Current views on the regulation of autotrophic carbon dioxide fixation via the Calvin cycle in bacteria
Dijkhuizen, L.; Harder, W.

Published in:
Antonie van Leeuwenhoek

DOI:
10.1007/BF02386221

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1984

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Current views on the regulation of autotrophic carbon dioxide fixation via the Calvin cycle in bacteria

L. DIJKHUIZEN* and W. HARDER

Department of Microbiology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands

The Calvin cycle of carbon dioxide fixation constitutes a biosynthetic pathway for the generation of (multi-carbon) intermediates of central metabolism from the one-carbon compound carbon dioxide. The product of this cycle can be used as a precursor for the synthesis of all components of cell material. Autotrophic carbon dioxide fixation is energetically expensive and it is therefore not surprising that in the various groups of autotrophic bacteria the operation of the cycle is under strict metabolic control. Synthesis of phosphoribulokinase and ribulose-1,5-bisphosphate carboxylase, the two enzymes specifically involved in the Calvin cycle, is regulated via end-product repression. In this control phosphoenolpyruvate most likely has an alarmone function. Studies of the enzymes isolated from various sources have indicated that phosphoribulokinase is the target enzyme for the control of the rate of carbon dioxide fixation via the Calvin cycle through modulation of existing enzyme activity. In general, this enzyme is strongly activated by NADH, whereas AMP and phosphoenolpyruvate are effective inhibitors. Recent studies of phosphoribulokinase in Alcaligenes eutrophus suggest that this enzyme may also be regulated via covalent modification.

INTRODUCTION

The ability of autotrophic growth, i.e. the use of CO₂ as the major carbon source for growth (Rittenberg, 1969), is widespread among bacteria. Over the years three different mechanisms of autotrophic CO₂ fixation have been elucidated in these organisms (for a review see Dijkhuizen and Harder, 1985). These

*To whom correspondence should be sent.
are the Calvin cycle, found in the majority of autotrophic bacteria (Ohmann, 1979), the Reductive Carboxylic Acid cycle, in phototrophic bacteria belonging to the genus Chlorobium (Evans et al., 1966) and a linear pathway, encountered in non-phototrophic anaerobic bacteria (methanogens, acetogens and sulphate-reducing bacteria). Via this latter pathway the formation of acetyl-CoA from two molecules of CO₂ is accomplished (Zeikus, 1983; Fuchs and Stupperich, 1984). In this paper the current state of knowledge of the regulation of CO₂ fixation via the Calvin cycle is reviewed.

AUTOTROPHIC GROWTH INVOLVING THE CALVIN CYCLE

The Calvin cycle in bacteria is similar in design to the cycle present in plants and algae (Fig. 1). Two enzymes are specifically involved in its operation, namely phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase (RuBPCase). Their combined activities result in the formation of two molecules of 3-phosphoglycerate from ribulose-5-phosphate and CO₂. Regeneration of ribulose-5-phosphate is accomplished via enzymes of the glycolytic and oxidative pentose phosphate pathways. The net effect of the Calvin cycle is the production of a C₃ compound from CO₂ according to the following stoichiometry:

\[
3 \text{CO}_2 + 9 \text{ATP} + 6 \text{NADH}_2 \rightarrow \text{glyceraldehyde-3-phosphate} + 9 \text{ADP} + 6 \text{NAD} + 8 \text{P}_i
\]
Table 1. Classification of bacteria on the basis of the energy sources used for the assimilation of carbon dioxide via the Calvin cycle

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phototrophs</td>
<td>light purple (non)sulphur bacteria cyanobacteria</td>
</tr>
<tr>
<td>Chemolithotrophs</td>
<td>inorganic compounds hydrogen bacteria thiobacilli</td>
</tr>
<tr>
<td></td>
<td>nitrifying bacteria CO-oxidizing bacteria</td>
</tr>
<tr>
<td></td>
<td>Paracoccus denitrificans</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas oxalaticus</td>
</tr>
<tr>
<td></td>
<td>Achromobacter 1L</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas 8</td>
</tr>
<tr>
<td></td>
<td>Mycobacterium 50</td>
</tr>
<tr>
<td></td>
<td>Xanthobacter autotrophicus</td>
</tr>
<tr>
<td></td>
<td>Micrococcus aquaticus</td>
</tr>
</tbody>
</table>

Carbon dioxide fixation via the Calvin cycle thus results in the production of intermediates of central metabolism, i.e. glyceraldehyde-3-phosphate or 3-phosphoglycerate, which can be used in all further biosynthetic pathways involved in cell growth and multiplication.

