nm)</td>
<td>L</td>
<td>130 nm</td>
<td>100 nm</td>
</tr>
<tr>
<td>Average generation rate (1 sun)</td>
<td>G</td>
<td>7.5 × 10^5 cm^-3 s^-1</td>
<td>1.4 × 10^5 cm^-3 s^-1</td>
</tr>
<tr>
<td>Density of states (10^19 cm^-3)</td>
<td>N_e</td>
<td>9.5 × 10^19 cm^-3</td>
<td>1.5 × 10^19 cm^-3</td>
</tr>
<tr>
<td>HOMO (effective)</td>
<td>E_HOMO</td>
<td>-5.06 eV</td>
<td>-5.06 eV</td>
</tr>
<tr>
<td>LUMO (effective)</td>
<td>E_LUMO</td>
<td>-3.61 eV</td>
<td>-3.91 eV</td>
</tr>
<tr>
<td>Relative dielectric constant</td>
<td>ε_r</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Electron mobility</td>
<td>μ_e</td>
<td>3.82 × 10^-7 cm^2 V^-1 s^-1</td>
<td>5.83 × 10^-6 cm^2 V^-1 s^-1</td>
</tr>
<tr>
<td>Hole mobility</td>
<td>μ_h</td>
<td>3.43 × 10^-7 cm^2 V^-1 s^-1</td>
<td>1.62 × 10^-6 cm^2 V^-1 s^-1</td>
</tr>
<tr>
<td>Bimolecular recombination rate</td>
<td>k_BB</td>
<td>9.0 × 10^-12 cm^-3 s^-1</td>
<td>1.5 × 10^-11 cm^-3 s^-1</td>
</tr>
<tr>
<td>Trap density</td>
<td>N_T</td>
<td>2.3 × 10^19 cm^-3</td>
<td>2.3 × 10^19 cm^-3</td>
</tr>
<tr>
<td>Trap depth</td>
<td>E_trap</td>
<td>0.725</td>
<td>0.575</td>
</tr>
<tr>
<td>Capture coefficient</td>
<td>C_c</td>
<td>1 × 10^-7 cm^-3 s^-1</td>
<td>1 × 10^-7 cm^-3 s^-1</td>
</tr>
<tr>
<td>Anode work function</td>
<td>W_a</td>
<td>-3.61 eV</td>
<td>-3.91 eV</td>
</tr>
<tr>
<td>Cathode work function</td>
<td>W_c</td>
<td>-5.06 eV</td>
<td>-5.06 eV</td>
</tr>
<tr>
<td>Series resistance</td>
<td>R_series</td>
<td>1.35 Ω m^-2</td>
<td>1.31 Ω cm^-2</td>
</tr>
</tbody>
</table>

The parameters marked with “*” are obtained from experimental.

\(V_{OC} \propto \frac{k}{q} \ln(I) \), where \(q, k, \) and \(T \) are the elementary charge, the Boltzmann constant, and the temperature in kelvin, respectively. The \(n \) values of 1.34 and 1.63 were fitted for the devices with O-IDTT-4FIC and O-IDTT-IC, implying that both devices suffer a certain extent of trap-assisted recombination at open-circuit condition and the smaller \(n \) for the devices with O-IDTT-4FIC indicates the trap-assisted recombination is reduced.

The quantification of the charge extraction and charge carrier lifetime were then evaluated by transient photocurrent (TPC) and transient photovoltage (TPV) measurements. In such measurements, the devices were held at short circuit or open circuit and illuminated by a pulsed laser, and the response signals from the devices to the illuminated light were recorded by an oscilloscope (detail information in Figure S8). The charge extraction time for both systems were derived by fitting the current decay from TPC with monoexponential decay shown in Figure 4c. We found that the charge extraction time is comparable, and the device with O-IDTT-IC is slightly faster. On the other hand, TPV (Figure 4d) provides the information on the number of recombination routes and charge carriers’ lifetime. The transient voltage decays were fitted with monoexponential decay and charge carrier lifetimes of 3.04 and 1.22 μs were inferred for the devices with O-IDTT-4FIC and O-IDTT-IC, respectively. The monoexponential fitting tells that only one recombination route dominates the devices, for example, the trap-assisted recombination. Again, the evidently longer charge carrier lifetime for the devices with O-IDTT-4FIC suggests that the trap-assisted recombination was decreased.

