DTGAN
Zhang, Zhenxing; Schomaker, Lambert

Published in:
ArXiv

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Early version, also known as pre-print

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 27-11-2022
DTGAN: Dual Attention Generative Adversarial Networks for Text-to-Image Generation

Zhenxing Zhang and Lambert Schomaker
University of Groningen
{z.zhang,l.r.b.schomaker}@rug.nl

Abstract

Most existing text-to-image generation methods adopt a multi-stage modular architecture which has three significant problems: 1) Training multiple networks increases the run time and affects the convergence and stability of the generative model; 2) These approaches ignore the quality of early-stage generator images; 3) Many discriminators need to be trained. To this end, we propose the Dual Attention Generative Adversarial Network (DTGAN) which can synthesize high-quality and semantically consistent images only employing a single generator/discriminator pair. The proposed model introduces channel-aware and pixel-aware attention modules that can guide the generator to focus on text-relevant channels and pixels based on the global sentence vector and to fine-tune original feature maps using attention weights. Also, Conditional Adaptive Instance-Layer Normalization (CAdaILN) is presented to help our attention modules flexibly control the amount of change in shape and texture by the input natural-language description. Furthermore, a new type of visual loss is utilized to enhance the image resolution by ensuring vivid shape and perceptually uniform color distributions of generated images. Experimental results on benchmark datasets demonstrate the superiority of our proposed method compared to the state-of-the-art models with a multi-stage framework. Visualization of the attention maps shows that the channel-aware attention module is able to localize the discriminative regions, while the pixel-aware attention module has the ability to capture the globally visual contents for the generation of an image.

1. Introduction

Generating high-resolution realistic images conditioned on given text descriptions has become an attractive and challenging task in computer vision (CV) and natural language processing (NLP). It has various potential applications, such as art generation, photo-editing and video games. Recent work has achieved crucial improvements in the quality of generated samples through generative adversarial network (GAN) [7, 23, 24, 39], while also boosting the semantic consistency between generated visually realistic images and given natural-language descriptions.

However, most state-of-the-art approaches in text-to-image generation [12, 18, 22, 33, 35, 37, 38, 41] are based on a multi-stage framework as shown in Figure 1(a). Specifically, the network comprises multiple generators which have corresponding discriminators. Furthermore, the generator of the next stage takes the result of the previous stage as the input. This framework has proven to be useful for the task of text-to-image synthesis, but there still exist three significant problems. Firstly, training many networks increases the computation time compared to a unified model and affects the convergence and stability of the generative model [29]. Even worse, the final generator network cannot be improved if the previous generators do not converge to a global optimum, since the final generator loss does not propagate back. Secondly, this framework ignores the quality of early-stage generator images which plays a
vital role in the resolution of finally-generated images [41]. The generator networks for precursor images are only composed of up-sampling layers and convolution layers, lacking the image integration and refinement process with the input natural-language descriptions. Thirdly, multiple discriminators need to be trained.

To address the issues mentioned above, we propose a novel Dual Attention Generative Adversarial Network (DTGAN) which can fine-tune the feature maps for each scale according to the given text descriptions, and synthesize high-quality images only using a single generator/discriminator pair. The overall architecture of the DTGAN is illustrated in Figure 1(b). Our DTGAN consists of four new components, including two new types of attention modules, a new normalization layer, and a new type of visual loss. The first two components in the DTGAN are our designed channel-aware and pixel-aware attention modules which can guide the generator network to focus more on important channels and pixels, and to ignore text-irrelevant channels and pixels by computing attention weights between the global sentence vector and two aforementioned factors. Different from earlier attention models [12, 33], we apply the attention scores to fine-tune original feature maps rather than adopt the weighted sum of converted word features as new feature maps. We expect that our proposed attention method will significantly improve the semantic consistency of generated images. In the third ingredient, inspired by Adaptive Layer-Instance Normalization (AdaLIN) [9], we present Conditional Adaptive Instance-Layer Normalization (CAdaILN), where the ratio between Instance Normalization [30] and Layer Normalization [2] is adaptively learned during training and the global sentence vector is employed to scale and shift the normalized result. The CAdaILN function is complementary to the attention modules and helps with controlling the amount of change in shape and texture. As a result, armed with the attention modules and CAdaILN, our network can generate photo-realistic images only exploiting a single generator/discriminator pair. The last proposed component is a new variant for computing visual loss. It is introduced to ensure that generated images and real images have similar color distributions and shape. We expect that the choice of this novel visual loss has a considerable impact on the quality of generated results.