Although autotrophic bacteria have a common pathway for CO₂ fixation, they are diverse taxonomically and with respect to the energy sources used for growth. In this respect three main groups can be distinguished (Table 1), namely phototrophs (light energy), chemolithotrophs (oxidation of inorganic compounds) and methylotrophs (oxidation of organic C₁-compounds). The above equation clearly shows that fixation of CO₂ via the Calvin cycle is expensive in terms of energy expenditure. It is therefore not surprising that this process is under strict metabolic control. This control primarily affects the synthesis and activities of the two enzymes specific for the operation of the Calvin cycle, namely RuBPCase and PRK. From a comparison of the data now available in the literature it can be concluded that in the various groups of Calvin cycle organisms these regulatory mechanisms have many features in common and indeed may be based on identical molecular principles. This is discussed in more detail in the following sections.

RuBPCase: Properties and Regulation of Activity

Studies on the mechanism and control of CO₂ fixation via the Calvin cycle have focused mainly on the enzyme involved in the actual CO₂-fixing step,
RuBPCase. This enzyme constitutes a major fraction of the total protein in extracts of both plant leaves and autotrophic bacteria and probably is the most abundant protein in nature (Ellis, 1979). A detailed study of the enzymes isolated from various sources has shown that, in most cases, it has a mol wt of around 550,000 and consists of eight large (55,000 dal) and eight small (15,000 dal) subunits (L8S8) (Miziorko and Lorimer, 1983). An exceptional situation exists in the phototrophic bacterium *Rhodospirillum rubrum* in which RuBPCase occurs as a dimer of large subunits (L2) only and a mol wt of 114,000 (Tabita and McFadden, 1974). Interestingly, in various members of the Rhodospirillaceae the presence of two RuBPCase proteins of different mol wt has been reported in one and the same organism (Gibson and Tabita, 1977; Sani et al., 1983). In *Rhodopseudomonas sphaeroides* for instance these enzymes have an L8S8- (556,000 dal) and L6- (290,000 dal) structure, respectively (Tabita, 1981; Tabita et al., 1983).

RuBPCase is a bifunctional enzyme and catalyses both the carboxylation and oxygenolysis of ribulose-bisphosphate (Miziorko and Lorimer, 1983; Tabita et al., 1984). This property has been observed with each and every RuBPCase studied so far, including those from anaerobically grown phototrophic bacteria (McFadden and Tabita, 1974) and the L2 enzyme of *Rsp. rubrum* (Storro and McFadden, 1981). Since oxygenolysis of RuBP results in the production of one molecule of 3-phosphoglycerate and 2-phosphoglycolate each, and therefore in a decreased net rate of photosynthesis, the relationship between carboxylase and oxygenase activities has drawn considerable attention, especially in the field of plant engineering (Wildner, 1981). In these reactions CO2 and O2 compete in a linearly competitive manner and the amount of phosphoglycolate produced is thus determined by their relative concentrations in the gas atmosphere. This has for instance been demonstrated in continuous culture experiments with the chemolithotrophic bacterium *Thiobacillus neapolitanus* (Cohen et al., 1979). Numerous attempts to reduce the oxygenase activity specifically by the use of inhibitors (Ogren, 1984) or the isolation of mutationally altered species of the enzyme (Andersen, 1979) invariably also resulted in a comparable loss in carboxylase activity. This has led to the (still controversial) conclusion that the same active site is involved in both activities.

Kinetic studies of RuBPCase have been complicated by the failure to recognize early on that CO2 is not only a substrate in the carboxylase reaction, and a competitive inhibitor of the oxygenase reaction, but also an activator for both these enzyme reactions. Maximal activities are only obtained after preincubation of the enzyme in the presence of CO2 and Mg²⁺ ions. Interestingly, both activation and the catalytic process, in case of the carboxylase reaction, require CO2 itself as the active species but involve different sites located on the large subunit. In recent years considerable progress has been made in the elucidation of the molecular mechanisms of these processes and a number of amino acids involved in the activation and catalytic sites have been identified (Miziorko and Lorimer, 1983). Activation by CO2 is not restricted to enzymes with an L8S8-structure,
e.g. spinach chloroplast RuBPCase (Lorimer et al., 1976), but also affects the L2-enzyme in Rsp. rubrum (Whitman et al., 1979) and the L6-enzyme in Rps. sphaeroides (Gibson and Tabita, 1979). The precise function of the small subunits still remains to be established.