Simulations considering charge generation, recombination effects, and the carrier mobilities of the active layer by numerically solving the drift-diffusion equations were performed to get the detailed information about the fluorinated and control devices. To fit the 1D drift-diffusion modeling to the \(J-V \) curves with various incident light intensity, we used experimentally measured parameters for the energy levels, refractive index, extinction coefficient, and charge carrier mobility (Figures S3 and S4) and used a fitting procedure to extract the unknown parameters.

Figure 5. 2D GIWAXS patterns of optimized (a) PTO2-O-IDTT-IC and (b) PTO2-O-IDTT-4FIC blend films. (c,d) IP (black solid lines) and OOP (blue and red dashed lines) profiles for the respective blend films.
show the diffraction patterns and line-cuts in the in-plane (IP) and out-of-plane (OOP) directions. The GIWAX images were recorded with X-rays of 11.57 keV (λ = 1.0716 Å) at 0.13 incidence angle. The pristine PTO2 polymer film showed the first-order (100) diffraction peaks located at q ∼ 0.31 Å⁻¹ (d-spacing ∼ 20.03 Å) in IP and π−π stacking (010) diffraction peak at q ∼ 1.66 Å⁻¹ (d-spacing ∼ 3.78 Å) in the OOP direction, indicating a preferential face-on orientation in the PTO2 polymer film. The GIWAXS 2D images of the O-IDTT-4FIC and O-IDTT-IC pristine films clearly illustrated well-developed diffraction patterns with a high order of molecular packing.46–49 The pristine O-IDTT-IC film has dominated diffraction peaks at q ∼ 0.366, 0.695, 1.283, 1.381, and 1.172 Å⁻¹ in the IP direction. After fluorination, the O-IDTT-4FIC film showed an increase in dominated diffraction peaks at q ∼ 0.315, 0.369, 0.523, 0.901, 1.015, 1.251, and 1.286 Å⁻¹ in the IP direction. The O-IDTT-4FIC film exhibits a more distinctive diffraction pattern with a higher order of Bragg diffraction peaks compared to the O-IDTT-IC film. In the blend films, the IP XRD profiles show a stark difference in coherence lengths of (100) diffraction peaks between PTO2:O-IDTT-4FIC and PTO2:O-IDTT-IC. The first order of diffraction peaks, which are composed of 0.33 Å⁻¹ from PTO2 and 0.39 Å⁻¹ from O-IDTT-4FIC, showed coherence lengths of 9.02 and 9.78 nm, respectively, based on the Scherrer’s equation, while the diffraction peaks from PTO2:O-IDTT-IC displayed 6.87 and 4.11 nm from PTO2 and O-IDTT-IC. On the other hand, the OOP XRD profiles of the blend films also exhibit a clear difference of π−π stacking (010) diffraction peak position. The (010) peak from PTO2:O-IDTT-4FIC is located at 1.84 Å⁻¹ that corresponds to the d-spacing of 3.41 Å, but the (010) peak from PTO2:O-IDTT-IC is located at 1.78 Å⁻¹ that corresponds to the d-spacing of 3.52 Å. Furthermore, the PTO2:O-IDTT-4FIC film shows a longer crystal coherence length of the (010) diffraction peak (2.32 nm) than that from PTO2:O-IDTT-IC film (1.89 nm). This (010) stacking peak shift indicates that the PTO2:O-IDTT-4FIC blend film contains more compactly packed π−π stacking planes in OOP with longer coherence length, which is definitely advantageous for charge transport of the vertically stacked photovoltaic devices. These results are in agreement with the electrical properties of the n-type materials that show the more efficient charge transport property of O-IDTT-4FIC than O-IDTT-IC. In addition, more information about the crystallinity of the interface between PTO2 and the receptor, as well as the key parameters other than the crystallinity itself, can be found in the appendix Table S8.