We perform extensive experiments on the CUB bird [32] and MS COCO [17] datasets to evaluate the effectiveness of our proposed DTGAN. Both qualitative and quantitative results demonstrate that our approach outperforms existing state-of-the-art models. In addition, visualization of the attention maps shows that the channel-aware attention module is able to localize the important parts of an image, while the channel-aware attention module has the ability to capture the globally visual contents. The contributions of our work can be summarized as follows:

- To the best of our knowledge, we are the first to propose the fine-tuning on each scale of feature maps using the attention modules and the conditional normalization function, in order to generate high-quality and semantically consistent images only employing a single generator/discriminator pair.
- We design two new types of attention modules to guide the generator to focus on text-relevant channels and pixels, and to refine the feature maps for each scale.
- CAdaILN is presented to help attention modules flexibly control the amount of change in shape and texture.
- We are the first to introduce the visual loss in text-to-image synthesis to enhance the image quality.

2. Related Work

Text-to-Image Generation. In recent years, the task of text-to-image synthesis has attracted rapidly growing attention from both CV and NLP communities. Thanks to the significant improvements in image generation approaches especially GAN, researchers have achieved inspiring advances in the task of text-to-image generation. The conditional GAN [23] was first presented by Reed et al. [24] to generate plausible images from detailed text descriptions. The problem of text-to-image generation was decomposed by Zhang et al. [37, 38] into multiple stages. Each stage accomplished the corresponding task by using different generators and discriminators. We aim to generate high-quality images with photo-realistic details just employing a pair of generator and discriminator. Qiao et al. [22] introduced the image caption model to regenerate the text description from the generated image, in order to enhance the semantic relevance between the text description and visual content. Zhu et al. [41] applied a dynamic memory module to refine the image quality of the initial stage.

Attention. Attention mechanisms play a vital role in bridging the semantic gap between vision and language. They have been extensively explored in the interdisciplinary fields, such as image captioning [3, 20], visual question answering [1, 10, 13] and visual dialog [4, 19]. Over the past few years, there have been some attention methods for the task of text-to-image generation. Xu et al. [33] utilized a word-level spatial attention mechanism to obtain the relationship between the subregions of the generated image and the words in the input text. The most relevant subregions to the words were very focused. Li et al. [12] designed a word-level channel-wise attention mechanism on the basis of Xu et al. [33], simultaneously taking spatial and channel information into account. However, the aforementioned attention works adopt the weighted sum of converted word features as the new feature map which is largely different from the original feature map. We propose to fine-tune the original feature map using the channel-aware attention weights
Figure 2. The architecture of the proposed DTGAN. In (a), F is a fully-connected layer, CAM is a channel-aware attention module discussed in Section 3.1, PAM is a pixel-aware attention module discussed in Section 3.2 and CAdaILN is Conditional Adaptive Instance-Layer Normalization discussed in Section 3.3. In (b), MA-GP loss is a Matching-Aware zero-centered Gradient Penalty loss introduced in Section 3.5.

and the pixel-aware attention weights.

3. DTGAN for Text-to-Image Generation

In this section, we elaborate on our proposed DTGAN which is shown in Figure 2. Unlike prior works [12, 18, 22, 33, 35, 37, 38, 41], our goal is to generate a high-quality and visually realistic image which semantically aligns with a given natural-language description only employing a single generator/discriminator pair. To this end, we present four significant components: a channel-aware attention module, a pixel-aware attention module, Conditional Adaptive Instance-Layer Normalization (CAdaILN) and a new type of visual loss. Each of them will be discussed in detail after briefly describing the overall framework of our model.

As shown in Figure 2, our architecture is composed of a text encoder and a generator/discriminator pair. For text encoder, we adopt a bidirectional Long Short-Term Memory (LSTM) network [27] to learn the semantic representation of a given text description. Specifically, in the bidirectional LSTM layer, two hidden states are employed to capture the semantic meaning of a word and the last hidden states are utilized to represent the sentence features.