PRK: PROPERTIES AND REGULATION OF ACTIVITY

Compared to RuBPCase relatively little information is available on the structure and catalytic properties of PRK. The bacterial enzymes purified to homogeneity so far, from Rps. capsulata (Tabita, 1980), Alcaligenes eutrophus (Siebert et al., 1981) and the cyanobacterium Chlorogloeopsis fritschii (Marsden and Codd, 1984) were shown to be of comparable mol wt (220000–256000). The molecular structure of PRK in these organisms is relatively simple compared with that of RuBPCase. In each case a single size subunit (33000–40000 dal) has been reported, so that these enzymes presumably have a hexameric or octameric quaternary structure.

Investigations of the regulatory properties of the enzymes described above, and studies mainly performed with partially purified enzyme preparations from various sources (MacElroy et al., 1969; Kiesow et al., 1977; Tabita, 1980) have shown that in general PRK is strongly activated by NADH whereas AMP and phosphoenolpyruvate are effective inhibitors. Since the Calvin cycle requires considerable input of metabolic energy and reducing power, these effects indicate that PRK is the target enzyme for the in vivo control of the rate of CO2 fixation. PRK from oxygen-evolving photosynthetic organisms, both prokaryotic, i.e. C. fritschii (Marsden and Codd, 1984) and Anabaena sp. (Tabita, 1980), and eukaryotic, i.e. Chlorella sorokiniana (Tabita, 1980) and spinach chloroplast PRK (Kiesow et al., 1977) is not affected by NADH. This also applies to the enzymes from Chromatium vinosum (Hart and Gibson, 1971) and T. neapolitanus (MacElroy et al., 1972).

Evidence has been presented that in chloroplasts phosphoribulokinase, amongst other enzymes, is reductively activated in the light (Flügge et al., 1982). Recently, Leadbeater and Bowien (1984) observed that in A. eutrophus PRK is also regulated via an inactivation-activation mechanism. Addition of pyruvate to a culture of this organism growing autotrophically under a H2/CO2/O2 atmosphere caused a rapid inactivation of PRK. Further experiments showed that not pyruvate itself but metabolites produced from it, phosphoenolpyruvate and ATP, most likely caused a chemical modification of the enzyme via (a) hitherto unknown reaction(s) (Bowien and Leadbeater, 1984). This mechanism is of obvious importance physiologically because PRK inactivation was paralleled by a decrease in the rate of CO2 fixation by whole cells. The involvement of phosphoenolpyruvate in the control of PRK, both by inhibition and by inactivation, can most easily be understood on the basis of a feed-back type of mecha-
nism because this compound is metabolically closely related to 3-phosphoglycerate, the first product of CO$_2$ fixation via the Calvin cycle. How widespread the inactivation mechanism described above is among autotrophic bacteria, and whether it indeed provides an alternative to the light-dependent regulation of the chloroplast enzyme, remains to be investigated.

REGULATION OF ENZYME SYNTHESIS

The extent to which autotrophic bacteria control the synthesis of Calvin cycle enzymes varies widely. There are species only able to grow under “autotrophic” conditions and at least some of these specialists have been shown to clearly regulate enzyme synthesis but to a limited extent (Smith and Hoare, 1977; Beudeker, 1981). Because of their rigid metabolism only few manipulations of the growth conditions of these organisms are appropriate for the study of regulatory phenomena. The presence of “heterotrophic” compounds in the medium, for instance, does not affect RuBPCase synthesis in *T. neapolitanus* growing on thiosulphate (Kuenen and Veldkamp, 1973). The most pronounced changes in the levels of this enzyme have been observed following changes in the autotrophic growth conditions themselves. Thus, growth of *T. neapolitanus* on thiosulphate in CO$_2$-limited continuous cultures resulted in a 3- to 5-fold increase in RuBPCase activity compared with thiosulphate-limited growth (Beudeker et al., 1980). Similar observations have been made with the cyanobacterium *Anacystis nidulans* (Karagouni and Slater, 1979), where again, CO$_2$ limitation resulted in a 15-fold increase in the specific activity of RuBPCase as compared with light-limited growth.

