Hydrogen Response in Liquid Propylene Polymerization
Al-haj Ali, M.; Betlem, B.; Roffel, B.; Weickert, G.

Published in:
AIChE Journal

DOI:
10.1002/aic.10783

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 17-09-2023
Hydrogen Response in Liquid Propylene Polymerization: Towards a Generalized Model

M. Al-haj Ali, B. Betlem, B. Roffel, and G. Weickert
University of Twente, Enschede, The Netherlands

DOI 10.1002/aic.10783
Published online February 6, 2006 in Wiley InterScience (www.interscience.wiley.com).

Liquid propylene batch experiments in the absence of a gas phase have been carried out using a highly-active MgCl₂/TiCl₄/phthalate/silane/AlR₃ catalyst at varying temperatures (60-80°C) and molar hydrogen-monomer ratios of 0-10 mmol/mol. With increasing hydrogen concentration the

- polymerization rate increases rapidly, reaching a constant value at concentrations above 1.4 mmol/mol;
- pseudo-first-order catalyst deactivation constant increases;
- molecular weight decreases;
- polydispersity decreases slightly;

but average molecular weight and polydispersity increase with increasing temperature. Polymerization rate, deactivation constant, and average molecular weight can be modeled based on a consistent dormant site mechanism assuming an (averaged) quasi-single-site model.© 2006 American Institute of Chemical Engineers

Keywords: liquid phase propylene polymerization, polymerization kinetics, dormant-site theory, molecular weight distribution, catalyst decay, hydrogen response

Introduction

Only a very few experimental studies have been carried out so far to investigate the effect of hydrogen during liquid propylene polymerization; most studies were performed in either a gaseous monomer or slurry, but gas phase and slurry phase results cannot easily be compared and heat and sorption effects and mass transfer limitations may play a role.

Polymerization rate

Some researchers measured polymerization yields in liquid propylene, but much more kinetic information can be extracted from polymerization rate profiles. The first article reporting rate profiles in catalytic liquid propylene polymerization was published by Samson et al. and a number of other authors investigated the hydrogen effect on kinetics (see Pater et al. and Shimizu et al.). The reactor used was always partially-filled, and polymerizations were carried out in the presence of a gas phase, which can introduce mass transfer problems, see ref.

Molecular weight

In 1959, Natta et al. studied the effect of hydrogen on the molecular weight of the produced polymer for a TiCl₃/Al(C₂H₅)₃ catalyst. Their results showed that the number average molecular weight of both polyethylene and polypropylene could be described by the square root of the hydrogen partial pressure in the reactor, Eq. 1:

\[M_n = \frac{1}{K_1 + K_2 \cdot \sqrt{P_{H_2}}} \] (1)

The authors concluded that hydrogen is adsorbed on the catalyst surface where it dissociates (Eq. 2) before it reacts with the growing polymer.

\[H_2 \rightleftharpoons H^+ + H^- \] (2)
al.15 examined the effect of cocatalyst addition, Triethylaluminiu

transfer limitation is not the cause of the rate decay 12,15,28,29; H9016

adjacent decay by the reaction of low-active Ti

order decay of the polymerization rate explained by clustered

to inactive form, Ti 2

are active in propylene polymerization and the catalyst decay
cannot be explained by the reduction of active trivalent Ti.
Shimizu et al.3 showed that higher TEA concentrations can

lead to lower decay rates.

Many authors proposed different chemically-based mechanisms. Chien and Nozaki13 explained the polymerization rate decay by the reaction of adjacent pairs of Ti 3
, with monomer. Based on their observations, Guyot et al.32 suggested that catalyst deactivation results from the formation of inactive Pi-allyl species with saturation of the polymer chain end.

Different authors have already claimed that a monomer mass transfer limitation is not the cause of the rate decay12,15,28,29; however, others still support this hypothesis.5 Also, Han-Ad-ebekun et al.6 showed that the effectiveness factor for highly crystalline propylene is smaller than 1.0.

In this article:

(1) Liquid propylene polymerization with a highly active catalyst in an over-pressured fully filled batch reactor is investigated. At these conditions, all the hydrogen is dissolved in liquid propylene and gas-liquid mass transfer is excluded.

(2) The influence of polymerization temperature and hydrogen concentration on polymerization kinetics and molecular weight is studied in a wide range of hydrogen concentrations.

(3) Models are presented and compared to quantify the effect of temperature and hydrogen concentration on the initial polymerization rate, the catalyst deactivation, and the polymer molecular weight.