The generator network of the DTGAN takes a global sentence vector and a noise vector as the input and consists of seven dual-attention layers which are responsible for different scales of feature maps. Each dual-attention layer comprises two convolution layers, two CAdaILN layers, a channel-aware attention module and a pixel-aware attention module. Mathematically,

\[
h_0 = F_0(z) \tag{1}
\]
\[
h_1 = F^{Dual}_1(h_0, s) \tag{2}
\]
\[
h_i = F^{Dual}_i(h_{i-1} \uparrow, s) \quad \text{for} \quad i = 2, 3, ..., 7 \tag{3}
\]
\[
o = G_c(h_7) \tag{4}
\]

where \(z\) is a noise vector from the normal distribution, \(F_0\) is a fully-connected layer, \(F^{Dual}_i\) is our proposed dual-attention layer, \(G_c\) is the last convolution layer, \(h_0\) is the output of the first fully-connected layer, \(h_1-h_7\) are the outputs of dual-attention layers and \(o\) is the generated image.

In order to take into account both channel information and spatial pixels, we present the channel-aware and pixel-aware attention modules. Different from AttnGAN [33] and ControlGAN [12], we attend to fine-tune original feature maps for each scale using attention modules, rather than adopt the weighted sum of converted word features as the new feature maps. The experiments conducted on benchmark datasets show the superiority of our proposed attention modules compared to AttnGAN and ControlGAN.

3.1. Channel-aware Attention Module

The feature map of each channel at the convolution layer plays different roles in generating the image which semantically aligns with the given text description. Without fine-tuning the channel maps at the generative stage according to the text description, the generated result can lack the semantic relevancy to the given text description. Thus, we introduce a channel-aware attention module to guide the generator to focus on text-relevant channels and ignore minor channels.

The process of the channel-aware attention module is shown in Figure 3. The channel-aware attention module takes two inputs: the feature map \(h \) and the global sentence vector \(s \). Firstly, we perform global average pooling and global max pooling on \(h \) to extract the channel features:

\[x_a = \text{GAP}(h) \]
\[x_m = \text{GMP}(h) \]

where GAP denotes global average pooling, GMP is global max pooling.

Then, we adopt a query, key and value setting to capture the semantic relevancy between channels and the input text, where \(x_a \) and \(x_m \) are used as the query and \(s \) is selected as the key and the value. It is defined as:

\[q_{ac} = W_{qa}x_a, q_{mc} = W_{qm}x_m \]
\[k_c = W_{kc}s, v_c = W_{vc}s \]

where \(W_{qa}, W_{qm}, W_{kc}, \) and \(W_{vc} \) are the projection matrices which are implemented as \(1 \times 1 \) convolutions.

Assuming that the dot products between the sentence-level key \(k_c^{T} \) and the average-pooling query \(q_{ac} \), the max-pooling query \(q_{mc} \) can capture meaningful features, the attention scores of channel maps are achieved through the following attention mechanism [31]:

\[\alpha_a^c = q_{ac} \cdot k_c^{T}, \alpha_m^c = q_{mc} \cdot k_c^{T} \] \hspace{1cm} (9)
\[\alpha_a^m = \text{softmax}(\alpha_a^m \cdot v_c) \] \hspace{1cm} (10)
\[\alpha_m^c = \text{softmax}(\alpha_m^c \cdot v_c) \] \hspace{1cm} (11)

where \(\alpha_a^c \) and \(\alpha_m^c \) represent the semantic similarity between channel maps and the global sentence vector, \(\alpha_a^c \in \mathbb{R}^{C \times 1 \times 1} \) and \(\alpha_m^c \in \mathbb{R}^{C \times 1 \times 1} \) denote the final attention weights of channels for global average pooling and global max pooling, respectively.

After acquiring the attention weights of channels, we multiply them and the original feature maps to update the feature maps. It is denoted as:

\[o_{ac} = \alpha_a^c \odot h \]
\[o_{mc} = \alpha_m^c \odot h \]

where \(\odot \) is the element-wise multiplication. By doing so, the network will focus on the channels which are more semantically related to the given text description.

Meanwhile, the results of global average pooling and global max pooling are fused through concatenation. Specifically,

\[o_c = \sigma(W_c[O_{ac}; O_{mc}]) \] \hspace{1cm} (14)

where \(W_c \) is implemented as \(1 \times 1 \) convolution, \(\sigma \) is a nonlinear function, such as ReLU.

