Continuous-wave two-photon excitation of individual CdS nanocrystallites

van Oijen, A. M.; Verberk, R.; Durand, Y.; Schmidt, J.; van Lingen, J. N. J.; Bol, A. A.; Meijerink, A.

Published in:
Applied Physics Letters

DOI:
10.1063/1.1391231

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2001

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Continuous-wave two-photon excitation of individual CdS nanocrystallites

A. M. van Oijen, a) R. Verberk, b) Y. Durand, and J. Schmidt
Center for the Study of Excited States of Molecules, Haygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands

J. N. J. van Lingen, A. A. Bol, and A. Meijerink
Debye Institute, Department of Condensed Matter, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands

(Received 13 February 2001; accepted for publication 10 June 2001)

By use of low-temperature confocal microscopy, continuous-wave two-photon fluorescence images are obtained of individual CdS nanocrystallites embedded in a polymer matrix. The quadratic dependence of the emission rate on the applied laser power proves that the observed fluorescence originates from the simultaneous absorption of two photons. From the experimental data the two-photon absorption cross-section $\sigma^{(2)}$ could be determined, resulting in a value smaller than that known from literature. The work presented is a first step towards high-resolution fluorescence-excitation spectroscopy on the electronic states in the band edge, inaccessible by conventional one-photon spectroscopy. © 2001 American Institute of Physics. [DOI: 10.1063/1.1391231]

Nanometer-sized semiconductor crystallites have attracted considerable attention over the last decade owing to their unique physical properties that depend sensitively on size and shape, and their potential use for a wide range of applications.1–3 When the size of a nanocrystallite is reduced to dimensions in the range of or smaller than the bulk exciton radius, the electronic level structure changes appreciably as a result of the confinement of the charge carriers in all three dimensions. This quantum confinement effect causes a shift of the absorption threshold to higher energies and a transition from broad structureless energy bands to discrete energy levels. The associated concentration of oscillator strength into electronic transitions to discrete states at the edge of the conduction band causes semiconductor nanocrystallites to be potentially useful for new and emerging technologies, such as optical switches.4 In order to make the best use of these systems, precise knowledge of the electronic structure is required.

A major obstacle in studies of ensembles of nanocrystallites is the size distribution of the particles which averages spectral features and dynamical properties. In efforts to overcome this problem, hole-burning,5 photon-echo,6 and fluorescence line-narrowing7 spectroscopies have been applied but, while restricting the size distribution, still a large number of nanocrystallites is present in the sampled volumes. This ensemble averaging can be removed by investigating single nanocrystallites, allowing a more direct insight into the optical properties and the electronic states of the particle. The wealth of spectral information obtained by the application of high-resolution fluorescence-excitation spectroscopy on individual quantum systems8–10 in recent years suggests its applicability to CdS nanocrystallites to unravel the spectral properties of the lowest excited states in great detail. Recently, first observations of the emission and the emission spectra of single CdSe11–13 and CdS14,15 nanocrystallites have been published. However, it is not possible to perform one-photon excitation spectroscopy to the band gap of the CdS nanocrystallites because the luminescence occurs mainly in the same wavelength region (see Fig. 1). Emission spectroscopy by excitation high above the band gap and by subsequent analysis of the emission light with a monochromator suffers from a relatively low spectral resolution and the linewidths measured are limited by the bandwidth of monochromators.12,15 An alternative way to obtain high-resolution spectral information about the lowest excited states of single semiconductor nanocrystallites would be the application of two-photon excitation techniques using continuous-wave single-mode lasers. Here the idea is to use light of energy equal to (or slightly greater than) one half the band gap energy to create an electron-hole pair by the simultaneous absorption of two photons. Pulsed two-photon excitation has recently been ap-

a) Present address: Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138.

b) Author to whom correspondence should be addressed; electronic mail: rogier@molphys.leidenuniv.nl

![Graph](image)
plied to monitor the emission from individual CdSe nanocrystallites. The extremely high peak power in pulsed excitation is used to induce the two-photon absorption events that are highly improbable due to the low two-photon absorption cross sections of the nanocrystallites. A drawback is that the Fourier-transformed spectral width of, for instance, picosecond pulses would limit the spectral resolution attainable in this type of fluorescence-excitation spectroscopy to several tens of gigahertz, whereas the linewidth of the lowest transition of the exciton in the CdS nanocrystallites may be of the order of a few megahertz. Here we report the successful confocal imaging of the fluorescence of individual CdS nanocrystallites by two-photon excitation with a single-mode continuous-wave laser source (spectral linewidth \(\leq 1\) MHz). These experiments pave the way for high-resolution fluorescence-excitation spectroscopy on single semiconductor particles.

