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Chemotactic stimulation of vegetative or aggregative Dictyostelium discoideum
cells induced a transient elevation of cyclic GMP levels. The addition of
chemoattractants to postvegetative cells by pulsing induced phosphodiesterase
activity. The following lines of evidence suggest a messenger function for cyclic
GMP in the induction of phosphodiesterase: (i) Folic acid and cyclic AMP
increased cyclic GMP levels and induced phosphodiesterase activity. (ii) Cyclic
AMP induced both cyclic GMP accumulation and phosphodiesterase activity by
binding to a rate receptor. (iii) The effects of chemical modification of cyclic AMP
or folic acid on cyclic GMP accumulation and phosphodiesterase induction were
closely correlated. (iv) A close correlation existed between the increase of cyclic
GMP levels and the amount of phosphodiesterase induced, independent of the
type of chemoattractant by which this cyclic GMP accumulation was produced.
(v) Computer simulation of cyclic GMP binding to intracellular cyclic GMP-
binding proteins indicates that half-maximal occupation by cyclic GMP required
the same chemoattractant concentration as did half-maximal phosphodiesterase
induction.

In the presence of nutrients, amoebae of the
cellular slime mold Dictyostelium discoideum
grow as single cells. When the food supply is
exhausted, cells pass through a starvation
phase, aggregate, and form a fruiting body con-
sisting of stalk cells and spores. Vegetative cells
react chemotactically to folic acid (21), which
probably acts as a food-seeking device. Aggre-
gation-competent cells react chemotactically to
cyclic AMP (cAMP) (13), which is excreted in
pulses by neighboring cells (26). Stimulation of
vegetative cells with folic acid (20, 32) or of
aggregative cells with cAMP (18, 32) results in a
fast transient elevation of cyclic GMP (cGMP)
levels.
During the transition period from the vegeta-

tive to the aggregative phase, amoebae undergo
drastic changes. The activity of adenylate cy-
clase (9), membrane-bound phosphodiesterase
(PDE) (23), and extracellular PDE inhibitor (15)
increases; also, the number of cAMP receptors
(5, 6, 14, 17) and contact sites A (3) is higher
during the aggregative phase. The addition of
pulses ofcAMP to postvegetative cells (approxi-
mately 1 h after removal of bacteria) decreases
the length of the interphase (10, 11) and induces
an earlier increase of PDE activity, cAMP re-

t Present address: Computation Unit, University of Tech-
nology, Delft, The Netherlands.

ceptors, and contact sites A (4, 10, 11, 25). Also,
the addition of pulses offolic acid to postvegeta-
tive cells reduces the length of the interphase
(31) and induces PDE activity (2).
Based on the differential activity of several

cAMP derivatives, we suggested that the cAMP
receptor for chemotaxis (16) and cGMP accumu-
lation (20) in the aggregative phase and PDE
induction in the postvegetative phase (29) are
identical. The cAMP receptor seems to be a rate
receptor (29), which means that the activity of
the receptor is proportional to the frequency of
occupation and not to the fraction of receptors
occupied (24, 28).

This characteristic of the rate receptor ex-
plains why a fast-dissociating cAMP derivative
induces more PDE than cAMP can in postvege-
tative cells and why such a derivative can in-
crease cGMP levels in these cells although
cAMP cannot induce measurably higher cGMP
levels (29).

In this paper we present several lines of
evidence for a messenger function for cGMP
during induction of cyclic nucleotide PDE (EC
3.1.4.17).

MATERIALS AND METHODS
Chemicals. Pterin, xanthopterin, aminopterin, pter-

in-6-carboxylic acid, isoxanthopterin, leucopterin, and
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FIG. 1. Conformation of pterin and folic acid deriv-
atives. The aromatic hydroxy functions are in keto-
enol tautomerism and probably in the keto conforma-
tion.

lumazine were purchased from Sigma Chemical Co.;
folic acid was from British Drug House; [8-3H]cAMP
and the cGMP radioimmunoassay kit were from Amer-
sham Corp. The cAMP derivatives were a gift from B.
Jastorff (7) and 2-hydroxy-2-deaminofolic acid was a
gift from P. Kakebeeke (8).

