Structural Anomalies and Multiferroic Behavior in Magnetically Frustrated TbMn$_2$O$_5$

L. C. Chapon,1 G. R. Blake,1,2 M. J. Gutmann,1 S. Park,3 N. Hur,3 P. G. Radaelli,1 and S-W. Cheong3

1ISIS Facility, Rutherford Appleton Laboratory-CCLRC, Chilton, Didcot, Oxfordshire, OX11 0QX, United Kingdom
2Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
3Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA

(Received 15 April 2004; published 18 October 2004)

We have studied the magnetostructural phase diagram of multiferroic TbMn$_2$O$_5$ as a function of temperature and magnetic field by neutron diffraction. Dielectric and magnetic anomalies are found to be associated with steps in the magnetic propagation vector, including a rare example of a commensurate-incommensurate transition on cooling below 24 K, and in the structural parameters. The geometrically frustrated magnetic structure is stabilized by “canted antiferroelectric” displacements of the Mn$^{3+}$ ions, an example of the magnetic Jahn-Teller effect. The Tb moments order ferromagnetically at low temperatures in an applied field, while the Mn magnetic structure is largely unchanged.

Compounds with the general formula RMn$_2$O$_5$ ($R =$ La, Y, rare earth, or Bi) have been studied since the late 1960’s for their unusual magnetic properties [1–4]. These insulators all order antiferromagnetically below 50 K with a propagation vector $(k_x, 0, k_z)$, with $k_x \approx \frac{1}{2}$ (k values are given in reciprocal lattice units (r.l.u.)). k_z varies between 0 and 0.5, displaying a remarkable dependence on the size of the R-site cation and on temperature. This is related to the complexity of the RMn$_2$O$_5$ crystal structure, where Mn$^{4+}$O$_6$ octahedra and Mn$^{3+}$O$_5$ pyramids are linked through edge- and corner-sharing networks, leading to five independent nearest-neighbor (NN) magnetic interactions. Several studies of dielectric and magnetoelectric properties have indicated that RMn$_2$O$_5$ compounds are ferroelectric in their magnetically ordered state [5,6], the spontaneous polarization P being directed along the b axis [6]. These measurements also evidenced several transitions in both dielectric constant and polarization, and it has long been speculated that these may be related to magnetic transitions. A linear magnetoelectric signal has also been evidenced in TbMn$_2$O$_5$ below 10 K, indicating that macroscopic time reversal symmetry is broken upon R-site magnetic ordering [5]. These compounds are very unusual, in that $|P|$ is much smaller than in typical ferroelectrics and there is very little evidence of structural transitions [6]. The mechanism leading to the development of a spontaneous polarization has not yet been clarified. Very recently, Hur and co-workers have shown an even more striking correlation between the magnetic and electric properties of TbMn$_2$O$_5$ [7]: P and the dielectric constant ε undergo four separate transitions, associated with anomalies in the magnetic susceptibility, a remarkable display of multiferroic behavior [8]. The direction of P can be reversed by applying a magnetic field H at low temperatures, and a permanent imprint is left in the polarization. In this Letter, we report neutron diffraction measurements on TbMn$_2$O$_5$ as a function of T and H which show unambiguous correlations between dielectric anomalies and changes in the periodicity of the spin structure. First, the onset of ferroelectricity at 38 K is associated with the appearance of incommensurate antiferromagnetic (AFM) ordering $T_1 = 43$ K. At $T_2 = 33$ K, just above the maximum in P, k locks into a commensurate value $(\frac{1}{4}, 0, \frac{1}{4})$. Remarkably, at $T_3 = 24$ K, where ε has an upward “jump,” k becomes suddenly incommensurate again, a rare example [9,10] of such a transition on cooling. The low-temperature transition ($T_4 = 10$ K) coincides with a major increase of the Tb ordered moment. The 43 and 24 K transitions are accompanied by clear anomalies in the lattice parameters, particularly along the b “polar” axis, and in the atomic displacement parameters (ADPs). Our magnetic structure solution for the commensurate phase strongly suggests that TbMn$_2$O$_5$ is a realization of the AFM square lattice with asymmetric next-nearest-neighbor (NNN) interactions, a simple geometrically frustrated system [11]. In this scenario, small structural displacements would lift the magnetic degeneracy and reduce the exchange energy, an example of the so-called magnetic Jahn-Teller effect [12]. The direction of the observed macroscopic polarization (along the b axis), is a direct consequence of the magnetic symmetry. The unusually small $|P|$ would result from a “canted antiferroelectric” arrangement of the displacement vectors. Upon application of a magnetic field, Tb orders ferromagnetically at low temperatures, while the AFM structure of the Mn sublattices is largely unchanged. Based on these results, we propose a comprehensive explanation of the T and H dependence of P.