Table 1. Most Important Publications on the Influence of Hydrogen in Catalytic Olefin Polymerization

<table>
<thead>
<tr>
<th>Author</th>
<th>System Studied</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keii et al.22</td>
<td>TiCl4/MgCl2/C4H9COOC2H5/Al(C2H5)3 Gas phase propylene</td>
<td>Agreed with Eq. 1</td>
</tr>
<tr>
<td>Soga & Siono13</td>
<td>TiCl4/MgCl2/Al(C2H5)3/ethyl benzoate 40°C; slurry propylene</td>
<td>Atactic PP is formed by atomic hydrogen transfer; isotactic PP results from molecular H2 transfer</td>
</tr>
<tr>
<td>Guastalla & Gianinni14</td>
<td>TiCl4/MgCl2/Al(C2H5)3 slurry propylene and ethylene</td>
<td>Mw of different polymer fractions is reduced following Eq. 1</td>
</tr>
<tr>
<td>Ross21</td>
<td>TiCl4 - AA/DEAC Gas phase propylene</td>
<td>Eq. 1 fits best</td>
</tr>
<tr>
<td>Hindryckx et al.49</td>
<td>MgCl2-based TiCl4 Slurry, ethylene</td>
<td>Eq. 1</td>
</tr>
<tr>
<td>Busico et al.26</td>
<td>Wide range of hydrogen partial pressure studied</td>
<td>Inverse Mw depends linearly on hydrogen (linearization possible in a narrow H2 range)</td>
</tr>
<tr>
<td>Meier et al.42</td>
<td>Metalloocene Gas phase, propylene</td>
<td>Mw-H2: linear at low hydrogen, but constant at high hydrogen; polymer H2 complex formed</td>
</tr>
<tr>
<td>Kissin et al.24</td>
<td>TiCl4/dibutylphthalate/MgCl2</td>
<td></td>
</tr>
</tbody>
</table>

Some of the most important findings are summarized in Table 1. All these studies were carried out either in a gas-phase21,22 or slurry.23-26 While most of them support the Natta model (Eq. 1), some differ.

Catalyst deactivation

One of the most widely supported hypotheses for catalyst activity decay is the over-reduction of the active centers, Ti 3
, into inactive form, Ti 2
, by the cocatalyst.12,13,15,27-29 Keii et al.15 examined the effect of cocatalyst addition, Triethylaluminu (TEA), whereas Busico et al.28 showed a rapid second-order decay of the polymerization rate explained by clustered low-active Ti 2
 species. However, Albizzati et al.30 studied [σ6-areneTiAl2Cl8] and found that catalysts containing Ti 1
are active in propylene polymerization and the catalyst decay cannot be explained by the reduction of active trivalent Ti.

Shimizu et al.3 showed that higher TEA concentrations can lead to lower decay rates.

Experimental

Chemicals

Propylene used in the experiments was “polymerization grade” and obtained from Indugas. The purity was more than 99.5%, with propane as a main impurity. Hydrogen used had a purity higher than 99.999%; it was further purified by passing it over a reduced BTS copper catalyst, obtained from BASF, and subsequently passing it through three different beds of molecular sieves, with pore sizes of 13, 4, and 3 Å, respectively. Propylene was purified in the same way; additionally, it was passed over a bed of oxidized BTS catalyst to remove CO. TiCl4 supported on MgCl2 with phthalate as internal donor and an external silane donor was used as a catalyst, with TEA as a cocatalyst and scavenger.

Reactor system

A 5-liter stainless steel jacketed batch reactor (Büchi BEP 280) with a separately heated cover plate was used; it is described elsewhere.2-4 For intensive mixing, the reactor was equipped with a turbine stirrer operated at 2000 rpm. The pneumatic injection system allows the introduction of liquids and slurries into the reactor, even at high reactor pressures. The cooling medium temperature is kept constant within ± 0.01 K during isoperibolic experiments.

Experimental procedure

The reactor was flushed with nitrogen gas five times at 90°C and was purged with propylene gas at the beginning of the experiment, then filled with liquid propylene and heated up to the reaction temperature. When the temperature reached the setpoint, hydrogen was injected. The reactor temperature and pressure were monitored as a function of time. As soon as both became stable for an interval of 3 minutes, the reaction was started by injecting the prepared catalyst into the reactor.

The experiments were executed under isoperibolic conditions. Thus, just after the catalyst injection, the temperature control system becomes active in trying to keep the jacket temperature constant; the reaction temperature increases slightly, reaching a quasi-steady-state after about 1.5 minutes in the case of using a fully pre-activated catalyst. The heat of
polymerization is measured under quasi-steady state conditions. Data were collected every three seconds. The polymerization reaction was finally terminated by rapidly flushing the unreacted propylene. After each experiment, the resulting polymer was dried under vacuum at 50°C for 4 hours. The molecular weight distribution was measured by Gel Permeation Chromatography (GPC) employing a Waters Alliance GPCV 2000 apparatus with TSK columns at 155°C using 1,2,4-trichlorobenzene as a solvent. The GPC is calibrated with the narrow molecular weight distribution polystyrene standard as a reference. Average molecular weights above 1 million grams per mol have been measured using calibrated intrinsic viscosities.