Organisms. D. discoideum NC-4(H) was grown on
SM agar in association with Escherichia coli B/r and
harvested as previously described (12). Cells were
freed from bacteria by repeated centrifugation and
starved by being shaken in 10 mM sodium potassium
phosphate buffer, pH 6.0, in a spinner suspension at
220C.
PDE induction. PDE induction was measured as

described previously (29). Cells starved for 1 h were
washed twice in 10 mM phosphate buffer, pH 7.0, and
suspended at a density of 107 cells per ml. Twelve
pulses of chemoattractant were added to 100- cell
suspensions at 5-min intervals. At 15 min after the
addition of the last pulse, cells were homogenized by
being frozen and thawed under agitation. PDE activity
was determined by a previously described procedure
(29). The PDE induction (1) is defined as I = (A - B)l
B, where A is PDE activity after pulsation with a
chemoattractant and B is PDE activity after pulsation
with 10 mM phosphate buffer, pH 7.0.

cGMP levels. cGMP concentrations were deter-
mined by a modification (29) of the method of Mato et
al. (18). Cells starved for 1 h in a spinner suspension
were collected by centrifugation, washed twice with 10
mM phosphate buffer, pH 6.0, and suspended in the
same buffer at a density of 10' cells per ml. Cell
suspensions (100 ,ul) were stimulated with 20 iaJ of
chemoattractant under vigorous agitation at 22°C. Af-
ter 10 s of stimulation, 100 ,Ll of cold perchloric acid
(3.5%, vol/vol) was added, and samples were placed
on ice. Suspensions were neutralized with 50 ,ul of
potassium bicarbonate (50o saturated solution at
22°C) and centrifuged. The cGMP content in 100 1.l of
the supernatant was determined by radioimmuno-
assay.
Computer simulations. The binding of cGMP to its

binding protein can be described by the differential
equation

db/dt = [K1(cGMP - Rob)(1 - b)] - K_lb [1]
where b is the fraction of the binding proteins which
are occupied with cGMP, cGMP is the total cGMP
concentration, Ro is the total binding protein concen-
tration, K1 is the rate constant of association, and K_
is the rate constant of dissociation.
The cGMP concentration was generated as a peak

with a triangular shape, of which the basal cGMP
levels equal zero and are reached at 0 and -25 s, and
of which the top cGMP level, A[cGMP]1o, is reached
at 10 s (P. J. M. Van Haastert, J. Van Walsum, and
F. A. Pasveer, J. Cell Biol., in press). Binding of
cGMP to its binding proteins was computed with an
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FIG. 2. PDE induction by pterins. Postvegetative
cells were stimulated by 12 pulses at the indicated
concentration. At 15 min after the addition of the last
pulse, cells were homogenized and assayed for PDE
activity. Data are from several experiments and nor-
malized to folic acid, which had a maximum of 4 to 6
with a mean of 5.5. Symbols: 0, folic acid; 0, pterin;
A, xanthopterin; 0, aminopterin; A, pterin-6-carbox-
ylic acid; U, isoxanthopterin; +, deaminofolic acid; x,
leucopterin; *, lumazine.
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TABLE 1. Concentrations of folic acid and its derivatives required for half-maximal responses
Half-maximal concna Normalized concnb