3. CONCLUSIONS

In summary, we investigated the impact of fluorination on the FREA in high-performed OSCs by systematically comparing the device performances, excitons and charge carriers’ behaviors, and the active layer microstructures. The devices with PTO2:O-IDTT-4FIC as the active layer achieved a PCE of 14.5%, outperforming the control devices with PTO2:O-IDTT-IC as the active layer (9.1%). The pronounced photovoltaic performance obtained from the device with O-IDTT-4FIC results from the efficient exciton dissociation efficiency, and less activation energy was required to generate free charge carriers (36.7 meV vs 53.5 meV), much longer charge carrier lifetime (3.04 μs vs 1.22 μs), and significantly reduced trap assisted recombination (trap density 2.3 × 10¹¹ cm⁻³ vs 2.3 × 10¹² cm⁻³). The superior charge generation and extraction processes originate from the morphological changes that the PTO2:O-IDTT-4FIC blend film contains more compactly packed π−π stacking planes in OOP with longer coherence length. Our findings provide information about the complex effects of FREA fluorination in high-performance OSCs that can guide the material designs for further performance improvements.

4. EXPERIMENTAL SECTION

4.1. Materials. PTO2 was purchased from Solamer Co., Ltd. (Beijing, China). PEDOT:PSS and phen-NaDPO were purchased from Energy Chemical, Ltd. DIO and CN additive were supplied by Sigma-Aldrich.

4.2. Device Fabrication and Characterization. The conventional device structure is ITO/PEDOT:PSS/Active Layer/DPO/Ag; the J−V curves of devices were measured under N₂ using a Keithley 2400 source meter. A 300 W xenon arc solar simulator (Enli Technology Co., Ltd) with an AM 1.5 global filter operated at 100 mW cm⁻² was used to simulate the AM 1.5G solar irradiation. The EQE was performed using certified IPCE equipment (Zolix Instruments, Inc, Solar Cell Scan 100). More details on device fabrication and characterization are given in the Supporting Information.

■ ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.0c16411.

Experiments details and supplementary characterizations of materials and device performance (PDF)

■ AUTHOR INFORMATION

Corresponding Authors

Ranbir Singh — Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Korea; Email: ranbir@dongguk.edu
Shirong Lu — Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; orcid.org/0000-0001-6438-1082; Email: lushirong@cigit.ac.cn
Zhipeng Kan — Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; orcid.org/0000-0003-1378-541X; Email: kanzhipeng@cigit.ac.cn

Authors

Licheng Hou — Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
Jie Ly — Thin-film Solar Technology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China

https://dx.doi.org/10.1021/acsami.0c16411
ACS Appl. Mater. Interfaces 2020, 12, 56231−56239

56236
Author Contributions
L.H. fabricated and optimized the devices; L.H., J.L. and Z.K. performed the morphology characterization and analysis; H.T. tested the AFM of all materials; F.W. and H.S. did DFT calculation for O-IDTT-4FIC than O-IDTT-IC; W.C. and Z.X. tested PL; T.X. tested the energy level of the material; W.Z., L.M. synthesized the O-IDTT-4FIC and O-IDTT-IC; F.W., V.M.L.C. and L.J.A.K. carried out the 1D drift diffusion simulations; R.S., M.K. and M.K. did the GIWAXS characterization; T.D. and H.X. tested the TEM for all materials; S.L. and Z.K. conceived and directed the project; All authors discussed the results and contributed to the preparation of the manuscript.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
L.H. and J.L. contributed equally to this work. Z.K. acknowledge the research grants from the National Natural Science Foundation of China (no. 61805245), and CAS Pioneer Hundred Talents Program (Y82A060Q10, Y92A160Q10, E0296102). S.L. thanks the support from the National Youth Thousand Program Project (R52A199Z11), the National Special Funds for Repairing, and Purchasing Scientific Institutions (Y72Z090Q10), and the “Artificial Intelligence” Key Project of Chongqing (no. csc2017rzm-zdyX0030). V.M.L.C. is supported by a grant from STW/NWO (VIDI 13476). The authors thank Huirong Su from Genuine Optronics Ltd. for the measurements of ellipsometry and data analysis.

■ REFERENCES