Results and Discussion

Reproducibility

The reproducibility of the experiments has been tested by repeating a standard experiment at 70°C and 43 bar with 150 mg hydrogen at fixed concentrations of the catalyst, cocatalyst, and external donor. Figure 1 shows the reaction rate profiles for three standard experiments. The increase in polymerization rate during the first 1.5 minutes is not real, but caused by the (incorrect) application of the quasi-steady-state assumption for the heat balance during the initial phase. We will ignore this effect for the moment, but will come back to this point later. Obviously, the absence of a gas phase, i.e., absence of any mass transfer between gas and liquid phase, increases the accuracy of such rate profile measurements.

Isoperibolic initial polymerization rate

Reaction calorimeters can be classified according to their way of controlling the reaction temperature into the following categories: (i) isothermal, (ii) adiabatic, and (iii) isoperibolic. Using an isoperibolic calorimeter, the jacket temperature is kept constant, whereas the reaction temperature slightly increases during the exothermic reaction. However, the polymerization temperature can be kept within a small range producing “quasi-isothermal” data. The isoperibolic calorimeter has many advantages compared to the other calorimetric methods as discussed in 33,34

The region where the rate of polymerization reaches the quasi-steady-state near the maximum, II in Figure 2, is a significant kinetic fingerprint in calorimetric observations of catalytic polymerizations,35,36 but the question is how to estimate the “true” initial polymerization rate. We estimated two different initial polymerization rates: \(R_{p_0} \), by extrapolating the reaction rate curve to time zero; and \(R_{p_0,ADR} \), which can be calculated from the initial adiabatic temperature rise assuming that the heat produced mainly heats up propylene during the first seconds, see Table 2. For almost all runs, \(R_{p_0} \) is higher than \(R_{p_0,ADR} \), but because of the uncertainties of all differential (“slope”) methods combined with the assumption of adiabatic conditions and taking into account the data acquisition frequency of “only” 0.3 s\(^{-1}\), we interpret these findings in terms of a fully pre-activated catalyst, i.e., the extrapolated value \(R_{p_0} \) can be used as the “true” initial polymerization rate.

It is relatively easy to check this “extrapolation hypothesis” by varying the reaction time. If the yield, \(Y \), of such experiments can be estimated from the area underneath the extrapolated (isoperibolic) temperature difference, \(\Delta T \) (time curve), but for different reaction times, then this hypothesis is true. First, this area is estimated for two \(\Delta T \) profiles:

1. \(A_1 \) from \(\Delta T \) recorded directly starting at zero rate, Figure 3a; and
2. \(A_2 \) from \(\Delta T \) by extrapolating the curve to time zero, Figure 3b.

Clearly, it holds always that \(A_2 > A_1 \). The results are shown in Table 2. For example, for experiment 7 we estimate \(Y/A_1 = 2.2 \) and \(Y/A_2 = 2.06 \), respectively. These results are not significantly different, because of the relatively small contribution of the initial period. However, the situation changes—as expected—for a short-time experiment, carried out under similar conditions, but stopped after 7.5 minutes, experiment 14; see Table 2 and Figure 4, with \(Y/A_1 = 2.95 \) and \(Y/A_2 = 1.95 \). The latter value comes close to the value of the long-lasting experiment 7, whereas the model based on \(A_1 \) fails, with 30% deviation. This has two major consequences:

1. The polymerization rate profile should be corrected by extrapolating the measured profile to time zero. The yield measured is represented by the area underneath this corrected rate-time curve.
2. \(Y/A_2 \) should be calculated for a given reactor system. By means of this ratio, one can estimate yield and polymerization rate on-line directly from the temperature difference during an isoperibolic experiment.

The kinetic behavior of different catalyst systems can be very different, but the method used above can be applied to clarify this point.
Primary parameter estimation

The simplified model for constant monomer and hydrogen concentrations\(^2,3,37\) is:

\[
R_p = \frac{R_{po}}{H_1}\frac{1}{1005} \exp\left(-\frac{t}{H_2}\right)\frac{kd}{H_18528} t^{H_20850}\]

(3)

and can be used to fit a given isothermal polymerization rate profile with two parameters, \(R_{po}\) and \(kd\). The results of all 15 kinetic experiments are summarized in Table 2.

