Field-tuned quantum tunneling of the magnetization
García-Pablos, D.; García, N.; de Raedt, H.

Published in:
Journal of Applied Physics

DOI:
10.1063/1.367531

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1998

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Field-tuned quantum tunneling of the magnetization

D. García-Pablos and N. García
Laboratorio de Física de Sistemas Pequeños y Nanotecnología, Consejo Superior de Investigaciones Científicas, Serrano 144, E-28006-Madrid, Spain

H. De Raedt
Institute for Theoretical Physics and Materials Science Centre, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands

The response of the magnetization to a time-dependent applied magnetic field in single-spin models for uniaxial magnets is studied. We present staircase magnetization curves obtained from the numerically exact solution of the time-dependent Schrödinger equation. Steps are shown to correspond to field-tuned quantum tunneling between different pairs of nearly degenerate energy levels. We investigate the role played by different terms that allow for tunneling processes: transverse fields and second-order and fourth-order transverse anisotropies. Magnetization curves for non-saturated initial states and for excited initial states showing steps when the field decreases in absolute value are also presented. These results are discussed in relation to recent experiments on high-spin compounds. © 1998 American Institute of Physics.

Electronic mail: danielgp@fsf.csic.es

JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 11 1 JUNE 1998

Magnetic molecules containing high-spin clusters such as Mn12 or Fe8 provide physical systems by which to study quantum tunneling of the magnetization (QTM). Recent experiments on these systems5,6 have reported the appearance of steps in the hysteresis loops at low temperature which have been attributed to thermally assisted resonant tunneling between quantum states. This interpretation is based on a single-spin S = 10 model with strong uniaxial anisotropy \(\mathcal{H}_{\text{an}} = -D S_z^2 - g \mu_B S \mathbf{H} \), where \(D \) is the uniaxial anisotropy energy for which energy levels \(\langle \mathcal{H} \rangle \) and \(\langle \mathcal{H} \rangle - \Delta \mathcal{H} \) cross at fields \(g \mu_B H = nD \). At these fields, the relaxation time of the magnetization shows minima. For QTM to occur, this model has to be extended to include symmetry breaking terms such as those originating from dipolar interaction, interaction with nuclear spins or phonons, etc. The detailed mechanism by means of which QTM occurs in hysteresis experiments on uniaxial magnets is investigated in this article. Previously, magnetization tunneling in mesoscopic systems has been semiclassically studied by several authors8,9 and, more recently, quantum dynamical calculations for several models of nanomagnets such as the Heisenberg model11 and the single-spin quantum model12 have shown the occurrence of resonant coherent QTM at zero temperature. The staircase structure in the magnetization curves for a time-dependent field has been recently shown3 to be well described by successive Landau-Zener (LZ) transitions. In addition, recent theoretical works have also studied the problem of spin tunneling in a swept magnetic field.13,14

The most general Hamiltonian for a single quantum spin including a transverse field (which might have a hyperfine or dipolar origin), second-order and fourth-order transverse anisotropies, and a time-dependent applied magnetic field is

\[
\mathcal{H} = -K_x S_x^2 - K_y S_y^2 - K_z S_z^2 - C_x S_x^4 - C_y S_y^4 - C_z S_z^4 - \Gamma S_x - H(t) S_z
\]

where \(K_x, K_y, K_z, C_x, C_y, C_z, \) and \(\Gamma \) are the anisotropy constants along the easy, medium, and hard axes, respectively, \(\mathbf{S} = (S_x, S_y, S_z) \) is the vector representing the magnetization, \(S_x, S_y, \) and \(S_z \) are the fourth-order anisotropy constants, \(\Gamma \) is the transverse field, and \(H(t) = H(t)(\sin \theta, \cos \theta) \) denotes the applied field.

