
Chapter 2

The AdS/CFT correspondence

In chapter 1, we have seen that the search for a theory of Quantum Gravity has led to string
theory, and that string theory has a rich structure and many exotic features, some of which

do not appear in quantum field theories. Nevertheless, as we have argued in the introduction,
there are many connections between theories of gravity and field theories. In the last few
decades of the previous century, more, seemingly unrelated, conjectures and discoveries were
made in this direction, which we will briefly summarize now.

In the nineteen seventies, it was noted by ’t Hooft [68] that gauge theories like QCD be-
have as string theories when the gauge group becomes large: the Feynman diagram series
becomes dominated by planar diagrams. Such diagrams are in a one-to-one correspondence
with two-dimensional surfaces, a feature characteristic of string theories. However, the pre-
cise description of such a string theory in terms of a worldsheet action was never found.

On grounds of entropy considerations, it was argued by ’t Hooft [69] and by Susskind [70]
that any gravitational theory in a spacetime with length scales of the order of the Planck scale
should be described by a quantum field theory living on the boundary of that spacetime. This
idea is called the holographic principle; the gravitational theory is said to be holographically
dual to the quantum field theory. Again, specific examples proved to be hard to find.

In many ways, the discovery of D-branes was a breakthrough for string theory. D-branes
provide non-perturbative solutions to the theory. They also couple naturally to both open
strings, which have gauge fields in their spectrum; and to closed strings, which have gravitons
as vibration modes. We have displayed these two aspects in figure 2.1. This complementary
nature of D-branes makes for a powerful framework for calculating black hole entropies [71,
72].

The connections between gauge theory and gravity described above led Maldacena to his
conjecture [73] of the AdS/CFT correspondence. Inspired by the properties of D3-branes, he
conjectured that Type IIB string theory on an Anti-de-Sitter (AdS) spacetime is holograph-
ically dual to a conformal field theory (CFT), namely N = 4 supersymmetric, large N ,
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Figure 2.1: D-branes as open string boundary conditions and closed string sources.

SU(N) Yang-Mills theory in four dimensions. Specific proposals for quantitatively checking
this conjecture were soon put forward [74, 75].

In this chapter, we will start with describing the basic arguments leading to the Malda-
cena conjecture. After a description of some properties of Anti-de-Sitter spacetime, we will
indicate how one arrives at a scheme for computing correlation functions for both the gauge
theory and gravity. We will finish with a summary of the enormous body of evidence that has
accumulated over the years. For more details, we refer to the Physics Report [76] and to the
more elementary reviews [77–80].

2.1 The D3-brane

In this section, we will look in more detail into aspects of the D3-brane. We will start with
describing the interaction between a spacetime supergravity theory and a worldvolume gauge
theory. We will then take two particular limits of the system and argue that these limits
are equivalent. This is the reasoning that led Maldacena to his conjecture of the AdS/CFT
correspondence.

2.1.1 Interacting theories

The D3-brane is a four-dimensional BPS-solution of Type IIB string theory preserving half of
the 32 supersymmetries. The form of the solution is obtained by taking p = 3 in the expres-
sion for the general Dp-brane solution (1.61) and implementing the self-duality constraint
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(1.29)

D3-brane =





ds2 = H− 1
2 dx2

(4) +H
1
2

(
dy2 + y2dΩ2

(5)

)
,

eΦ = gs ,
G(5) = d4x ∧ dH−1 + ? d4x ∧ dH−1 ,

H(r) = 1 +
(
R
y

)4

.

(2.1)

The constant R can be determined from (1.69)

R4 = 4πgs`
4
s . (2.2)

The action describing (2.1) is given by the combined system

SD3 =
1

2κ2

∫

M

d10xLS
(10, 3) +

∫

Σ

d4σLS
D3 + Sint . (2.3)

For completeness, we have also indicated the action Sint which describes the interactions be-
tween the worldvolume and target space actions; it contains the higher-derivative and higher
order α′ corrections to the worldvolume and target-space actions. Hence, one can view Sint

as the action parameterizing all the string-theory corrections to the supergravity plus world-
volume action approximation.