We further apply an adaptive residual connection [36] to generate the final result. It is defined as follows:

\[y_c = \gamma_c \ast o_c + h \] \hspace{1cm} (15)

where \(\gamma_c \) is a learnable parameter which is initialized as 0.

As can be seen from above, our designed channel-aware attention model is a fine-tuning module based on channel information and text features. Moreover, it is applied on each scale of feature maps to improve the semantic consistency of generated samples at the generative stage.

3.2. Pixel-aware Attention Module

An image is composed of correlated pixels which are of central importance for the quality and semantic consistency of synthesized images. Thus, we propose a pixel-aware attention module to effectively model the relationships between spatial pixels and the given natural-language description, and to make the important pixels receive more attentions from the generator.

The framework of the pixel-aware attention module is illustrated in Figure 4. Given the feature map \(h \) and the global sentence vector \(s \), we first exploit average pooling and max pooling to process \(h \). Specifically,

\[e_a = \text{SAP}(h) \]
\[e_m = \text{SMP}(h) \]

\[\alpha_a^{\gamma} = q_{ac} \cdot k_{c}^{T}, \alpha_m^{\gamma} = q_{mc} \cdot k_{c}^{T} \] \hspace{1cm} (16)
\[\alpha_a^{mc} = \text{softmax}(\alpha_a^{mc} \cdot v_c) \] \hspace{1cm} (17)
where SAP and SMP represent average pooling and max pooling in the spatial dimension, respectively.

Then, s is adopted as the key and the value:

$$k_p = W_{kp}s, v_p = W_{vp}s$$

where W_{kp} and W_{vp} are the learnable matrices which are implemented as 1×1 convolutions.

After that, we compute the dot products of the new feature maps and the key to get the semantic similarity \hat{a}_a^p and \hat{a}_m^p between spatial pixels and the global sentence vector. Furthermore, the attention weights are calculated through a softmax function on the dot products of the semantic similarity and the value. It is defined as:

$$\hat{a}_a^p = e_a \cdot k_p^T, \hat{a}_m^p = e_m \cdot k_p^T$$

$$a_a^p = \text{softmax}(\hat{a}_a^p \cdot v_p)$$

$$a_m^p = \text{softmax}(\hat{a}_m^p \cdot v_p)$$

where a_a^p and a_m^p represent the final attention weights of spatial pixels for average pooling and max pooling, respectively.

Next, same as the channel-aware attention module, we perform a matrix multiplication between the attention weights and the original feature maps to derive the new features o_{ap} and o_{mp}:

$$o_{ap} = a_a^p \odot \hat{h}$$

$$o_{mp} = a_m^p \odot \hat{h}$$

In addition, we concatenate o_{ap} and o_{mp}, and apply a nonlinear function σ to compute the result o_p. Finally, an adaptive residual connection [36] is utilized to combine \hat{h} and o_p. This process is denoted as:

$$o_p = \sigma(W_p[o_{ap}; o_{mp}])$$

$$y_p = \gamma_p * o_p + \hat{h}$$

where W_p is implemented as 1×1 convolution, σ is a nonlinear function, such as ReLU, γ_p is a learnable parameter which is initialized as 0.

3.3. Conditional Adaptive Instance-Layer Normalization (CAdaILN)

In order to stabilize the training of GAN [5], most existing text-to-image generation models [12, 22, 33, 34, 41] employ Batch Normalization (BN) [8] which applies the normalization to a whole batch of generated images instead for single ones. However, the convergence of BN heavily depends on the size of a batch [15]. Furthermore, the advantage of BN is not obvious for text-to-image generation since each generated image is more pertinent to the given text description and the feature map itself. To this end, CAdaILN, inspired by U-GAT-IT [9], is designed to perform the normalization in the layer and channel on the feature map and its parameters γ and β are computed by a fully-connected layer from the global sentence vector. CAdaILN is able to help with controlling the amount of change in shape and texture based on the input natural-language text. Mathematically,

$$\hat{a}_I = \frac{a - \mu_I}{\sqrt{\sigma_I^2 + \epsilon}}, \hat{a}_L = \frac{a - \mu_L}{\sqrt{\sigma_L^2 + \epsilon}}$$

$$\gamma = W_1 s, \beta = W_2 s$$

$$\hat{a} = \gamma \odot (\rho \odot \hat{a}_I + (1 - \rho) \odot \hat{a}_L) + \beta$$

where a is the processed feature map, μ_I, μ_L and σ_I, σ_L respectively denote the mean and standard deviation in the channel and layer on the feature map, \hat{a}_I and \hat{a}_L represent the output of Instance Normalization (IN) and Layer Normalization (LN) respectively, γ and β are determined by the global sentence vector s, W_1 and W_2 are fully-connected layers, \hat{a} is the output of CAdaILN. The ratio of IN and LN is dependent on a learnable parameter ρ, whose value is constrained to the range of $[0, 1]$. Moreover, ρ is updated together with generator parameters.