Table 2. Conditions and Results of Liquid-Pool Propylene Polymerization

<table>
<thead>
<tr>
<th>Run</th>
<th>(T) °C</th>
<th>(H_2) mg</th>
<th>(X \cdot 10^5)</th>
<th>Catalyst mg</th>
<th>(t_{reaction}) min</th>
<th>(Y) gram</th>
<th>(M_w) kg/mol</th>
<th>PDI</th>
<th>(R_{po}) kg/gcat/hr</th>
<th>(R_{po,ATR}) kg/gcat/hr</th>
<th>(kd) 1/hr</th>
<th>(Y/\bar{A}_{2})</th>
<th>(Y/\bar{A}_{1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>0</td>
<td>3.78</td>
<td>60</td>
<td>35.9</td>
<td>3284</td>
<td>—</td>
<td>—</td>
<td>8.5</td>
<td>11</td>
<td>0.288</td>
<td>1.91</td>
<td>1.93</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>150</td>
<td>1.33</td>
<td>60</td>
<td>132.9</td>
<td>266</td>
<td>6.5</td>
<td>54.7</td>
<td>62.7</td>
<td>0.900</td>
<td>2.21</td>
<td>2.12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>1000</td>
<td>9.81</td>
<td>50</td>
<td>54</td>
<td>106</td>
<td>—</td>
<td>75.8</td>
<td>53.1</td>
<td>1.446</td>
<td>2.26</td>
<td>2.14</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>0</td>
<td>3.78</td>
<td>60</td>
<td>115</td>
<td>3878</td>
<td>—</td>
<td>16.1</td>
<td>9.6</td>
<td>0.342</td>
<td>1.92</td>
<td>1.86</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>25</td>
<td>0.24</td>
<td>60</td>
<td>119</td>
<td>1119</td>
<td>6.35</td>
<td>62.5</td>
<td>37.9</td>
<td>0.798</td>
<td>2.2</td>
<td>2.05</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>70</td>
<td>50</td>
<td>0.49</td>
<td>60</td>
<td>214</td>
<td>833</td>
<td>6.58</td>
<td>81.3</td>
<td>74.9</td>
<td>0.948</td>
<td>2.29</td>
<td>2.21</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>150</td>
<td>1.44</td>
<td>35</td>
<td>169.5</td>
<td>361</td>
<td>6.77</td>
<td>121.6</td>
<td>56.5</td>
<td>1.188</td>
<td>2.2</td>
<td>2.06</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>70</td>
<td>250</td>
<td>2.47</td>
<td>47</td>
<td>247.7</td>
<td>294</td>
<td>—</td>
<td>145.1</td>
<td>90.5</td>
<td>1.53</td>
<td>2.32</td>
<td>2.17</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>70</td>
<td>500</td>
<td>5.15</td>
<td>45</td>
<td>95.5</td>
<td>244</td>
<td>7.32</td>
<td>154.1</td>
<td>144.7</td>
<td>1.764</td>
<td>2.43</td>
<td>2.29</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>70</td>
<td>1000</td>
<td>9.94</td>
<td>45</td>
<td>90.3</td>
<td>132</td>
<td>—</td>
<td>139.6</td>
<td>89.9</td>
<td>1.932</td>
<td>2.05</td>
<td>1.92</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>75</td>
<td>150</td>
<td>1.56</td>
<td>35</td>
<td>232</td>
<td>—</td>
<td>—</td>
<td>208.5</td>
<td>120</td>
<td>2.26</td>
<td>2.01</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>80</td>
<td>0</td>
<td>3.78</td>
<td>60</td>
<td>81.5</td>
<td>2818</td>
<td>—</td>
<td>27.9</td>
<td>30.6</td>
<td>0.378</td>
<td>2.17</td>
<td>2.08</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>80</td>
<td>150</td>
<td>1.9</td>
<td>52</td>
<td>92</td>
<td>393</td>
<td>—</td>
<td>205.4</td>
<td>169.2</td>
<td>2.034</td>
<td>2.4</td>
<td>2.24</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>80</td>
<td>1000</td>
<td>12.4</td>
<td>32</td>
<td>92.3</td>
<td>143</td>
<td>5.7</td>
<td>252.4</td>
<td>130.4</td>
<td>3.21</td>
<td>2.48</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>70</td>
<td>150</td>
<td>1.50</td>
<td>7.5</td>
<td>47.8</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

Other polymerization conditions: 1040 mg TEA, 50 mg Donor. Values in \textit{italics} are calculated from intrinsic viscosity data.

Polymerization rate

Figure 5 shows the rate-time profiles for different temperatures and two hydrogen concentrations, namely, 0.0 mg (Runs 1, 4, and 12) and 150 mg (Runs 2, 7, and 13). It seems that the time between catalyst injection and reaching the maximum is quite uncertain at low polymerization rates (zero hydrogen), whereas at high polymerization rates this time interval slightly decreases with increasing temperature. Obviously, this is of minor importance for the kinetic interpretation: \(Y/A_2\) has a value of approximately 2.0 for all experiments. Another effect seems to be more important: the faster the catalyst decay, as will be seen in the sequel.

Figure 6 presents the Arrhenius plot of the initial polymerization rates \(R_{po}\) at different hydrogen concentrations. As expected, the polymerization rate decreases with decreasing temperature for different hydrogen concentrations, but two issues should be emphasized:

- The activation energy is virtually independent of the hydrogen concentration. The calculated activation energies are 58.6, 63.6, and 56.7 kJ/mol for 0.0, 150, and 1000 mg H2, respectively, in the temperature range of 60-80°C. These values are consistent with the literature data.\(^2,8,38\) The relative hydrogen response effect in terms of polymerization rate is the same for different temperatures.
In the fully filled reactor, the initial polymerization rate does not flatten out or decrease with increasing temperature at relatively high temperatures. Note that this is not always the case for experiments in a partially filled reactor in the presence of a monomer gas phase operated under similar conditions (see 2,38).