The target space action is a truncation of the Type IIB supergravity pseudo-action in the
string frame (1.27) to the metric Gµν , the dilaton φ, and the self-dual RR-field G(5)

LS
(10, 3) = e−2φ

(
R ? − 1

2
? dφ ∧ dφ

)
− 1

4
? G(5) ∧G(5) . (2.4)

The worldvolume theory is given by a Dirac-Born-Infeld (DBI) action [22]

LS
D3 = −TD3 e

−φ
√

det(gS
ab + 2πα′Fab) + . . . . (2.5)

This DBI-theory can be seen as a non-linear generalization of electromagnetism: Fab is the
field-strength of a vector field living on the worldvolume of the D3-brane. The complete set
of degrees of freedom describing the fluctuations around the static solution (2.1) also contains
spinors and scalars; they can be seen as Goldstone modes corresponding to the broken ten-
dimensional supersymmetry and translational symmetry. For simplicity, we have not included
them in (2.5), and we have also omitted the Wess-Zumino terms and higher order corrections.

The solution describing N overlapping D3-branes is also given by (2.1), but where the
constant R in this case is given by

R4 = 4πgsN`
4
s . (2.6)

For the DBI-action (2.5), no such generalization to N > 1 is known, but instead one has to
expand (2.5) as a series in α′, and generalize each term individually1. The lowest order terms
are given by supersymmetric SU(N) Yang-Mills theory.

1For recent progress in finding higher-order terms in this expansion, see for instance [81].
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The target space action (2.4) in the Einstein frame is given by

LE
(10, 3) = R ? − 1

2
? dφ ∧ dφ− 1

4
? G(5) ∧G(5) . (2.7)

Comparing this with (1.81) and (1.85), we see that the Einstein frame, the sigma-model
frame, and the dual frame all coincide for the D3-brane . Since the dilaton vanishes for the
D3-brane, the form of the D3-brane solution is the same in any frame. When we will study
more general p-branes, we will see that the dual frame is the preferred frame for studying the
geometry.

2.1.2 Decoupling limits

In the solution (2.1), we can take the near-horizon limit

y

R
→ 0 . (2.8)

The metric then takes on the form

ds2 =
( y
R

)2

dx2
(4) +

(
R

y

)2

dy2 +R2dΩ2
(5) (2.9)

≡ AdS5(R)× S5(R) . (2.10)

This geometry is a five-dimensional Anti-de-Sitter spacetime times a five-dimensional sphere.
In section 2.2, we will be more detailed about the geometry of these spaces. On the other
hand, if we look at the asymptotic geometry by taking

y

R
→∞ , (2.11)

then the harmonic function becomes constant. The metric therefore describes Minkowski
space R1,9. We have sketched the D3-brane geometry2 in figure 2.2. In particular, the flat
ten-dimensional asymptotic limit is separated from the near-horizon region by an infinitely
long “throat”.

Both geometries are believed to be exact vacua of string theory, which solve the full
equations of motion of string theory to all orders in α′. Moreover, even though the com-
plete D3-brane solution breaks half the supersymmetry, both the near-horizon limit (2.8) and
the asymptotic limit (2.11) preserves all 32 supersymmetries of the Type IIB supergravity
action [82–84]. This can be seen from taking either the near-horizon limit (2.8) or the asymp-
totic (2.11) directly in the supersymmetry variations (1.75): in both cases one finds that the
supersymmetry variations vanish identically and that the projection condition (1.76) is not
needed anymore. Hence, we can view the D3-brane as a string theory soliton that interpo-
lates between two string theory vacua with unbroken supersymmetry.

2We have suppressed several extra dimensions, the figure only attempts to indicate the separation into two regions.
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Figure 2.2: The interpolating D3-brane geometry.