3.4. Visual Loss

To ensure that generated images and real images have similar color distributions and shape, we propose a new type of visual loss for the generator which is illustrated in Figure 2. The visual loss plays a vital role in improving the quality and resolution of finally-generated images. It is based on the image features of the real image I and the generated sample \hat{I}, and defined as:

$$L_{vis} = \left| f(I) - f(\hat{I}) \right|_1$$

where $f(I)$ and $f(\hat{I})$ denote the image features of the real image and the the fake image which are extracted by the discriminator. We impose a L1 loss to minimize the distance between these two image features. To the best of our knowledge, we are the first to present this type of visual loss and apply it in the task of text-to-image generation.
3.5. Objective Function

Adversarial Loss. An adversarial loss is employed to match generated samples to the input text. Inspired by [16, 29, 36], we utilize the hinge objective [16] for stable training instead of the vanilla GAN objective. The adversarial loss for the discriminator is formulated as:

\[
\mathcal{L}^D_{\text{adv}} = \mathbb{E}_{x \sim p_{\text{data}}} \left[\max(0, 1 - D(x, s)) \right] + \frac{1}{2} \mathbb{E}_{x \sim p_G} \left[\max(0, 1 + D(x, s)) \right] + \frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} \left[\max(0, 1 + D(x, s)) \right]
\]

where \(s \) is a given text description, \(\hat{s} \) is a mismatched natural-language description.

The corresponding generator loss is:

\[
\mathcal{L}^G_{\text{adv}} = \mathbb{E}_{x \sim p_G} [D(x, s)]
\]

Matching-Aware zero-centered Gradient Penalty (MA-GP) Loss. To enhance the quality and semantic consistency of generated images, we adopt the MA-GP loss [29] for the discriminator. The MA-GP loss applies gradient penalty to real images and given text descriptions. It is as follows:

\[
\mathcal{L}_M = \mathbb{E}_{x \sim p_{\text{data}}} \left[\left(\left\| \nabla_x D(x, s) \right\|_2 + \left\| \nabla_s D(x, s) \right\|_2 \right)^p \right]
\]

Generator Objective. The generator loss comprises an adversarial loss \(\mathcal{L}^G_{\text{adv}} \) and a visual loss \(\mathcal{L}_{\text{vis}} \):

\[
\mathcal{L}_G = \mathcal{L}^G_{\text{adv}} + \lambda_1 \mathcal{L}_{\text{vis}}
\]

Discriminator Objective. The final objective function of the discriminator is defined as follows:

\[
\mathcal{L}_D = \mathcal{L}^D_{\text{adv}} + \lambda_2 \mathcal{L}_M
\]

4. Experiments

In this section, we carry out a set of experiments on the CUB bird [32] and MS COCO [17] datasets, in order to quantitatively and qualitatively evaluate the effectiveness of the proposed DTGAN. The previous state-of-the-art GAN models in text-to-image synthesis, GAN-INT-CLS [24], GAWWN [25], StackGAN++ [38], AttnGAN [33] and ControlGAN [12], are first compared with our approach. Then, we analyze the significant components of our designed architecture.

4.1. Datasets

Two popular datasets in text-to-image generation, CUB bird and MS COCO datasets, are employed to test our method. The CUB dataset encompasses 11,788 images which are split into 8,855 training images and 2,933 test images. The MS COCO dataset contains 123,287 images which are split into 82,783 training images and 40,504 validation images. Each image in the CUB dataset and MS COCO dataset has ten corresponding text descriptions and five corresponding text descriptions, respectively. We preprocess the CUB dataset using the method in StackGAN [37].

4.2. Evaluation metric

Inception score (IS) [26] and Fréchet inception distance (FID) [28] score are extensively employed in the assessment of text-to-image generation. We adopt these two indexes as the quantitative evaluation measure and generate 30000 images from unseen text descriptions for each metric.