The time evolution of the magnetization at \(T = 0 \) is obtained from the exact numerical solution of the time-dependent Schrödinger equation (TDSE), \(i \hbar \frac{\partial |\Psi(t)\rangle}{\partial t} = \mathcal{H}_{\text{an}} |\Psi(t)\rangle \), i.e., \(|\Psi(t)\rangle = |\Phi_0(t)\rangle \) where \(\mathcal{H}_{\text{an}} |\Phi_0(t)\rangle = E_0 |\Phi_0(t)\rangle \). The time evolution of the wave function is then calculated by means of \(|\Psi(t + \tau)\rangle = \exp \left(-i \tau \mathcal{H}_{\text{an}} \right) |\Psi(t)\rangle \), where \(\tau \) is the time step used to integrate the TDSE. During the integration of the TDSE, the applied field changes from \(-H_0 \) to \(H_0 \) with a given speed, which is defined by the field step \(\Delta H \) between two consecutive field values and the amount of time \(\tau_M \) the system feels each constant field. The temporal evolution of the \(\alpha \) \((x, y, z)\) component of the spin can be calculated from \(\langle S_\alpha(t)\rangle = \langle \Psi(t)|S_\alpha|\Psi(t)\rangle \). For each constant field value we compute the expectation value of \(S_\alpha \) averaged over time \(\bar{S}_\alpha = \frac{1}{\tau_M} \int_0^{\tau_M} dt \langle S_\alpha(t)\rangle \). In the following we will refer to \(M = \bar{S}_x / S \) as the magnetization. The energy of the system is given by \(E[H(t)] = \langle \Psi(t)|\mathcal{H}|\Psi(t)\rangle \).

In order to understand the origin of the steps in the magnetization curves, we first consider the simplest case of (1), namely, a single spin 1/2 system described by the Hamiltonian \(\mathcal{H} = -\Gamma \sigma_x - H(t) \sigma_z \), where \(\sigma_x \) and \(\sigma_z \) are the Pauli matrices, and we study the response of the magnetization to the time-dependent applied field \(H(t) \). \(\Gamma \) sets the scale of the splitting at \(H = 0 \) between the two energy levels (see inset of Fig. 1). Figure 1 presents the magnetization curves for several field sweep rates for the ground state as the initial state, showing steps of different sizes at \(H = 0 \).
According to the adiabatic theorem, a slowly changing external perturbation will keep the system in the eigenstate it started from (Φ_0) unless this eigenstate comes closer to another eigenstate (Φ_1). Then the adiabatic approximation might break down, allowing the system to escape from Φ_0 and tunnel to Φ_1 via the Landau–Zener tunneling mechanism. The probability of staying in the same eigenstate Φ_0 (which has opposite magnetization after the crossing) when the field is swept is given by $p = 1 - \exp[-\pi \Delta E^2/(2 \Delta H/\tau_H)]$, which depends on the energy splitting and the field sweep rate $\Delta H/\tau_H$. The final state is then a linear combination of both eigenstates with weights p and $1-p$ and the size of the step at $H=0$ is proportional to p, i.e., $\Delta M = p M^\text{final}_0 + (1-p) M^\text{final}_1 - M^\text{initial}_0$, where the superscripts initial and final refer to before and after the crossing. Curve (d) is the closest to adiabatic behavior ($p \approx 1$, large step); curve (a) corresponds to a fast sweep and the scattering is almost complete ($p \approx 0$, small step). The appearance of steps in the magnetization curves is a general feature for many models of uniaxial magnets and follows naturally from the occurrence of field-tuned tunneling transitions between nearly degenerate eigenstates of the Hamiltonian. The size of the step depends on the energy-level splitting of the participating levels, the weight of the corresponding eigenstates in the current state of the system, the field sweep speed, and the value of the magnetization itself.

In Fig. 2 we present magnetization curves for the Hamiltonian most commonly assumed in the attempt to explain recent experimental data ($H = -K_z S_z^2 - H(t) S_z$, with $H[3,5]$ and $S = 10$), supplemented by terms that break the rotational symmetry about the z axis, i.e., those in model (1). These terms allow for the occurrence of field-tuned QTM and the corresponding steps in the magnetization. All these cases have in common that, for some specific fields H_n, pairs of energy levels become almost degenerate. If $\Phi_0(-H_0)$ is the initial state, the levels involved in the crossing at H_n are E_n and E_{n+1}.

Curves (a), (b), and (c) correspond to the case including a transverse field. Γ allows all transitions $\Delta m = \pm 1$. At resonance $H_n = n K_z = n$, and the values of n for which steps appear depend on Γ. Thus, for (a) $\Gamma = 0.5 K_z = 0.5$ we find $n = 12, 13, 14$; for (b) $\Gamma = 2$, $n = 8, 9$; and for (c) $\Gamma = 6.5$, $n = 1, 2, 3$.

Curves (d), (e), and (f) show that the presence of second-order transverse anisotropy terms can also induce QTM. They correspond to $K_z = 1$, $K_x = 0.6$, and several values of K_y. For $K_x = K_y$, the energy and S_z commute and no tunneling occurs. These transverse anisotropy terms change the spacing between resonant fields although they remain regularly spaced as in case the case of a transverse field Γ. These terms allow transitions that obey the selection rule $\Delta m = \pm 2$. For (d) $K_y = 0.5$, $n = 8, 10$; for (e) $K_y = 0.4$, $n = 4, 6, 8$; and for (f) $K_y = 0.1$, $n = 2, 4$.