Polycrystalline TbMn$_2$O$_5$ was prepared through conventional solid-state reaction in an oxygen environment. Single crystals of TbMn$_2$O$_5$ (typical size 10 mm3) were grown using B$_2$O$_3$-PbO-PbF$_2$ flux in a Pt crucible. Neutron powder and single-crystal diffraction data were collected using the GEM and SXD diffractometers at the
ISIS facility. For the powder experiment, a helium cryostat and a superconducting cryomagnet were employed. Single-crystal data were collected at 27 K, using a closed-cycle refrigerator. Magnetic and structural refinements (space group \textit{Pbam}), were performed with the programs FullProF and GSAS, respectively [13]. The dielectric constant was measured at 1 kHz using an LCR meter. The polarization was calculated by integrating the measured pyroelectric current. Before each pyroelectric current measurement, the sample was cooled from 120 to 3 K in a static electric field, \(E_{\text{pole}} = 4 \text{ kV/cm} \) and zero magnetic field.

The main features of the magnetic phase diagram of \(\text{TbMn}_2\text{O}_5 \) are clearly associated with electric anomalies as summarized in Fig. 1. Magnetic order is first observed at \(T_1 = 43 \text{ K} \) with an incommensurate propagation vector \(\mathbf{k} \approx (0.50, 0, 0.30) \). The growth of magnetic Bragg peaks is mirrored by a decrease of the paramagnetic background. The discommensuration is suppressed at 33 K integrated intensity of the (100)-\(k_z \) Bragg peaks and a further suppression of the background level integrated over \(k_z \) (cross symbol) (see Ref. [7] for details). Vertical dotted lines mark the transition temperatures (see text).