IS. The IS is to evaluate the visual quality of the generated images via the KL divergence between the conditional class distribution and the marginal class distribution. It’s defined as:

\[
I = \exp \left(\mathbb{E}_x [D_{KL}(p(y|x) \| p(y))] \right)
\]

where \(x \) is a generated sample and \(y \) is the corresponding label obtained by a pre-trained Inception v3 network [28].

FID. Same as the IS, the FID is also to assess the quality of generated samples by computing the Fréchet distance between the generated image distribution and the real image distribution. We use a pre-trained Inception v3 network to achieve the FID. A lower FID means that the generated samples are closer to the corresponding real images.

However, it is important to note that the IS on the COCO dataset fails to evaluate the image quality and can be saturated, even over-fitted, which is observed by ObjGAN [14] and DFGAN [29]. Therefore, we do not utilize the IS as the evaluation metric on the COCO dataset. We further find that R-precision [6], presented by AttnGAN [33], can not reflect the semantic relation between generated images and given text descriptions, since experimental results show that the R-precision of real images is only 22.22%. Thus, R-precision is not applied on the validation of our model.

4.3. Implementation details

For text encoder, the dimension \(D \) is set to 256 and the length of words is set to 18. We implement our model using PyTorch [21]. In the experiments, the network is trained using Adam optimizer [11] with \(\beta_1 = 0.0 \) and \(\beta_2 = 0.9 \). We follow the two timescale update rule (TTUR) [6] and set the learning rate of the generator and the discriminator to 0.0001 and 0.0004. The batch size is set to 24. The hyper-parameters \(p \), \(\lambda_1 \) and \(\lambda_2 \) are set to 6, 0.1 and 2, respectively.

4.4. Comparison with State of the Art

Quantitative Results. We compare our model with prior state-of-the-art GAN approaches in text-to-image synthesis...
This long-billed bird has a blackish-grey body with a white nape and a very large wingspan. This is a white bird with a grey wing and an orange beak. This bird is completely covered in shades of black and white. The bird is a mixture of yellow, black, and white with a sharp pointed beak. Two people standing next to each other on a ski slope. A man surfing on a surfboard in the ocean. People are sitting on the sand at the beach. A cheese and tomato pizza on a serving dish.

Figure 5. Qualitative comparison of three approaches conditioned on the text descriptions on the CUB and COCO datasets.

<table>
<thead>
<tr>
<th>Methods</th>
<th>IS ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAN-INT-CLS [24]</td>
<td>2.88±0.04</td>
</tr>
<tr>
<td>GAWWN [25]</td>
<td>3.62±0.07</td>
</tr>
<tr>
<td>StackGAN++ [38]</td>
<td>4.04±0.05</td>
</tr>
<tr>
<td>AttnGAN [33]</td>
<td>4.36±0.03</td>
</tr>
<tr>
<td>ControlGAN [12]</td>
<td>4.58±0.09</td>
</tr>
<tr>
<td>Ours</td>
<td>4.88±0.03</td>
</tr>
</tbody>
</table>

Table 1. The IS of state-of-the-art approaches and our model on the CUB dataset. The best score is in bold.

<table>
<thead>
<tr>
<th>Datasets</th>
<th>StackGAN++ [38]</th>
<th>AttnGAN [33]</th>
<th>Ours</th>
<th>FID</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUB</td>
<td>26.07</td>
<td>23.98</td>
<td>16.35</td>
<td>23.61</td>
</tr>
<tr>
<td>COCO</td>
<td>51.62</td>
<td>35.49</td>
<td>23.61</td>
<td>16.35</td>
</tr>
</tbody>
</table>

Table 2. The FID of StackGAN++, AttnGAN and our model on the CUB and COCO datasets. The best results are in bold.