The gravitational dynamics in the presence of a stack of N D3-branes separates into two
regimes. Far away from the branes, the dynamics is given in terms of fluctuations around
flat Minkowski spacetime, but near the branes, the dynamics is given in terms of fluctuations
around an Anti-de-Sitter spacetime times sphere geometry. These two regions decouple, since
a physical process of energy Eemitted near the brane is observed with an infinitely red-shifted
energy Eobserved far away from the brane

Eobserved =

√
g00| y

R
→0√

g00| y

R
→∞

Eemitted . (2.12)

At the level of the actions, there is also a limit in which the near-brane and asymptotic
regions decouple, namely the low-energy limit

E

Es
→ 0 , Es =

~c

`s
. (2.13)

Since the massive modes of strings have energies in the order of Es, the low-energy limit
is obtained by considering processes which involve only the massless modes, which is the
supergravity approximation to superstring theory.

The effect of the low-energy limit on the action (2.3) is that the interaction part of the
action Sint becomes negligible. Moreover, the DBI-action can be approximated by a SU(N)
Yang-Mills theory

LS
D3 = − 1

4g2
YM

TrFabF
ab + . . . . (2.14)
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Figure 2.3: A stack of D3-branes probed by another D3-brane.

The Yang-Mills coupling constant can be obtained from the expression for the effective D3-
brane tension and expanding the action (2.5)

g2
YM = 2πgs . (2.15)

In the low-energy limit (2.13), the action (2.3) describes two decoupled systems. Far away
from the branes, it is given by the fluctuations of Type IIB string theory around Minkowski
spacetime, but the fluctuations are governed by a supersymmetric SU(N) Yang-Mills theory
near the branes. By calculating the absorption cross-sections of scalar fields by the D3-branes,
it was shown that the two systems indeed decouple in the low-energy limit [85, 86].

2.1.3 The Maldacena conjecture

From both the solution and the action perspective, the dynamics far away from the branes
coincides and is given by Type IIB string theory in a Minkowski spacetime. However, near
the branes, there are two different descriptions: a supersymmetric SU(N) gauge theory and
Type IIB string theory around an Anti-de-Sitter spacetime times a sphere, respectively

To relate these two descriptions, it is useful to connect the near-horizon limit with the
low-energy limit. Below the string scale Es, a natural energy scale is given by the energy of
an open string stretched between a stack of N D3-branes and a single D3-brane probe. We
have indicated this setup in figure 2.3. Such a string behaves as a W-boson in the Yang-Mills
theory on the D3-brane worldvolume, and its energy is given by

EW ≡ U =
y

`2s
. (2.16)

If we keep gs and N fixed and substitute the W-boson energy (2.16) into the low-energy
limit (2.13), we obtain the near-horizon limit (2.8). We can then write the near-horizon metric
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N D3-branes
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Figure 2.4: A stack of D3-brane probed by a supergravity field ψ.

(2.9) in terms of this energy scale

ds2E
`2s

=

(
U

(4πgsN)
1
4

)2

dx2
(4) +

(
(4πgsN)

1
4

U

)2

dU2 + (4πgsN)
1
2 dΩ2

(5) . (2.17)

Another natural energy scale can be obtained by considering a supergravity field3 ψ prob-
ing a stack of N D3-branes. We have indicated this setup in figure 2.4. From an analysis of
the wave-equation for ψ in the background described by the metric (2.17), it was shown
in [87] that this field has the characteristic energy

Eψ ≡ u =
y

R2
. (2.18)

Such a relation where the energy of a gauge theory is proportional to a distance scale in
gravity is called a UV/IR-relation [87] since large energies (UV) in one theory map to low
energies (IR) in the other, and vice versa.