Figure 7 shows the rate profiles for different hydrogen concentrations at 60, 70, and 80°C. The presence of hydrogen in the reactor significantly increases the catalyst activity for all three temperatures studied.

In the absence of hydrogen, the catalyst shows low activity, which increases strongly with increasing hydrogen concentration at molar fractions, X, below 0.001, corresponding to 150 mg hydrogen injection in our experiments (see Table 2 and Figure 8); however, above this value, the impact of hydrogen levels off, and the initial reaction rate reaches a maximum value of about 75, 155, and 252 kg/gcat.hr for 60, 70, and 80°C, respectively. Compared to the initial polymerization rates at zero hydrogen, this provides acceleration factors of 8.8, 9.7, and 9 for 60, 70, and 80°C, respectively—a constant, temperature independent value of about 9. This can be interpreted as follows:

For this catalyst, about 1/9 (11%) of the potentially active sites are really active if one assumes that all potentially active sites are active at the hydrogen plateau. This is in agreement with the kinetic data discussed by Rishina and coworkers.9 This part is temperature independent, at least within the temperature and concentration ranges measured in this research. The activation energy of the initial polymerization rate is hydrogen independent; see Figure 8. Therefore, it can be assumed that the same ratio of potentially active sites is always blocked at zero hydrogen. Adding a given amount of hydrogen leads to similar acceleration effects at different temperatures, for example, at...
150 mg hydrogen, the initial polymerization rates are 54.7, 121.6, and 205.4 kg/gcat hr for 60, 70, and 80°C, respectively. If one divides these values by the corresponding values at zero hydrogen, then one would get 6.4; 7.5, and 7.3 for 60, 70, and 80°C, respectively—again, a nearly constant (temperature independent) acceleration factor of about 7 under these conditions. Obviously, the curves shown in Figure 8 are shifted by adding hydrogen. Normalizing these curves leads to the “master” curve shown in Figure 9, which provides the evidence of the temperature independence of this shift effect that can be considered as a “kinetic fingerprint” for the given catalyst.

The plateau effect at high hydrogen concentrations has been confirmed by several authors. Guastalla and Giannini proposed the presence of adsorption phenomena of hydrogen on the surface of the solid catalyst, with a saturation at high concentrations. Rishina et al.9 suggested that a limiting maximum number of active centers is realized in the catalytic system in the presence of hydrogen. This is in agreement with results presented by Samson et al.4 and Pater et al., who assumed that the concentration of the blocked sites is very low at high hydrogen concentrations. Our results confirm these earlier results, now with more reliable data.

The deactivation constant increases with hydrogen concentration, as can be seen in Figure 10. The shape of the curves is quite similar to the shape of the Rpo curves shown in Figure 8.

Figure 11 shows a linear relationship between Rpo and kd for all experiments: the more monomer converted by an active site, the higher the probability of deactivation, but independent of the reason for the higher polymerization rate. This way the deactivation can be interpreted as “activity-dependent probability.” Additionally, one can conclude that an active site cannot deactivate during its dormant state. The low deactivation at zero hydrogen is caused by the high probability of being dormant, because of low reactivation rates by monomer transfer and propagation reactions. This supports the idea discussed previously by Pater et al. and Roos et al. that the deactivation of the catalyst relates to the catalyst activity independent of the reason for the activity change (temperature, pressure, hydrogen concentration, etc.). These experimental findings need to be interpreted.

Figure 12 shows the Arrhenius plot of the lumped first-order deactivation rate constant, k_d. The plot is linear for all hydrogen concentrations measured; again, there is no change of the slope at high temperatures. The results clearly indicate an increase in the activation energy with the increasing level of hydrogen at low hydrogen concentrations, but a constant value near 40 kJ/mol if more than 150 mg H2 is used. Interestingly, at zero hydrogen, the activation energy is in the range of a diffusion (limited) process. At zero hydrogen, the reactivation of dormant sites is realized via monomer transfer or propagation reactions. These reactions are very slow and show a low activation energy of 13.5 kJ/mol. The slope difference compared to high hydrogen concentrations is an indication that a second deactivation step dominates the temperature dependence of k_d shown in Figure 12. According to Guyot et al., the coordinated propylene monomer is either inserted into the growing polymer or decomposes into an inactive \(\text{H}_2 \text{H}_2 \text{O} \text{H}_2 \text{O} \) species and H atom that is added to the growing chain. The formation of \(\text{H}_2 \text{H}_2 \text{O} \text{H}_2 \text{O} \) species, according to the authors, accounts...
for the high deactivation observed at high temperature. In terms of our results, this means: if H-allyl species are responsible for the second deactivation step mentioned above, then both the higher deactivation and higher activation energy in the presence of hydrogen can be explained.