Qualitative Results. In addition to quantitative experiments, we perform qualitative comparison with StackGAN++ [38] and AttnGAN [33] on both datasets, which is illustrated in Figure 5. It can be observed that the details of birds generated by StackGAN++ and AttnGAN are lost (2th, 3th and 4th column), the shape is strange (1th, 2th and 3th column) and the colors are even wrong (3th column). Furthermore, the samples synthesized by these two approaches lack text-relevant objects (5th, 6th and 7th column), the backgrounds are unclear and inconsistent with the given text descriptions (5th and 7th column), and the colors are rough (8th column) on the challenging COCO dataset. However, our DTGAN generates more clear and visually plausible images than StackGAN++ and AttnGAN, verifying the superiority of our DTGAN. For instance, as shown in the 1th column, owing to the successful application of the visual loss, a long-wingspan bird with vivid shape is produced by the DTGAN, whereas it is too hard for StackGAN++ and AttnGAN to generate this kind of bird. In the meantime, the birds generated by the DTGAN have more details and richer color distributions compared to StackGAN++ and AttnGAN in the 2nd, 3rd and 4th column, since the DTGAN armed with channel-aware and pixel-aware attention modules is able to generate high-resolution images which semantically align with given descriptions. More importantly, our method also yields high-quality and visually realistic results on the challenging COCO dataset. For example, the number of the skiers and surfers is correct, the backgrounds are reasonable and people in the images are clear in the 5th and 6th column. Moreover, the beach and the sea are very beautiful in the 7th column and the pizza looks delicious in the 8th column. Generally, these qualita-
A colorful bird has wings with dark stripes and small eyes.

Figure 6. Generated images of the DTGAN by changing the color attribute value in the input text description, for four random draws.

Figure 7. Visualization of the channel-aware (detailed features) and pixel-aware (global shape) attention maps.

Table 3. Ablation study of our DTGAN. CAM, PAM and VL represent the channel-aware attention module, the pixel-aware attention module and the visual loss, respectively. The best results are in bold.

4.5. Component Analysis

In this section, we perform an extensive ablation study on the CUB dataset, so as to evaluate the contributions from different components of our DTGAN. The novel components in our model include a channel-aware attention module (CAM), a pixel-aware attention module (PAM), CAdaILN and a new type of visual loss (VL). We first quantitatively explore the effectiveness of each component by removing the corresponding part in the DTGAN step by step, i.e., 1) DTGAN, 2) DTGAN without the VL, 3) DTGAN without CAdaILN, 4) DTGAN without the PAM, 5) DTGAN without the CAM, 6) DTGAN without the CAM and PAM. All the results are reported in Table 3.

By comparing Model 1 (DTGAN) with Model 2 (removing the VL), the VL significantly improves the IS from 4.72 to 4.88 and reduces the FID by 2.88 on the CUB dataset, which demonstrates the importance of adopting VL in the DTGAN. By exploiting CAdaILN in our DTGAN, Model 1 performs better than Model 3 (removing CAdaILN) on the IS and FID by 2.62 and 75.18, confirming the effectiveness of the proposed CAdaILN. Both Model 4 (removing the CAM) and Model 5 (removing the PAM) outperform Model 6 (removing the CAM and PAM), indicating that these two new types of attention modules can help the generator produce more realistic images. Furthermore, Model 1 achieves better results than both Model 4 and Model 5, which shows the advantage of combining the CAM and PAM.

To better understand what has been learned by the CAM and PAM during training, we visualize the channel-aware and pixel-aware attention maps for different images in Figure 7. We can see that in the 2th row, the eyes, beaks, legs and wings of birds are highlighted by the channel-aware attention maps. Meanwhile, in the 3th row, the pixel-aware attention maps highlight most important areas of images, including the branches and the whole bodies of birds. This suggests that the CAM helps the generator focus on the crucial parts of birds, while the PAM guides the generator to refine the globally visual contents. Then, the generator can fine-tune the discriminative regions of images obtained by our attention modules.

Visual Loss. To balance the trade-off between image qual-
This bird has a long black tail and dark brown wings.
Ours without visual loss
This bird has long, triangular wings, and black feathers.
Ours
This bird has a very light blue body, with a little light blue beak, and some brown feathers on its wings.

Figure 8. Visual comparison of the effect of our visual loss (VL) module, yielding more vivid shape and richer color distributions (bottom row).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
<th>IS ↑</th>
<th>FID ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_1</td>
<td>0.05</td>
<td>4.74 ± 0.05</td>
<td>18.15</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>4.88 ± 0.03</td>
<td>16.35</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>4.82 ± 0.06</td>
<td>16.75</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>4.59 ± 0.04</td>
<td>20.91</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>4.70 ± 0.06</td>
<td>20.28</td>
</tr>
</tbody>
</table>

Table 4. Evaluation of the DTGAN for different values of λ_1, which is the weight of the visual loss (VL) in the generator. The best result is in bold.