This energy scale is a holographic energy: for a certain class of black holes, it can be
shown [88] that this energy gives the same entropy as can be deduced from the holographic
principle [69, 70]. The near-horizon metric (2.9) in the so-called holographic coordinates is

ds2E
R2

= u2dx2
(4) +

du

u

2

+ dΩ2
(5) . (2.19)

We have seen that the near-horizon limit of the D3-brane geometry corresponds to the
low-energy limit in the action describing this D3-brane solution. Moreover, far away from
the brane, the system describes Type IIB string theory around flat Minkowski spacetime.

3We consider an s-wave: the field ψ has no angular momentum related to the sphere S5.
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This led Maldacena to his conjecture [73] that also the near-brane descriptions should be
equivalent. In other words, Type IIB string theory around AdS5 × S5 should be equivalent
to the SU(N) Yang-Mills theory on the four-dimensional worldvolume of the D3-branes.

This is not as absurd as it sounds. First of all, the precise worldvolume theory is N = 4
supersymmetric Yang-Mills theory. This is a special theory: its beta-function vanishes to
all orders, meaning that it is a superconformal field theory [89]. The extra superconformal
symmetries correspond to the supersymmetry enhancement found in the near-horizon limit.
The superconformal group in four dimensions is SU(2, 2|4). Its bosonic subgroup is the
conformal group SO(2, 4) times the SU(4) R-symmetry group. These groups are isomorphic
to the SO(2, 4) isometry group of AdS5 and to the SO(6) isometry group of S5.

Many more kinematic properties of both theories are in a one-to-one correspondence [76].
We saw in chapter 1 that Type IIB string theory has an S `(2,Z)-duality symmetry; N = 4
Yang-Mills theory also has such a duality. It is known as Montonen-Olive duality [90] in
which the θ-parameter of the gauge theory is mixed with the gauge coupling constant

τ ≡ θ

2π
+

2π i

g2
YM

. (2.20)

Furthermore, we can define the ’t Hooft coupling constant

λ = 2g2
YMN , (2.21)

after which the size of the Anti-de-Sitter spacetime and the sphere becomes

(
R

`s

)4

= λ . (2.22)

The string coupling constant can be expressed in terms of λ and N

gs =
λ

4πN
. (2.23)

The ratio of the two energy scales is also given by the ’t Hooft coupling constant

U

u
= λ

1
2 . (2.24)

Many computations in field theory can only be done in perturbation theory, where the
dimensionless coupling constant is small. Similarly, string theory on curved spacetimes such
as an AdS times sphere geometry is rather complicated, especially at the quantum level [91].
There are three regimes of the parameters N and λ for which one side of the correspondence
becomes computationally feasible, which we have displayed in table 2.1.

From the above, we see that gravity and gauge theory are valid in different regimes,
and if this were the whole story, the conjectured duality would be hard to verify. However,
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Regime Gravity Gauge theory

Perturbative gauge theory R
`s
� 1 λ� 1

Classical string theory eΦ = gs � 1 λ
N = g2

YM � 1

Supergravity R
`s
� 1 λ� 1

Table 2.1: Regimes of the AdS/CFT correspondence.

sinceN = 4 supersymmetric Yang-Mills theory is a conformal field theory, some correlation
functions are independent of the coupling.

The Maldacena conjecture relates large N and large λ Yang-Mills theory in four dimen-
sions to classical supergravity on a five-dimensional Anti-de-Sitter spacetime times a sphere.
Such a correspondence is an example of both holography and of the string-like behavior of
large N gauge theory, since the boundary of Anti-de-Sitter spacetime is Minkowski space-
time. In the following sections, we will make this more precise.

2.2 Anti-de-Sitter spacetime

In this section, we will discuss some elementary geometrical aspects of Anti-de-Sitter space-
time: we will derive several forms of its metric from an embedding equation, we will show
that it solves Einstein’s equations with a negative cosmological constant, and we will show
that it has a projective boundary given by Minkowski spacetime. For more details, we refer
to [92].

2.2.1 Embedding and metric

The (d+1)-dimensional Anti-Sitter spacetime4 AdSd+1 may be realized as the hypersurface

AdSd+1 : −X2
0 −X2

d+1 +X2
1 + . . .+X2

d = −L2 , (2.25)

in flat R
2,d, where L is a parameter with dimensions of length called the Anti-de-Sitter radius.