Molecular weight distribution

The effects of hydrogen concentration and temperature on molecular weight are summarized in Table 2. Similarly to other Ti-based polymerization catalysts, the molecular weight decreases with increasing hydrogen concentration. Contrary to what is usually stated in different articles, the molecular weight of the produced polymer increases with temperature. It is evident that the activation energy of the propagation reaction is higher than that of the transfer reaction under our conditions. Chadwick et al. found that a 2,1-inserted center remains in the dormant state for a significant period of time even in the presence of hydrogen, and that the temperature increase can reduce the barrier to chain propagation after this misinsertion. This implies, according to the authors, that the molecular weight of the isotactic fraction may increase with increasing polymerization temperature, which is in agreement with what we found. The polydispersity trend indicates a slight narrowing of the MWD with increasing polymerization temperature, as can be seen in Table 2. This also indicates changing contributions of different active sites (different activation energies) with changing temperature; see .

Modeling

The modeling of reaction kinetics and molecular weight is based on the dormant site mechanism using an “averaged-site” approach based on the following mechanism:

\[
\text{Chain propagation} \quad C_j + M \rightarrow C_{j+1} \quad (4)
\]

\[
\text{Chain transfer to hydrogen} \quad C_j + H_2 \rightarrow C_o + D_j \quad (5)
\]

\[
\text{Chain transfer to monomer} \quad C_j + M \rightarrow C_1 + D_j \quad (6)
\]

\[
\text{Dormant site formation} \quad C_j + M \rightarrow S_{j+1} \quad (7)
\]

\[
\text{Dormant sites reactivation by } H_2 \quad S_j + H_2 \rightarrow C_o + D_j \quad (8)
\]

\[
\text{Reactivation of dormant sites by monomer} \quad S_j + M \rightarrow C_{j+1} \quad (9)
\]

\[
\text{Deactivation} \quad C_j \rightarrow D_j \quad (10)
\]

Using the long chain hypothesis, the polymerization rate can be described as:

\[
R_p = k_p \cdot C \cdot C_m \cdot f_{H_2} \quad (11)
\]

A sorption model should be used to describe the monomer concentration near the active sites, but a simplified model—using the concentration of liquid propylene directly—can be used. The active catalyst site concentration, C, is the difference between the maximum concentration of active sites, C_{max}, and the concentration of dormant sites, C_S:

\[
C = C_{\text{max}} - C_S \quad (12)
\]

The concentration of dormant sites can be calculated assuming the quasi-steady-state:

\[
R_S = 0 = k_s \cdot C \cdot C_m - k_{\text{reh}} \cdot C_S \cdot C_{H_2} - k_{\text{rem}} \cdot C_S \cdot C_m \quad (13)
\]

Rearrangement of these equations results in:

\[
C_S = \frac{k_s \cdot C}{k_{\text{reh}} \cdot X + k_{\text{rem}}} \quad (14)
\]

where X is the hydrogen-monomer molar ratio:

\[
X = \frac{C_{H_2}}{C_m} \quad (15)
\]

Combining Eqs. 12 and 14 leads to:

\[
C = \frac{C_{\text{max}} \cdot (1 + k_1 \cdot X)}{1 + k_2 + k_1 \cdot X} \quad (16)
\]

with

\[
k_1 = \frac{k_{\text{reh}}}{k_{\text{rem}}} \quad ; \quad k_2 = \frac{k_s}{k_{\text{rem}}} \quad (17)
\]

This way the polymerization rate can be described as a function of three parameters, k_1, k_2, and k_p:

\[
R_p = \frac{k_p \cdot C \cdot C_{\text{max}} \cdot (k_1 \cdot X + 1)}{1 + k_1 \cdot X + k_2} \quad (18)
\]

or

\[
R_p = k_p \cdot C_{\text{max}} \cdot C_m \cdot f_{H_2} \quad (19)
\]

with the hydrogen dependent function f_{H_2} defined as:
\[f_{H_2} = \frac{1 + k_1 \cdot X}{1 + k_2 + k_1 \cdot X} \]

(20)

\(f_{H_2} \) represents the fraction of sites that are active under certain conditions, showing a minimum at \(X = 0 \) and a maximum, \(f_{H_2,\text{max}} = 1 \), at high values of \(X \) where all sites are activated.