Chemoattractant
Chem PDE cGMP Chem PDE cGMP

Folic acid 10-6_10-7 3 x 10-8 5 x 10-6 1 1 1
Aminopterin 10-4_10-5 2.5 x 10-7 7.5 x 10-5 100 10 15
2-Hydroxy-2-deaminofolic acid >10-4 1 X 10-5 >1 X 10-3 >100 300 >200
Pterin lo-6_10-7 3 x 10-8 1 x 10-6 1 1 0.2
Xanthopterin 10s5_10-6 5 x10x1 10-5 10 2 2
Isoxanthopterin 10-3_10-4 5 x 10-6 >1 x 10-3 1,000 200 >200
Leucopterin >10-3 >1 X 10-3 >1 X 10-3 >1,000 >10,000 >200
Pterin-6-carboxylic acid 10-5_10-6 7 x 10-7 7.5 x 10-5 10 20 15
Lumazine >10-3 >1 X 10-3 >1 X 10-3 >1,000 >10,000 >200

a Chem, Range at which 50%o of cell populations showed a positive chemotactic response; PDE, concentration
at which half-maximal PDE induction (2.75) was achieved (data taken from Fig. 2); cGMP, concentration at
which half-maximal cGMP accumulation was achieved (increase of 4.5 pmol/107 cells).

b The data in each column have been normalized against the data for folic acid in the first three columns.

IBM 370 by solving for b in equation 1 with a method
described previously (Van Haastert et al., in press).
Pulsation experiments were simulated by the genera-
tion of 12 cGMP accumulations at 5-min intervals.
Occupancy of the binding protein was recorded as the
integral of b after 60 min and calculated with cGMP
peaks of different magnitudes. The constants in equa-
tion 1 were derived from experiments in vivo (Van
Haastert et al., in press): KI = 4 x 106 M-l s-, K_
= 6 x 10-3 S-1, and Ro = 10-8 M.

RESULTS AND DISCUSSION
The addition of folic acid, pterin, and their

derivatives (Fig. 1) to postvegetative cells (cells
starved for 1 h) resulted in different dose-re-
sponse curves for PDE induction (Fig. 2), which
ran parallel and seemed, to the extent it was
measured, to reach approximately the same

A CHEMOTAXIS

cAMP- I cGMP

| PDE INDUCTION

| CHEMOTAXIS

FA- RcGMP
| PDE INDUCTION

CHEMOTAXIS

Pte- R3 cGMP
\ PDE INDUCTION

maximal response. The addition of these che-
moattractants to postvegetative cells resulted in
a set of dose-response curves for cGMP accu-
mulation at 10 s which were similar in shape and
sequence to the curves for PDE induction (data
not shown). The concentrations which resulted
in half-maximal PDE induction (2.75) and half-
maximal cGMP accumulation (5 pmolV107 cells,
A[cGMP]lo = 0.9 ,uM) and the threshold concen-
tration for chemotaxis in these postvegetative
cells are listed in Table 1. PDE induction, cGMP
accumulation, and chemotaxis showed similar
sensitivity to chemical modification of the folic
acid or pterin molecule. This similar specificity
points to an identical receptor for these three
processes. Also, with cAMP, the signals for
chemotaxis, cGMP accumulation, and PDE in-

B
cAMP- R1

CHEMOTAXIS

FA-R cGMP
PDE INDUCTION

Pte- R

C
cAMP- R

CHEMOTAXIS
FA R-

cGMP ----cGMP-R4 - PDE INDUCTION

Pte-

FIG. 3. Three possible transduction pathways: schemes I (A), 11 (B), and III (C). FA, Folic acid, Pte, pterin;
R, receptor.
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FIG. 4. Chemoattractant-mediated PDE induction

and cGMP accumulation. (A) PDE induction. Postveg-
etative cells were stimulated with 12 pulses of folic
acid (0), 7-CH-cAMP (A), or 3'-NH-cAMP (A). PDE
was assayed in a homogenate made from the cells 15
min after the last pulse was added. Data are taken from
Fig. 2 for folic acid and reference 29 for 3'-NH-cAMP
and 7-CH-cAMP. (B) cGMP accumulation. Postvege-
tative cells were stimulated with folic acid (0), 7-CH-
cAMP (A), or 3'-NH-cAMP (O) and, after 10 s, lysed
with perchloric acid. The lysate was neutralized with
potassium bicarbonate, and cGMP was measured ra-
dioimmunologically in the supernatant. 3'-NH-cAMP
and 7-CH-cAMP were not added at higher concentra-
tions because they would compete with cGMP in
binding to the antibody.