To date, the magnetic structures in \(\text{RMn}_2\text{O}_5 \) have been ascribed either to the helimagnetic [1] or to the spin density wave (SDW) [2,3] types. This complexity was attributed to the presence of various competing exchange interactions (Fig. 3, inset). Along \(c \), \(\text{Mn}^{3+} \) atoms interact via direct exchange and weak superexchange with two inequivalent interactions \((J_1, \text{ through the } R \text{ layer}, J_2 \text{ through the } \text{Mn}^{3+} \text{ layer}) \). The \(\text{Mn}^{4+} \) interacting through \(J_2 \) are also linked to \(\text{Mn}^{3+} \) pyramids either through their pyramidal base corners \((J_3) \) or through the pyramid apex \((J_4) \). \(J_3 \) and \(J_4 \) are both of the superexchange type and are controlled by \(\text{Mn}^{4+} \text{-O-Mn}^{3+} \) bond angles (~123° for \(J_3 \) and ~131° for \(J_4 \)), distinct but both close to the FM/AFM crossover [14]. Finally, the pyramids are linked together by their base edges \((J_5) \). The competition between \(\text{Mn}^{4+} \text{-Mn}^{4+} \) superexchange interactions \((J_2 \text{ vs } J_3/J_4) \) is an obvious ingredient for complexity as \(J_3 \) and \(J_4 \) always tend to align the \(\text{Mn}^{4+} \text{ parallel} \) to each other, whatever their sign, whereas an AFM \(J_2 > 0 \) would have the opposite effect. For large enough \(J_2 \), a helimagnetic
The magnetic structure of the Mn3+/Mn4+ layers is very similar to that of BiMn\textsubscript{2}O\textsubscript{5} or DyMn\textsubscript{2}O\textsubscript{5}. This suggests a stable magnetic arrangement of the Mn4+/Mn3+ layers: Mn4+ ions are always coupled ferromagnetically along the c axis ([J\textsubscript{c}] ≪ |J\textsubscript{a}| and |J\textsubscript{b}| ≪ |J\textsubscript{a}|), and form AFM ...Mn4+-Mn3+-Mn4+... chains along the a axis ([J\textsubscript{a}] ≫ |J\textsubscript{b}|, |J\textsubscript{a}| ≫ 0, and J\textsubscript{b} > 0). However, the R ionic radius “tunes” the magnetic interaction J\textsubscript{a}, so that J\textsubscript{1} < 0 for Dy, J\textsubscript{1} > 0 for Bi, and J\textsubscript{1} alternates >0 and <0 for Tb. The anomalous ADPs observed for the Tb and O(2) atoms could indicate that weak fluctuations in bond lengths along the chain cause the modulation of the exchange integral sign as direct exchange and superexchange compete. With this hierarchy of interactions, the Mn4+ sublattice maps to a very simple system: the square lattice with asymmetric NNN interactions. In this scheme, the NN interactions are conveyed by J\textsubscript{3} and J\textsubscript{4} and are FM or AFM, depending on the sign of J\textsubscript{3}. The NNN interaction along the a axis (through J\textsubscript{4} and J\textsubscript{5}) is stronger than the one along the b axis (through J\textsubscript{3} and J\textsubscript{4}), so that AFM chains along the a axis are always stabilized. This is clearly a geometrically frustrated system: two out of the four magnetic links around each Mn4+ have the wrong sign, whatever the sign of J\textsubscript{3}, leading to exact cancellations of exchange energy terms. A small structural distortion would naturally lift this magnetic degeneracy, leading to a reduction of the exchange energy, as speculated by Kagomiya [6]. Magnetic interactions with the “right” and the “wrong” sign would be strengthened or weakened, respectively, by a modulation of the Mn4+-O-Mn3+ bond angles, a realization of the so-called magnetic Jahn-Teller effect [12]. The allowed direction of P can be unambiguously determined by symmetry analysis. None of these phases can be described within the Schubnikov formalism, but one can still establish that, for the proposed modes, the magnetic
point group is $m2m1'$, which is only compatible with a b axis polar vector, as in the proposed polar space group $Pb2_1m$ [6]. A possible pattern for the case $J_2 > 0$, involving Mn$^{3+}$ displacements along the axis of the pyramids, is shown in Fig. 3. Although the displacements are along a general crystallographic direction in the ab plane, the a-component cancels out identically, while the smaller b-axis component does not. This “canted antiferroelectricity” is the dielectric analogue of weak ferromagnetism arising from a canted AFM arrangement. Our field-dependent data (inset to Fig. 4) provide further insight into the complex field and temperature dependence of \mathbf{P}. In an applied field of 2.5 T the Tb moments order ferromagnetically with a dominant a-axis component, in agreement with the magnetization data [7]. However, the magnetic structure of the Mn sublattice is essentially the same at 15 K $H = 0$ T and at $T = 1.5$ K $H = 2.5$ T. This can be shown by subtracting the 15 K zero-field data from the 1.5 K, 2.5 T data, leaving an essentially perfect ferromagnetic pattern. Also, \mathbf{k} is unaffected by the field. These results, together with the observation that the field effect on \mathbf{P} is the same regardless of the sign of H (along the a axis) [7], lead one to conclude that the main effect of H is to suppress the Tb contribution to \mathbf{P}, as its moments are aligned FM. In high field, one would measure the pure contribution to \mathbf{P} of the other sublattices; its temperature dependence indicates that \mathbf{P} changes sign at the commensurate-incommensurate transition (Fig. 1). YMn$_2$O$_5$ undergoes an analogous polarization reversal at 20 K [6], strongly supporting this interpretation. This remarkable effect can be understood by the concept of coherent superposition of different “regions.” Within each Mn$^{3+}$/Mn$^{4+}$ layer, there are 4 possible magnetic configurations, which can be obtained by reversing one (I or II) or both of the a-axis AFM chains in Fig. 3. The configurations “+ +” and “− −” would have a given direction of the polarization (say, $b+$), while the other two “+ −” and “− +” would have the opposite ($b−$). Once the sample is poled in the $b+$ direction, the commensurate phase will contain “+ +” and “− −” regions only, alternating along the c axis. We speculate that the incommensurate phase contains variable mixtures of the other two configurations, with relative proportion and spacing being related to the incommensurability. This provides a simple explanation for the initial reduction of $|\mathbf{P}|$ on cooling below 25 K [7], and can lead, on further cooling, to a complete reversal of the polarization of the Mn sublattice.

In summary, we have shown that a strict correlation exists between the electric and magnetic transitions of TbMn$_2$O$_5$, as identified by Hur et al. [7], changes in its magnetic structure, and small lattice anomalies. These observations, together with a careful analysis of the magnetic symmetry, provide a plausible explanation of the unusually small ferroelectric polarization in TbMn$_2$O$_5$. In analogy with the well-known magnetic case, we propose that weak ferroelectricity in RMn$_2$O$_5$ arises from a canted antiferroelectric arrangement of the atomic displacement. The evolution of the spontaneous polarization and of the magnetic structure on cooling and as a function of applied field is interpreted in terms of phase coherence between magnetically ordered Mn$^{4+}$/Mn$^{3+}$ layers.

We acknowledge the invaluable help of Juan Rodriguez-Carvajal and helpful discussions with Daniel Khomskii. Research at Rutgers was supported by the NSF-DMR-0405682.