The minus sign on the right-hand side of (2.25) is essential: it ensures that AdSd+1 is a
spacetime of negative curvature. There are two closely related spacetimes: namely the (d+1)-
dimensional version of the sphere Sd+1, and of the de Sitter spacetime dSd+1; they have the
embeddings

Sd+1 : X2
0 + . . .+X2

d+1 = L2 ,
dSd+1 : −X2

0 +X2
1 + . . .+X2

d+1 = L2 .
(2.26)

4A subscript rather than a superscript denoting the dimension is conventional.
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X0

dSd+1 ' R
1
× SdAdSd+1 ' S1

× R
d

Xi , i = 1 . . . d + 1

Figure 2.5: AdSd+1 and dSd+1 as hyperboloids in R
2,d.

Both these spacetimes have positive curvatures, as can be inferred from the right-hand
side of (2.26). The relative sign between the X2

0 and L2 terms determines if the spacetime
has closed timelike curves. For Anti-de-Sitter spacetime, this is indeed the case: AdSd+1 has
topology S1×Rd; de Sitter spacetime has no such closed timelike curves, and the topology is
R

1×Sd. In figure 2.5, we have schematically indicated the difference between the hyperbolic
embeddings of AdSd+1 and dSd+1.

The metric of AdSd+1 can be written as

ds2 = −dX2
0 − dX2

d+1 + dX2
1 + . . .+ dX2

d , (2.27)

which is manifestly invariant under SO(2, d). Coordinate systems covering the entire hyper-
boloid (2.25) exactly once have a periodic timelike coordinate: in order to obtain a causal
spacetime it is necessary to go to the universal covering space by unwrapping the timelike
coordinate. Whenever we refer to AdSd+1 in the remainder of this thesis, we mean this
universal covering space.

A convenient coordinate system which solves the embedding equation (2.25) is given by
so-called horospherical coordinates

Xµ =

(
U

L

)
xµ , X± =

−1√
2

(
Xd ±Xd+1

)
: X− = U , X+ =

XµXµ + L2

X−
.

(2.28)
Calculating the differentials of (2.28), substituting them into the line element (2.27), and
using the embedding equation (2.25), one obtains the induced metric

ds2 =

(
U

L

)2

ηµνdx
µdxν +

(
L

U

)2

dU2 . (2.29)
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Different forms of the metric are used to emphasize different aspects of Anti-de-Sitter space:
a form of the metric convenient for studying correlation functions is [75]

ds2 =
ηµνdx

µdxν + dz2

z2
, z =

L

U
. (2.30)

We will frequently use another form of the metric where we take

ds2 = e−2r/Lηµνdx
µdxν + dr2 , e−r/L =

U

L
. (2.31)

This particular form of the metric is known as the Poincaré coordinate-system. In this case,
we can let the radial coordinate U take on only positive values: this means that the Poincaré-
coordinates cover only half of the hyperboloid (2.25).

2.2.2 Curvature and cosmological constant

The physical significance of Anti-de-Sitter spacetime lies in the fact that it is a vacuum so-
lution to the gravitational field equations with a negative cosmological constant. In d + 1
dimensions and in the absence of matter, the Einstein-Hilbert action with a cosmological
constant Λ is given by

Sd+1 =
1

2κ2

∫
dd+1x

√
|g| (R− 2Λ) . (2.32)

The field equations that follow from the action (2.32) are

Rµν −
1

2
Rgµν + Λgµν = 0 . (2.33)

Taking the trace of this equation yields

Λ =
d− 1

2(d+ 1)
R , (2.34)

from which we deduce that the curvature scalar has the same sign as the cosmological con-
stant. Substituting (2.34) back into (2.33) yields

Rµν =
2Λ

d− 1
gµν . (2.35)

Spaces for which the Ricci tensor is proportional to the metric are called Einstein spaces.
The particular class of Einstein spaces called maximally symmetric spaces satisfies a stronger
constraint

Rµνλρ =
2Λ

d(d− 1)
(gµλgνρ − gµρgνλ) . (2.36)
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Taking the trace of (2.36) shows that any maximally symmetric space is indeed an Einstein
space.