The “quasi-single-site” approach results in an average termination probability:

\[q = \frac{2 \cdot M_M}{M_w} \]

(21)

For dormant sites of chain length \(j \), \(C_{S,j} \), it holds that

\[R_{S,j} = 0 = k_s \cdot C_{j-1} \cdot C_m - k_{\text{rb}} \cdot C_{S,j} \cdot C_{H_2} = k_{\text{rem}} \cdot C_{S,j} \cdot C_m \]

(22)

which gives:

\[C_{S,j} = \frac{k_s \cdot C_{j-1}}{k_{\text{rem}} \cdot X + k_{\text{rem}}} \]

(23)

The balance of the active sites of length \(j \), \(C_j \), can be written as:

\[R_{C,j} = 0 = -k_p \cdot C_j \cdot C_m + k_p \cdot C_{j-1} \cdot C_m - k_s \cdot C_j \cdot C_m \]

\[+ k_{\text{rem}} \cdot C_{S,j} \cdot C_m - k_s \cdot C_j \cdot C_{H_2} = k_{\text{rem}} \cdot C_{S,j} \cdot C_m \]

(24)

Substituting \(C_{S,j} \) in Eq. 23 into Eq. 24 gives:

\[C_j = p \cdot C_{j-1} \]

(25)

with the chain propagation probability, \(p \):

\[p = \frac{k_s + k_{\text{ed}}}{k_{\text{rem}} \cdot X + k_{\text{rem}}} \]

(26)

The termination (or chain transfer) probability \(q \) is defined by:

\[q = 1 - p = k_s \cdot C_j = k_s \cdot C_{j-1} + k_{\text{ed}} \cdot X + k_{\text{rem}} \cdot C_{S,j} \]

(27)

with \(k_1 \) defined by Eq. 17.

One can model the weight average molecular weight \(M_w \) by combining Eqs. 21 and 27.

Parameter estimation

Equation 18 has three parameters to be determined, namely, \(k_p \), \(k_1 \), and \(k_2 \). It should be emphasized that \(k_p \) is an average, because of the active sites heterogeneity; additionally, the true number of active sites and the true (in-situ) sorption is not taken into account and will influence the \(k_p \) value. For experiments without hydrogen, Runs 1, 4, and 12, Eq. 18 can be rewritten as:

\[R'_{p,o} = \frac{k_p' \cdot 1 + k_2}{1 + k_2} \cdot \rho_m \]

(28)

With known values for \(\rho_m \) (monomer density, kgm\(^{-3}\)), one can easily estimate the ratio \(k_p/(1 + k_2) \), and a good Arrhenius fit (Figure 13) resulted with:

\[k_p = k_{po} \cdot (1 + k_2) \cdot \exp \left(-\frac{E_p}{R \cdot T} \right) \]

(29)

with

\[k_{po} = 6.41 \cdot 10^8 \text{ m}^3/\text{gcat} \cdot \text{hr} \]

(30)

\[E_p = 67.22 \cdot 10^3 \text{ J/mol} \]

(31)

Nonlinear estimation of \(k_1 \) and \(k_2 \) gives the following results:

\[k_1 = -32.8 \cdot T^2 + 2.26 \cdot 10^4 \cdot T - 3.86 \cdot 10^6 \]

\[k_2 = 8.02 \]

(32)

Figure 14 shows a comparison between the fitted model and the experimental data at 70 and 60°C. Figure 11, as discussed earlier, shows an almost linear relationship.
The relationship between k_d and R_{po}. This suggests that the relationship between these variables can be described by a two-term function. The first term describes the linear behavior; meanwhile, the second term compensates for the deviation from the linearity. The following empirical relationship gives the best fit, as shown in Figure 15:

$$k_d = k_{d1} \cdot R_{po} + k_{d2} \cdot \exp \left[-\frac{E_{kd}}{R \cdot T} \right] \cdot (1 + k_{d3} \cdot X)$$ (33)

where

$$k_{d1} = 8.38 \cdot 10^{-3} \text{ gcat/kg}$$ (34)

$$k_{d2} = 1.7 \cdot 10^{-4} \text{ 1/hr}$$ (35)

$$k_{d3} = 288.2$$ (36)

$$E_{kd} = -20 \cdot 10^3 \text{ J/mol}$$ (37)

In Figure 15 the experimental data are compared to predictions using Eq. 33. As can be seen, the fit between model and experimental data is good at the three polymerization temperatures. Interestingly, this figure shows, also, that at low hydrogen concentration, <150 mg, the dependence of k_d on R_{po} can be described reasonably well using a linear relationship. However, increasing hydrogen concentration introduces deviations from linearity; where such a deviation becomes noticeable depends on the polymerization temperature. The physical reasoning for this deviation is still unclear. More research is required to interpret these findings.

According to the literature search above, one of the following models can be used to describe the average molecular weight:

1. Square-root model, that is, Natta model;
2. Linear model, that is, Mayo model;
3. The dormant site model.

The dormant site model gives the best fit; see Table 3 and Figure 16, with:

$$q = 2.077 \cdot 10^{-5} + 0.0448 \cdot X$$

$$+ 1.28 \cdot 10^{-4} \cdot \frac{15000 \cdot X}{1 + 15000 \cdot X}$$ (38)

Conclusions

Quasi-isothermal liquid propylene polymerization has been studied in a fully filled (over-pressured) batch reactor using a prepolymerized Ziegler-Natta catalyst with TEA as cocatalyst at different temperatures (60-80°C) and hydrogen concentrations (0-100 mmol/L). Polymerization rate profiles and molecular weight distributions have been measured and modeled with the following results:

