References


REFERENCES


REFERENCES


REFERENCES

REFERENCES


REFERENCES


REFERENCES


REFERENCES

REFERENCES


REFERENCES


REFERENCES

[215] Ishikawa, M., et al., Initial evaluation of a 290-microm diameter subcutaneous glu-
cose sensor: glucose monitoring with a biocompatible, flexible-wire, enzyme-
based amperometric microsensor in diabetic and nondiabetic humans. J Diabetes

[216] Rinken, T., et al., Calibration of glucose biosensors by using pre-steady state

71.


[219] Ungerstedt, U. and C. Pycock, Functional correlates of dopamine neurotransmis-


[221] Lönnroth, P., P.A. Jansson, and U. Smith, A microdialysis method allowing charac-

[222] Arner, P., et al., Microdialysis of adipose tissue and blood for in vivo lipolysis stud-


[224] Bolinder, J., et al., Microdialysis of subcutaneous adipose tissue in vivo for contin-

[225] Lönnroth, P. and U. Smith, Microdialysis—a novel technique for clinical investiga-


[227] Rosdahl, H., et al., Interstitial glucose and lactate balance in human skeletal muscle
637-657.

[228] Keck, F.S., et al., Combination of microdialysis and Glucosensor permits continu-
ous (on line) s.c. glucose monitoring in a patient operated device: I. In vitro evalu-

[229] Keck, F.S., et al., Combination of microdialysis and glucosensor permits continu-
ous (on line) SC glucose monitoring in a patient operated device. II. Evaluation in

[230] Weiss, T. and R. Behrens, Fully implantable in vivo microdialysis system for glu-
cose monitoring. Total system concept and implantable prototype system. Biomed
REFERENCES

REFERENCES


REFERENCES