Ground Truth

Ours without visual loss

Ours

In addition, we conduct an ablation study to validate the effectiveness of the VL. The visual comparison between the DTGAN and our model without the VL is shown in Figure 8. We can see that, in the first two columns, the DTGAN without the VL fails to generate long-wingspan birds with reasonable shape and vivid wings. In the meantime, the proposed model without the VL synthesizes the blue birds which have rough color distributions and lack colorful details in the last two columns. However, the DTGAN produces realistic long-wingspan birds which have semantically consistent shape and colors, while also yielding blue birds with more vivid details and richer color distributions. This indicates that the VL has the ability to potentially ensure the quality of the generated image, including the shape and color distributions of objects in an image.

In addition, we conduct an ablation study for normalization functions. We first design a baseline model by removing CAdaILN from the DTGAN. Then we compare the variants of normalization layers. Note that BN conditioned on the global sentence vector (BN-sent) and BN conditioned on the word vectors (BN-word) are based on the conditional normalization methods in SDGAN [34], and CAdaILN based on the word vectors (CAdaILN-word) is revised on the basis of CAdaILN according to the word-level normalization method in SDGAN. The results of the ablation study are shown in Table 5.

<table>
<thead>
<tr>
<th>ID</th>
<th>Architecture</th>
<th>IS ↑</th>
<th>FID ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baseline</td>
<td>2.26 ± 0.02</td>
<td>91.53</td>
</tr>
<tr>
<td>2</td>
<td>+BN-sent</td>
<td>4.67 ± 0.07</td>
<td>19.76</td>
</tr>
<tr>
<td>3</td>
<td>+BN-word</td>
<td>4.68 ± 0.04</td>
<td>19.46</td>
</tr>
<tr>
<td>4</td>
<td>+CAdaILN</td>
<td>4.88 ± 0.03</td>
<td>16.35</td>
</tr>
<tr>
<td>5</td>
<td>+CAdaILN-word</td>
<td>4.71 ± 0.07</td>
<td>19.08</td>
</tr>
</tbody>
</table>

Table 5. Ablation study on CAdaILN. BN-sent indicates Batch Normalization conditioned on the global sentence vector, BN-word indicates Batch Normalization conditioned on the word vectors and CAdaILN-word indicates the CAdaILN function based on the word vectors.

CAdaILN. To further verify the benefits of CAdaILN, we conduct an ablation study for normalization functions. We first design a baseline model by removing CAdaILN from the DTGAN. Then we compare the variants of normalization layers. Note that BN conditioned on the global sentence vector (BN-sent) and BN conditioned on the word vectors (BN-word) are based on the conditional normalization methods in SDGAN [34], and CAdaILN based on the word vectors (CAdaILN-word) is revised on the basis of CAdaILN according to the word-level normalization method in SDGAN. The results of the ablation study are shown in Table 5. It can be observed that by comparing Model 2 with Model 4 and Model 3 with Model 5, CAdaILN significantly outperforms the BN layer whether using the sentence-level cues or the word-level cues. Moreover, by comparing Model 4 with Model 5, CAdaILN with the global sentence vector performs better than CAdaILN-word by improving the IS from 4.71 to 4.88 and reducing the FID from 19.08 to 16.35 on the CUB dataset, since sentence-level features are easier to be trained in our gener-
ator network than word-level features. The above analysis demonstrates the effectiveness of our designed CAdaILN.

5. Conclusion

In this paper, we propose the Dual Attention Generative Adversarial Network (DTGAN), a novel framework for text-to-image generation, to generate high-quality realistic images which semantically align with given text descriptions, only employing a single generator/discriminator pair. DTGAN exploits two new types of attention modules: a channel-aware attention module and a pixel-aware attention module, to guide the generator to focus more on the text-relevant channels and pixels. In addition, to flexibly control the amount of change in shape and texture, Conditional Adaptive Instance-Layer Normalization (CAdaILN) is adopted as a complement to the attention modules. To further enhance the quality of generated images, we design a new type of visual loss which computes the L1 loss between the features of generated images and real images. DTGAN surpasses state-of-the-art results on both CUB and COCO datasets, which confirms the superiority of our proposed method. However, the improved visual quality comes with an apparent reduction in variation of generated images. Future work will be directed at mitigating this phenomenon by using larger training sets.

References