The preparation of CdS nanocrystallites in an aqueous solution is described in detail elsewhere. In all experiments described in this letter particles were used with a mean diameter of 5 nm, containing approximately \(10^3\) atoms. An emission and absorption spectrum of the colloidal CdS solution is shown in Fig. 1. Thin polymer films with an estimated thickness of less than 1 \(\mu m\) were prepared by spin coating a solution of demineralized water with 0.5% (w/w) poly(vinyl alcohol) (PVA) (\(M_w = 125,000\)) and \(5 \times 10^{-11}\) M CdS particles on a quartz substrate. The sample was mounted in a helium bath cryostat together with a commercial microscope. The sample was excited with a single-mode continuous-wave sapphire laser (810 nm) at an intensity of 6 MW/cm\(^2\) and a wavelength of 810 nm. The observation of discrete on/off blinking of the fluorescence of the dots, both for one-photon and two-photon excitation, identifies the dots in the images as single CdS nanocrystallites [Fig. 2(c)].

The photon count rate in Fig. 2(c) does not show pure on/off behavior. It is known that the fluctuation in the fluorescence intensity of nanocrystallites is caused by two types of processes. Auger ionization of the particle with subse-

![Fig. 2. (a) A fluorescence image (6×6 \(\mu m^2\)) of a sample of CdS nanocrystallites in a layer of PVA spin coated on a quartz substrate. The fluorescence is obtained by a continuous-wave, two-photon excitation of the CdS particles at an excitation intensity of 6 MW/cm\(^2\) and a wavelength of 810 nm. The large white area at the left side corresponds to a clustering of a large number of CdS nanocrystallites, whereas the small numbered dots stem from individual particles. (b) The same area of the sample area depicted in (a), obtained by one-photon excitation of the CdS nanocrystallites at an excitation intensity of 1.2 kW/cm\(^2\) and a wavelength of 457.9 nm. Comparison with the two-photon image in (a) reveals the presence of the same structures and dots. The chromatic aberration, caused by the large difference in excitation wavelengths between (a) and (b), causes the magnification of the optical system for both cases to be slightly different, thereby explaining the slight mismatch in position of the individual features. (c) The fluorescence-time trace, after one-photon excitation, of one of the bright dots visible in the fluorescence images. The on-and-off behavior (blinking) is typical for single quantum systems.]

quent trapping will give rise to a telegraph-like on/off behavior of the emission. At low temperature, however, spectral diffusion of the transitions through the excitation line results in nondiscrete fluctuations of the intensity due to the Lorentzian line shape of the transition. This behavior has already been reported by Koberling et al. and has recently been discussed explicitly by Neuhauser et al.

The transition probability for simultaneous two-photon absorption depends on the square of the incident light intensity. When the CdS nanocrystallites are represented by a single two-level system without any dark states influencing the emission intensity, the count rate \(R\) is given by

\[
R = A_{\text{tot}}\sigma^{(2)} \left(\frac{I}{h\nu} \right)^2.
\]

Downloaded 26 Apr 2010 to 129.125.63.96. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp
When applying two-photon excitation one should take into account that the selection rules for one-photon and two-photon transitions are essentially different. Two-photon transitions are only allowed between states of equal parity whereas absorption of only one photon gives rise to a change of parity. Moreover, two-photon transitions connect states that differ by two or zero units of \hbar in their angular momentum whereas for one-photon transitions this difference is one or zero units of \hbar. Nevertheless, due to the inherent unfeasibility of one-photon fluorescence-excitation spectroscopy of single semiconductor nanocrystallites, two-photon techniques must be considered as a valuable alternative to probe exciton properties that cannot be examined otherwise.

where A_{tot} represents the total collection efficiency of the setup, $\sigma^{(2)}$ is the two-photon absorption cross section, I is the excitation intensity, and $\hbar \omega$ is the energy of the incident photons. Indeed a quadratic intensity dependence on I is observed for the emission of the single nanocrystallites, while the background signal shows a linear intensity dependence. Figure 3 shows the log–log plot of the detected fluorescence signal of a single CdS nanocrystallite versus the excitation intensity. The fluorescence count rate of all the observed nanoparticles proves to be proportional to the square of the intensity. The fluorescence count rate of all the observed nanoparticles proves to be proportional to the square of the intensity. $\sigma^{(2)}$ reveals a proportionality to I^2 whereas absorption of only one photon gives rise to a change of parity. Moreover, two-photon transitions connect states that differ by two or zero units of \hbar in their angular momentum whereas for one-photon transitions this difference is one or zero units of \hbar. Nevertheless, due to the inherent unfeasibility of one-photon fluorescence-excitation spectroscopy of single semiconductor nanocrystallites, two-photon techniques must be considered as a valuable alternative to probe exciton properties that cannot be examined otherwise.

When applying two-photon excitation one should take into account that the selection rules for one-photon and two-photon transitions are essentially different. Two-photon transitions are only allowed between states of equal parity whereas absorption of only one photon gives rise to a change of parity. Moreover, two-photon transitions connect states that differ by two or zero units of \hbar in their angular momentum whereas for one-photon transitions this difference is one or zero units of \hbar. Nevertheless, due to the inherent unfeasibility of one-photon fluorescence-excitation spectroscopy of single semiconductor nanocrystallites, two-photon techniques must be considered as a valuable alternative to probe exciton properties that cannot be examined otherwise.