Many autotrophic bacteria, however, are metabolically versatile organisms and in response to changes in their environment large variations in the levels of the autotrophic enzymes may be observed. Their synthesis may even be completely switched off. In these experiments the specific activities of RuBPCase and PRK in nearly all cases vary in a comparable manner and this indicates that their synthesis is under coordinate control. During growth under autotrophic conditions in batch cultures the specific activities of RuBPCase and PRK generally are highest. In *Rsp. rubrum* this is for instance the case during photo-lithotrophic growth with H$_2$/CO$_2$ (Slater and Morris, 1973). After prolonged adaptation of this organism to these growth conditions approximately 50% of the total soluble protein was shown to consist of RuBPCase (Saries and Tabita, 1983). During photoheterotrophic growth on malate however the level of this enzyme decreased to 0.3%, but growth under the same conditions on butyrate, a reduced substrate, plus CO$_2$ resulted in intermediate levels (14%; Tabita et al., 1983). Strong repression of the synthesis of the Calvin cycle enzymes was also observed during photoheterotrophic growth of *Rps. sphaeroides* (Tabita, 1981) and *Rps. blastica* (A. Sani, L. Dijkhuizen, and C. S. Dow, unpubl. results).
on various substrates. It is of interest that Tabita (1981), in a number of Rhodospirillaceae (Rsp. rubrum, Rps. sphaeroides, Rps. capsulata), only observed derepression of RuBPCCase and PRK to high levels after these organisms reached the stationary growth phases in the butyrate/CO₂ media, which appeared to be due to the cells becoming limited for CO₂ (Tabita et al., 1983). This was subsequently investigated in more detail in Rps. blastica (Sani et al., unpubl. results). In the latter organism RuBPCCase activity was very low during photoheterotrophic growth under malate-limiting conditions in continuous culture (2.4 nmoles·min⁻¹mg⁻¹ protein) but indeed increased to 176 nmoles·min⁻¹ mg⁻¹ protein during CO₂-limited growth with butyrate under otherwise identical growth conditions. Friedrich (1982) showed that RuBPCCase levels in cells of A. eutrophus, grown under autotrophic conditions (H₂/CO₂/O₂ atmosphere) in continuous culture, also strongly depended on the growth-limiting factor. In this organism again the highest specific activity of RuBPCCase by far was observed under CO₂ limitation. Thus, both specialist (see above) and versatile phototrophs and chemolithotrophs respond to the state of CO₂ limitation by synthesizing increased levels of RuBPCCase and PRK. The function of this control mechanism can most clearly be observed following incubation of Rsp. rubrum (Slater and Morris, 1973) and Rps. sphaeroides (Weaver and Tabita, 1983) in the light in the absence of an exogenous carbon source. In both organisms this resulted in a several-fold increase in CO₂-fixing activities.

Since in methylotrophs the oxidation of organic C₁ compounds such as methanol not only results in the production of metabolic energy and reducing power, but also in excess amounts of CO₂, comparable manipulations of autotrophic growth conditions in these organisms are not possible. Nevertheless, the available evidence indicates that in the three groups of autotrophic bacteria synthesis of the Calvin cycle enzymes is regulated in a similar fashion, namely via end-product repression in response to the intracellular concentration of 3-phosphoglycerate or a closely related compound in central metabolism (Dijkhuizen, 1979). Based on such a mechanism it is understandable that maximal derepression of CO₂-fixing enzymes must occur when CO₂ is the growth-limiting nutrient under autotrophic conditions (see above). Maximal repression on the other hand will occur during growth of these organisms with organic compounds which are metabolized heterotrophically and therefore already ensure a generous supply of intermediates of central metabolism. This repression phenomenon exerted by the metabolism of “heterotrophic” substrates has been observed not only in members of the Rhodospirillaceae during photoheterotrophic growth (see above), or aerobically in the dark, but also in hydrogen bacteria, i.e. A. eutrophus (Friedrich et al., 1981; Leadbeater et al., 1982), thiobacilli, i.e. Thiobacillus A2 (Gottschal and Kuenen, 1980), and methylotrophs, i.e. Pseudomonas oxalaticus (Dijkhuizen et al., 1978) and Paracoccus denitrificans (Van Verseveld et al., 1979).