1. The adiabatic temperature rise in isoperibolic operation allows the estimation of initial polymerization rates after about 10 seconds. The catalyst used shows no significant activation after injection.
2. Isothermal mode allows on-line estimations of the polymerization rate.
3. The polymerization rate increases with increasing hydrogen, reaching a plateau at high hydrogen concentrations that

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>R^2</th>
<th>SSE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear model $q = A + B \cdot X$</td>
<td>$3.8 \cdot 10^{-5}$</td>
<td>0.0545</td>
<td>—</td>
<td>—</td>
<td>0.94</td>
<td>4.13 $\cdot 10^{-8}$</td>
</tr>
<tr>
<td>Natta model $q = A + B \cdot \sqrt{X/C_{w}}$</td>
<td>$2.0 \cdot 10^{-5}$</td>
<td>0.616</td>
<td>—</td>
<td>—</td>
<td>0.96</td>
<td>2.73 $\cdot 10^{-8}$</td>
</tr>
<tr>
<td>This article $q = A + B \cdot X + C \cdot [D + X(1 + D \cdot X)]^0.5$</td>
<td>$2.077 \cdot 10^{-5}$</td>
<td>0.0448</td>
<td>$1.28 \cdot 10^{-4}$</td>
<td>15000</td>
<td>0.99</td>
<td>8.02 $\cdot 10^{-9}$</td>
</tr>
</tbody>
</table>

*SSE: Sum of squares due to error.50

1874 DOI 10.1002/aic Published on behalf of the AIChE May 2006 Vol. 52, No. 5 AIChE Journal
is about 9 times higher than polymerization rates at zero hydrogen. This effect does not depend on temperature.

4. The pseudo-first-order deactivation constant is linearly dependent on initial polymerization rates.

5. The rate of polymerization and the deactivation constant increase with temperature up to 80°C. The average activation energy of the polymerization rate is 58 kJ/mol, while the average activation energy of the deactivation process is considerably lower and is dependent on the hydrogen concentration.

6. The polymer molecular weight decreases with hydrogen concentration, but increases with polymerization temperature.

7. The polydispersity index increases slightly with the hydrogen concentration, but decreases with temperature.

8. Both the polymerization rate and the molecular weight can be modeled using the dormant sites theory.

Acknowledgments

This work has been funded by Dutch Polymer Institute (DPI), project DPI #114. We greatly acknowledge R. Emonds and K. van Bree for the technical assistance. The authors further wish to thank Basell for the analytical support.

Notation

- C = activated catalyst concentration, mol/L
- C_{act} = concentration of active sites, mol/L
- C_b = concentration of dormant sites, mol/L
- C_m = concentration of monomer, mol/l
- C_{H2} = hydrogen concentration, mol/l
- e = activation energy, l/mol
- f_{ps} = fraction of potentially active sites
- k_b = $k_{n olig}/k_{rem}$
- k_c = $k_{chain} k_{rem}$
- k_d = deactivation rate constant, 1/h
- k_e = chain transfer to hydrogen rate constant, l/mol. s
- k_f = propagation constant, l/mol. s
- $k_{f,H2}$ = dormant site reactivation by hydrogen rate constant, l/mol. s
- $k_{f,rem}$ = dormant site reactivation by dormant site rate constant, l/mol. s
- M_d = monomer molecular weight, g/mol
- M_w = number average molecular weight, g/mol
- M_v = viscosity average molecular weight, g/mol
- M_w = weight average molecular weight, g/mol
- p = propagation probability
- q = termination probability
- PDF = polydispersity index
- R_p = polymerization rate, mol/L. s
- R_{rate} = polymerization rate, kg/g$_{cat}$·h
- $R_{rate,ad}$ = polymerization rate based on adiabatic raise in temperature, kg/g$_{cat}$·h
- T = polymerization temperature, °C
- t = time, h
- X = hydrogen molar ratio
- Y = yield, gPP
- ρ_{mon} = monomer density, kg/m3

Literature Cited

5. Lim S, Chong S. Studies on the catalytic death in propylene polymeriza-

6. Han-Adebekun GC, Hamba M, Ray WH. Kinetic study of gas phase olefin polymerization with a TiCl4/MgCl2 catalyst I. effect of polymer-

10. Chien J, Weber S, Hu Y. Magnesium chloride supported catalysts for olefin polymerization. XIX. Titanium oxidation states, catalyst deac-

12. Chien J, Kuo C. Magnesium chloride supported high mileage catalyst for olefin polymerization. VII. Determination of concentration of tita-

14. Guastalla G. Gianinni U. The influence of hydrogen on the polymer-

15. Keii T, Suzuki E, Tamura M, Murata M, Doi Y. Propylene polymeriza-

17. Naga N, Mizumuma K. Stereoelectronic control in propylene polymer-

24. Kissin YV, Rishina LA, Vizen EI. Hydrogen effect in propylene