duction were detected by the same cAMP recep-
tor (29). Recent results suggest that folic acid
and pterin are detected by different receptors
(30), which led to scheme I (Fig. 3).
The production of cGMP and the induction of

PDE in postvegetative cells by 3'-deoxy-3'-ami-
no cAMP (3'-NH-cAMP), 7-deazo-cAMP(7-CH-
cAMP), and folic acid is shown in Fig. 4. The
observation that these cAMP derivatives in-
duced a strong cGMP accumulation in postvege-
tative cells whereas cAMP itself did not was
predicted by the rate characteristics of the
cAMP receptor (29). The half-maximal increase
of cGMP levels occurred at 100-fold-higher con-
centrations than did the half-maximal increase of
PDE induction, and this 100-fold difference was
independent of the stimulus (folic acid, pterine,
or cAMP derivatives) (Fig. 4 and Table 1). The
similar effect with different stimuli indicates that
the signals converge to one pathway (Fig. 3,
scheme II).
Which mechanism can explain the fact that

PDE induction already takes place at a 100-fold-

lower stimulus concentration than does intracel-
lular cGMP accumulation? The difference in
sensitivity can be explained by two mechanisms.
(i) The presence of spare receptors (1); not all
cell surface receptors have to be occupied for
maximal transduction of the signal. (ii) Occupa-
tion of the cell surface receptor leads to the
production of a second messenger; only small
amounts of this messenger are needed for com-
plete transduction of the signal (27). In aggrega-
tive cells cAMP induced various responses. The
demonstration that these various responses have
different sensitivities to cAMP (Table 1 in Van
Haastert et al., in press, and Fig. 5 in P. J. M.
Van Haastert and T. M. Konijn, Mol. Cell.
Endocrinol., in press) makes the hypothesis of
spare receptors unlikely. Therefore, we
searched for an intracellular messenger which
functions at very low concentrations of the
extracellular signals (cAMP, folic acid, or pter-
in). Recently we showed that an intracellular,
cGMP-binding protein may have such properties
(Van Haastert et al., in press).
The dose-response curves (Fig. 4B) can be

described by the equation:

A[cGMP]lo = 1.8 x 10-6 (XIX + Y) (2)
where A[cGMP]j0 is the increase in cGMP con-
centration 10 s after stimulation, X is the con-
centration of chemoattractant, and Y is the con-
centration of chemoattractant yielding half-
maximal (0.9 ,uM) cGMP accumulation (folic

6

c
._

3

._
cx

4

2

0

A&[cGMP]10 [M]
FIG. 5. cGMP-mediated PDE induction. Postvege-

tative cells were stimulated with folic acid (0), 7-CH-
cAMP (A), and 3'-NH-cAMP (U). cGMP accumula-
tion and PDE induction were determined as described
in the legend to Fig. 4. The cGMP accumulation
evoked by a chemoattractant at a certain concentra-
tion is represented against the PDE induction evoked
by the same chemoattractant at the same concentra-
tion (see text).
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FIG. 6. Computer simulation of pulse experiments. Experiments were simulated by the generation of 12

cGMP peaks at 5-min intervals (A). The occupancy of a cGMP receptor (B) was computed by solving for b in
equation 1 by a previously described method (Van Haastert et al., in press). The computation scheme was
extended with the integration of b to record the integral of receptor occupancy (C). Integrations are in steps of 2
ms in the presence ofcGMP and 10 ms in its absence. Data are plotted for each second. Parameters: K1 = 4 x 106
M-1 s-',K1 = 6 x 10-3 s-, Ro = 108 M, A[cGMPh,o = 5 x 10- M.