In a number of these studies it also became clear that during growth on mix-
Table 2. Mixed substrate utilization by *Pseudomonas oxalaticus* in batch cultures

<table>
<thead>
<tr>
<th>Mixture of formate and:</th>
<th>Doubling time on second substrate</th>
<th>Energy source</th>
<th>Carbon assimilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>succinate</td>
<td>2.0</td>
<td>both</td>
<td>heterotrophic</td>
</tr>
<tr>
<td>acetate</td>
<td>2.0</td>
<td>both</td>
<td>heterotrophic</td>
</tr>
<tr>
<td>glycolate</td>
<td>2.2</td>
<td>both</td>
<td>heterotrophic</td>
</tr>
<tr>
<td>glyoxylate</td>
<td>3.3</td>
<td>both</td>
<td>heterotrophic</td>
</tr>
<tr>
<td>+ autotrophic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fructose</td>
<td>2.3</td>
<td>both</td>
<td>heterotrophic</td>
</tr>
<tr>
<td>—</td>
<td>3.6</td>
<td>formate</td>
<td>autotrophic</td>
</tr>
<tr>
<td>oxalate</td>
<td>4.5</td>
<td>formate</td>
<td>autotrophic</td>
</tr>
</tbody>
</table>

tures of “heterotrophic” and “autotrophic” substrates in batch cultures the degree of repression varied with the organism under study and the organic compounds supplied. Thus, the presence of organic compounds has no effect on synthesis of Calvin cycle enzymes in specialist autotrophs, i.e. *T. neapolitanus* (Kuenen and Veldkamp, 1973), which may be due to the limited ability of the organisms to metabolize these compounds. In *P. oxalaticus* on the other hand, grown in batch cultures on mixtures of formate and a “heterotrophic” substrate, the general response was that of complete repression of the synthesis of the autotrophic CO₂-fixing enzymes (Dijkhuizen et al., 1978). As shown in Table 2, in case of acetate, glycolate and succinate this resulted in heterotrophic carbon assimilation only and utilization of both the “heterotrophic” substrates and formate (via formate dehydrogenases) as energy sources for growth. The other substrate mixtures are included in Table 2 because they represent exceptions to the general rule. Growth on mixtures of glyoxylate, or fructose (Dijkhuizen and Harder, 1984), with formate namely not only allowed simultaneous utilization of both substrates but also expression of both heterotrophic and autotrophic carbon assimilation pathways. Growth on formate plus oxalate, however, results in diauxie with formate being used first and complete suppression of oxalate metabolism. Thus, “heterotrophic” substrates not always cause strong repression of autotrophic CO₂ fixation. Even growth on single “heterotrophic” substrates, for instance *A. eutrophus* with fructose, gluconate or glycerol (Friedrich et al., 1981), may result in derepression of RuBPCCase synthesis. Conceivably, in some organisms the maintenance of a sufficient flow of intermediates of central metabolism may be more of a problem than in others and may also be related to the individual “heterotrophic” substrate supplied. This in turn may be a reflection of differences in the properties of enzyme systems involved in the metabolism of these “heterotrophic” substrates, for instance the nature of the rate-limiting step. In some cases this may even result in switching on the autotrophic
Fig. 2. Effect of increasing concentrations of formate (0–100 mM) in the reservoir of an acetate-limited \((S_R = 30 \text{ mM})\) continuous culture of \(Pseudomonas\) \textit{oxalaticus} \(\text{OX1}\) at \(D = 0.10 \text{ h}^{-1}\) on a number of steady-state culture parameters. ■ bacterial dry mass; ○ RuBPCase; ▲ \(^{14}\text{CO}_2\) fixation rate by whole cells. Reproduced from Dijkhuizen and Harder (1979a) with permission.

CO\(_2\)-fixing system as an additional means of synthesizing compounds such as 3-phosphoglycerate and phosphoenolpyruvate. Alternatively, the utilization of autotrophic energy sources may completely suppress the metabolism of the “heterotrophic” substrate (i.e. oxalate) provided and thus in fact result in autotrophic growth conditions. Examples of this will be discussed below.