We will now show that AdSd+1 is such a maximally symmetric space, and indeed a
solution to (2.33). We start with writing a slightly more general Ansatz than (2.31)

ds2 = e2A(r)ηµνdx
µdxν + dr2 , (2.37)

after which we rewrite this metric in terms of vielbeins

ds2 = gABdxAdxB , gAB = ηabeA
aeB

b . (2.38)

A convenient way of doing calculations in General Relativity is by working with differ-
ential forms: we introduce vielbein 1-forms

ea = eA
adxA →

{
em = eA(r)dxm , m = 0, . . . d− 1 ,
ed = dr ,

(2.39)

and from the Cartan structure equations we obtain the spin-connection 1-form and the curva-
ture 2-form

dea + ωab ∧ eb = 0
dωab + ωac ∧ ωcb = Rab

→





ωmd = A′(r)em ,
Rmn = −A′(r)2em ∧ en ,
Rmd = −

[
A′′(r) +A′(r)2

]
em ∧ ed .

(2.40)

We can now read off the components of the Riemann tensor in the vielbein basis, and trans-
form it into the standard form

Rab = 1
2R

a
bcde

c ∧ ed
RABCD = eAaR

a
bcdeB

beC
ceD

d →
{
Rµνµν = −A′(r)2gµµgνν ,
Rµrµr = −

[
A′′(r) +A′(r)2

]
gµµgrr .

(2.41)
For future reference, we also give the Ricci tensor and the Ricci scalar

RAB = gCDRCADB
R = gABRAB

→





Rµµ = −
[
A′′(r) + dA′(r)2

]
gµµ ,

Rrr = −d
[
A′′(r) +A′(r)2

]
grr ,

R = −2dA′′(r)− d(d+ 1)A′(r)2 .
(2.42)

Comparing (2.31) with our Ansatz (2.37) we see that if we take

A(r) = ± r
L
→ A′(r) = ± 1

L
, A′′(r) = 0 , (2.43)

then we regain Anti-de-Sitter spacetime in Poincaré coordinates. The choice of sign is ar-
bitrary: comparing with the Poincaré-coordinates (2.31), we choose the minus sign here.
Substituting (2.43) into the curvature expressions (2.41) and (2.42), and comparing this with
(2.36), we see that AdSd+1 is indeed a maximally symmetric space with a negative cosmo-
logical constant given by

Λ = −d(d− 1)

2L2
. (2.44)
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AdSd+1

∂AdSd+1 ' R1,d−1

Figure 2.6: The projective boundary of Anti-de-Sitter spacetime.

2.2.3 Boundary and conformal structure

Rescaling the embedding coordinates of AdSd+1 by a large factor

Xi → X ′
i = tXi , t� 1 , (2.45)

changes the hyperbolic embedding equation (2.25) to

−X2
0 −X2

d+1 +
(
X2

0 + . . .+X2
d

)
= 0 . (2.46)

The scaled embedding equation (2.46) describes a cone lying inside the Anti-de-Sitter space.
Since all coordinates have been scaled to large values, any additional scalings have no further
effect; this is expressed by the equivalence relation

Xi ' λXi . (2.47)

The cone-embedding (2.46) modulo the scale equivalence relation (2.47) describes the
two projective boundaries5 of AdSd+1, which are topologically equivalent to conformally
compactified Minkowski space R1,d−1. Minkowski space is conformally compactified by
adding a point at infinity, analogously to how the Riemann sphere S2 is obtained from the
complex plane C. We have indicated the projective boundary of AdSd+1 in figure 2.6.