acid, Y = 5 x 10-6 M; 7-CH-cAMP, Y = 1.6 x Haastert et al., in press), which revealed that the
10-4 M; 3'-NH-cAMP, Y = 8 x 10-4 M; Fig. binding of cGMP to the protein in vivo follows
4B). the law of mass action (equation 1) and that the
The cGMP accumulation at low doses of these in vivo parameters are K1 = 4 x 106 M-1 s-

compounds is calculated by equation 2 and K-1 = 6 x 10-3 S-1; Ro = 10-8 M.
expressed versus the PDE induction produced Assuming that the PDE induction is propor-
by the same concentration of chemoattractant in tional to the total amount of information which
Fig. 5. IfcGMP functioned as a messenger, then has entered the cell, the amount of PDE induced
the implication (Fig. 5 and the model of Strick- should be proportional to the mean of the bind-
Iand and Loeb [27]) is that a cGMP receptor ing protein concentration occupied with cGMP
should be present which has the necessary kinet- during the 12 pulses: mathematically, this is the
ics of association and dissociation to be able to integral of occupied receptors after 12 succes-
mediate these low and short-lived cGMP accu- sive accumulations of cGMP levels (Fig. 6).
mulations. Recently we investigated the non- Twelve increases of cGMP levels at 5 min of
equilibrium kinetics of an intracellular cGMP- the magnitude A[cGMP]lo = 20 nM causes 50o
binding protein in vitro and in vivo (Van of the maximal attainable integral of binding

236 VAN HAASTERT ET AL. J. BACTERIOL.
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FIG. 7. Dose-response curve of the top of the
cGMP peak versus the integral of receptor occupancy.
The cGMP concentration at the top of the 12 identical
cGMP peaks is presented on the abcissa, and the
integral of receptor occupancy after 1 h is presented on
the ordinate. The integral of receptor occupancy pro-
duced by 12 cyclic GMP peaks with an increase of
A[cGMP]jo = 2 x 10-6 M (10 pmol of cGMP per 107
cells) is set at 100%o. Computation was made as
described in the legend to Fig. 6 and in Van Haastert et
al., in press. Parameter values K1 = 4 x 106M1 s-1,
K-1 = 6 x 10-3 s-1, R& = 10-8 M.

protein occupancy (Fig. 7). This relation be-
tween the cGMP accumulation and the occupan-
cy of the cGMP-binding protein (Fig. 7) is very
close to the correlation between cGMP accumu-
lation and the magnitude ofPDE induction (Fig.
5). Thus, cGMP in combination with the cGMP-
binding protein has exactly the necessary sen-
sitivity to transduce the chemotactic signals,
which suggests the transduction pathway of
scheme III (Fig. 3).
Although the correlations (Fig. 5 and 7) are

based on in vivo experiments, they do not
exclude the possibility of another unknown mes-
senger being present to transduce the signal.
This messenger, however, should have the same
kinetic properties as the cGMP system. Scheme
III is further supported by cyclic nucleotide
localization studies done with immunofluores-
cent techniques (19, 22). Whereas cAMP stains
homogeneously over the cell, cGMP stains pre-
dominantly in the nucleus, which suggests a
function for cGMP in the nucleus.

In summary, several lines of evidence indicate
that cGMP has a messenger function between
activation of a cell surface receptor by a che-
moattractant and the induction of PDE. (i) Folic
acid and cAMP increase cGMP levels (18, 20,
32) and induce PDE (2, 10, 11, 31). (ii) cAMP
induces PDE and causes cGMP accumulation,
both depending on a rate receptor (29). (iii) A
rough correlation exists between the effect of
chemical modification of folic acid (Table 1) or
cAMP (10, 29) on cGMP accumulation and PDE

induction. (iv) A dose-response correlation ex-
ists between the increase in cGMP levels and the
amount of PDE induced independent of the
nature of the chemoattractant by which this
cGMP accumulation is produced (Fig. 4 and 5).
(v) An intracellular cGMP-binding protein is
present which will be occupied for 50% of maxi-
mum at 12 cGMP accumulations which result in
half-maximal PDE induction (Fig. 6 and 7).
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