In view of the different effects of “heterotrophic” substrates on formate metabolism (or vice versa) in \(P.\) \textit{oxalaticus}\) we made a comparative study of mixed substrate utilization in continuous cultures limited by the supply of these carbon and/or energy sources. Addition of formate (0–100 mM) to the medium reservoir of an acetate-limited continuous culture \((D = 0.10 \text{ h}^{-1})\) resulted in simultaneous and complete utilization of the two substrates at steady state. Below 40 mM of formate its utilization, via formate dehydrogenases, did not result in synthesis of RuBPCase but nevertheless increased the bacterial dry mass in the culture by about 50\% (Fig. 2). This was achieved by increased assimilation of acetate carbon by virtue of increased levels of isocitrate lyase. Above 40 mM of formate RuBPCase synthesis became derepressed and concomitantly the increase in the amount of dry mass synthesized per millimole of formate added dropped because of the energetically inefficient fixation of CO\(_2\) via the Calvin cycle (Dijkhuizen and Harder, 1979a). These results show first of all that the metabolism of a “heterotrophic” substrate such as acetate is not rigid: the addition, and utilization, of increasing amounts of an additional energy source, i.e. formate, results in an increased flow of acetate carbon towards the biosynthesis of cell
Fig. 3. Relationship between RuBPCase activity and dilution rate during growth of *Pseudomonas oxalaticus* OXI in continuous culture on formate ($S_R = 100$ mM; ■) and on mixtures of formate ($S_R = 100$ mM) with acetate ($S_R = 30$ mM; □), fructose ($S_R = 5$ mM; ○), glyoxylate ($S_R = 20$ mM; ▲) or oxalate ($S_R = 100$ mM; □). Modified after Dijkhuizen and Harder (1979a, b, 1984), unpubl. data of L. Dijkhuizen.

material. Thus, dependent on the amount of energy available, i.e. from formate oxidation, the flow over assimilatory (glyoxylate cycle) and dissimilatory (tricarboxylic acid cycle) pathways is adjusted accordingly, most likely to ensure sufficient intracellular pool sizes of for instance phosphoenolpyruvate, the end-product of the glyoxylate cycle. Above 40 mM of formate in the feed this redistribution mechanism is apparently not sufficient anymore; full repression of RuBPCase synthesis can no longer be maintained, and from this stage on both autotrophic and heterotrophic carbon assimilation pathways function simultaneously. The results also indicate that in carbon and energy source-limited continuous cultures at $D = 0.10$ h$^{-1}$ repression of the synthesis of Calvin cycle enzymes is less severe than in batch culture and depends on the ratio of formate and acetate in the feed. In a further series of experiments, in which the organism was grown at different dilution rates in continuous cultures supplied with a constant mixture of acetate (30 mM) and formate (100 mM), repression of RuBPCase synthesis was strongest at the highest dilution rate tested (Fig. 3). This progressive repression of RuBPCase synthesis with increasing dilution rates is probably due to an increase in the intracellular concentration of intermediates of central metabolism, i.e. compounds such as 3-phosphoglycerate, along with an increasing concentration of the growth-limiting carbon source
in the culture as the dilution rate is increased (Herbert et al., 1956). These observations are in agreement with those made in batch culture during growth on this mixture, where RuBPCase synthesis is fully repressed, since at the higher dilution rates in continuous culture the growth rate approaches that in batch culture.