Fourth-order anisotropy terms [curves (g), (h), and (i)] allow the occurrence of field-tuned tunneling between levels satisfying $\Delta m = \pm 4$. In this case, the fields at which pairs of energy level cross are not equally spaced. Results are shown for different values of $C_z = C_x = C_y = C$. For (g) $C = 0.0005 K_z = 0.0005$, $n = 8, 12$; for (h) $C = 0.0025$, $n = 4, 8, 12$; and for (i) $C = 0.01$, $n = 0, 4, 8$.

None of the curves in Fig. 2 presents steps when $|H|$ decreases. This can be easily understood since the system starts from the ground state Φ_0 and the energy level scheme as a function of the field is such that E_n only crosses another level at zero field. Another feature of these curves is that the magnetization does not reach the saturation value (unless the system stays in the ground state when crossing $H = 0$ in which case there is one big step from $M = -1$ to $M = 1$) even for $H \rightarrow \infty$. The explanation comes from the fact that the system can only gain or lose energy through the time-dependent field but not through interaction with the environment.

The field sweep rate ($\Delta H/\tau_H$) is a crucial parameter in this problem. As was shown for the simple case of a single...
spin $1/2$, the probability of QTM depends on it. In general, the lower the sweep rate, the larger the size of the step. However, also relevant is the smoothness of the field swept: If ΔH is too large, the size of the steps depends in a nontrivial way on ΔH, τ_H, and ΔE, and LZ theory does not apply.

In Fig. 3 we consider the case of an initial state which is not the ground state but a linear combination of several eigenstates. Unlike the ground state, the excited levels can become nearly degenerate with other levels for $H \neq 0$, and therefore there is a nonzero probability of finding steps when $|H|$ decreases, as illustrated by curves (a) and (a'). Moreover, if the field is reversed after one sweep from $-H_0$ to H_0 [curve (b)], the system restarts from a linear combination of several eigenstates (corresponding to a nonsaturated state in an experiment) and the situation is similar to that of curves (a) and (a'). As shown by curve (b), there is some probability of finding steps when $|H|$ decreases and of getting both negative and positive steps. The same reasoning applies to QTM from thermally populated excited levels. Although the tunneling probability increases with the excitation level, and smaller off-diagonal terms are required to induce field-tuned QTM, the fact that the tunneling processes involve excited levels implies that some probability of finding steps when $|H|$ decreases exists, at variance with the experimental results. Moreover, preliminary experimental results in which the field is reversed before saturation is reached show that steps can appear when $|H|$ decreases, in qualitative agreement with our findings.

We have shown that $T=0$ field-tuned QTM leads to staircase magnetization curves. The following might be relevant when comparing to experiments on Mn$_{12}$: A transverse field Γ allows $\Delta m = \pm 1$ transitions and yields equally spaced steps, in agreement with experiments. However, the theoretical magnetization curves [with Γ as the only off-diagonal term and $\Phi(\sim H_0)$ as the initial state] look similar to the experimental ones (at the first energy level crossings $g\mu_B H_n = nD$, n small) for much larger values ($\Gamma \sim 1 - 5D = 0.44 - 2.2T$) than those estimated for dipolar ($\sim 0.01T$) or hyperfine ($\sim 0.05T$) interactions. Second-order transverse anisotropy terms are often discarded due to Mn$_{12}$ tetragonal symmetry, although local symmetries could affect the structure of the spectrum. These terms are relevant for other systems such as Fe$_8$. Fourth-order anisotropy terms cannot account for all the steps observed and they lead to nonequally spaced steps. They can be responsible for small deviations from $\Delta m = \pm 1$ transitions and equally spaced steps. However, the single-spin model proposed for the Mn$_{12}$ molecule may be too simple to mimic the actual energy spectrum: The single-spin $S=10$ system is described by 21 eigenstates whereas a proper description of the magnetic state of the Mn$_{12}$ molecule requires 10^8 states. A better understanding of the situation when the field is not swept smoothly enough and the Landau–Zener picture does not apply is also needed, especially since this appears to be the experimental case. Finally, further experimental work investigating the possibility of obtaining steps for decreasing $|H|$ and observing negative (opposite to the field sweep) steps may clarify the effect of thermal activation, which in principle allows the appearance of these steps.

This work was partially supported by Spanish and European research contracts.

References

18. B. Barbara (private communication).