Fig. 3 also shows the results obtained during growth of *P. oxalaticus* in continuous culture on formate alone and on those mixtures which represented exceptional situations in batch culture. During growth on the latter mixtures in continuous culture the levels of RuBPCase did not decrease with increasing dilution rates. This is in agreement with the batch culture situation where the autotrophic carbon assimilation pathway was found to be functioning during growth on these mixtures. With the glyoxylate/formate mixture the activity of RuBPCase increased with dilution rates parallel to the levels of the enzyme observed during growth on formate alone. Although no RuBPCase synthesis occurred during growth on glyoxylate alone, either in batch or in continuous cultures, the data indicate that during growth on the mixture in continuous culture glyoxylate utilization does not cause repression of the synthesis of this enzyme. The explanation for this appears to be that the rate-limiting step in the metabolism of glyoxylate is in fact its uptake from the medium into the cell (Dijkhuizen, to be published). Thus, during growth on glyoxylate alone the intracellular levels of intermediates of central metabolism can be maintained sufficiently high to repress RuBPCase synthesis. Addition of formate will result in an increased rate of energy generation and an additional pull on these metabolites towards biosynthesis. This cannot be counteracted sufficiently by increased assimilation of glyoxylate carbon and therefore results in derepression of the enzymes of the Calvin cycle. With the fructose/formate mixture the level of RuBPCase remained nearly constant with dilution rate (Fig. 3). The most likely explanation for this response is that a balance exists between the activities and levels of glucose-6-phosphate dehydrogenase, key enzyme in fructose metabolism, and NADH and ATP generated in formate oxidation (Dijkhuizen and Harder, 1984). The latter compounds are effective inhibitors of glucose-6-phosphate dehydrogenase in *P. oxalaticus* and, in addition, the levels of this enzyme were found to decrease with increasing dilution rate during growth in the mixture but not with fructose alone (data not shown). With the formate/oxalate mixture repression of RuBPCase synthesis initially increased with increasing dilution rates. Above $D = 0.05 \text{ h}^{-1}$, however, RuBPCase levels were found to increase again (Dijkhuizen and Harder, 1979b). Since in batch cultures (at μ_{max}) growth on this mixture for unknown reasons resulted in diauxie, it is conceivable that with increasing dilution rates oxalate metabolism is affected by formate itself, or indirectly by products of formate metabolism, in such a way that the capacity of oxalate to repress RuBPCase synthesis diminishes.

The studies described above on mixed substrate utilization offer intriguing examples of the complexity of the regulation of microbial metabolism. The data
show that dependent on the nature of the “heterotrophic” substrate under study great variations in the levels of autotrophic CO$_2$-fixing enzymes may occur. This variation most of all appears to be due to a diversity of regulatory mechanisms involved in the utilization of the “heterotrophic” substrates themselves. Care should therefore be taken in the interpretation of data obtained in one single mixture with respect to the regulation of the synthesis of Calvin cycle enzymes.

We have attempted to point out that in P. oxalaticus, and in other autotrophic bacteria, the extent of CO$_2$ fixation via the Calvin cycle is regulated depending on the availability of intermediates of central metabolism, closely related to compounds which can be designated as end-products of the Calvin cycle. Recent studies with A. eutrophus (Reutz et al., 1982; Im and Friedrich, 1983) suggest that phosphoenolpyruvate is the most prominent candidate for fulfilling an alarmone function in this mechanism of end-product repression. Via hitherto unknown reactions, increasing intracellular concentrations of this compound may cause activation of a repressor protein molecule effective in blocking transcription of the structural genes involved.

CONCLUDING REMARKS

Autotrophic bacteria generally possess effective mechanisms for energy generation, employing either light, inorganic or one-carbon compounds. Provided that there is ample availability of these energy sources, carbon assimilation may proceed via CO$_2$ fixation in the Calvin cycle even in the presence of “heterotrophic” substrates. Both the rate of carbon dioxide fixation and synthesis of the specific enzymes involved however are carefully regulated via feed-back inhibition/repression mechanisms. Clearly, a complete elucidation of the regulatory mechanisms involved at the molecular level in controlling the rate of enzyme synthesis can only be obtained by a genetic analysis of this autotrophic growth system. Such studies have now been initiated in various research groups and are aimed at the isolation of a set of mutants blocked in autotrophic CO$_2$ fixation (Srivastava et al., 1982), the study of regulatory mutants (Weaver and Tabita, 1983) and cloning of the chromosomal genes involved (Curtis and Haselkorn, 1983; Shinozaki et al., 1983; Somerville and Somerville, 1984).

REFERENCES

Herbert, D., Elsworth, R. and Telling, R. C. 1956. The continuous culture of bacteria; a theoreti-
Dukhuizen and W. Harder.

The text contains references to various studies on the activation and regulation of the Calvin cycle enzymes, particularly focusing on ribulose-1,5-bisphosphate carboxylase and phosphoribulokinase, in different bacterial species. The references span from 1969 to 1984, covering topics such as the activation of enzymes by different compounds, the control of carbon assimilation, and the physiological implications of these processes. The studies were conducted in various microorganisms, including Alcaligenes eutrophus, Thiocapsa pelophila, Thiobacillus thioparus, and other species.

Some key references include:

AUTOTROPIC CARBON DIOXIDE FIXATION IN BACTERIA