5In order to consider only a single boundary, one should also mod out by a Z2-symmetry [75].
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The SO(2, d) isometry group of AdSd+1 is linearly realized on the coordinates of the
embedding space as

1
2 (d+ 2)(d+ 1) rotations : X i → ΛijX

j . (2.48)

On the projective boundary R1,d−1, the isometry group splits up into

1
2d(d− 1) Lorentz transformations : xµ → Λµνx

ν ,
d translations : xµ → xµ + aµ ,
1 dilatation : xµ → λxµ ,

d conformal transformations : xµ

x2 → xµ

x2 + kµ ,

(2.49)

which means that the isometry group of AdSd+1 acts as the conformal group on its boundary
R1,d−1. One therefore expects that if a SO(2, d) invariant gravitational theory in AdSd+1 is
to have any holographically dual description at all, then this dual theory should be given in
terms of a conformal field theory on the projective boundary R1,d−1. Moreover, since the
boundary corresponds to large radial coordinate, or large energy U in the language of the
previous section, the holographic dual is a conformal field theory in the UV limit.

Instead of giving the precise connection between the coordinate transformations (2.48)
and (2.49), we will give the connection between the generators of the AdSd+1 isometry
group and the d-dimensional conformal group

Mij =




Mµν
1
4 (Pµ −Kµ)

1
4 (Pµ +Kµ)

− 1
4 (Pµ −Kµ) 0 − 1

2D
− 1

4 (Pµ +Kµ)
1
2D 0


 . (2.50)

The commutation relations of Mij are given by

[
Mij ,M

kl
]

= −2δ[i
[kMj]

l] . (2.51)

In chapter 5, we will come back to the algebraic structure of the conformal group and its
supersymmetric extension. In particular, we will give the the commutation relations that
result when one substitutes (2.50) into (2.51).

2.3 Conformal field theory

In this section, we will make more precise how the AdS/CFT correspondence is realized.
We will analyze a toy model example and show that it has many of the qualitative features
of more realistic models. After that, we will describe the various approximations that have
to be made in practice. We will finish with a brief summary of the evidence in favor of the
AdS/CFT correspondence.
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2.3.1 A toy model example

In order to clarify how a conformal field theory can give a holographically dual description
to a gravitational theory, we will consider a toy model example of a d+ 1-dimensional scalar
field and its potential coupled to gravity

S =
1

2κ2

∫
dd+1x

√
|g|
(
R − 1

2
(∂φ)2 − V (φ)

)
. (2.52)

The equations of motion for the scalar and the metric in this model are given by

1√
|g|
∂µ

(√
|g|gµν∂νφ

)
= ∂V

∂φ ,

Rµν − 1
2Rgµν = 1

2∂µφ∂νφ−
(

1
4 (∂φ)2 + 1

2V (φ)
)
gµν .

(2.53)

For generic values of the scalar field, the equations of motion are complicated to solve: some
simplifications occur if we look for perturbations around certain critical points of the potential

ϕ = φ− φc ,
∂V

∂φ
|φ=φc

= 0 , V (φc) < 0 , (2.54)

and introduce new parameters Λ and M 2

Λ =
1

2
V (φc) , M2 =

∂2V

∂φ2
|φ=φc

. (2.55)

The equations of motion then take on the form

1√
|g|
∂µ

(√
|g|gµν∂νϕ

)
= M2ϕ , (2.56)

Rµν −
1

2
Rgµν + Λgµν = 0 . (2.57)

So, we see that each critical point of the scalar potential in (2.54) corresponds to an Anti-
de-Sitter spacetime with a negative cosmological constant given in terms of the value of the
potential; the masses of the fluctuations around such critical points are given in terms of the
Hessian matrix of the potential6. We can associate a length scale L to the Anti-de-Sitter
spacetime and express the mass in units of this length scale

Λ = −d(d− 1)

2L2
,

m

L
= M . (2.58)

Since we expect that the dynamics of a gravitational theory in Anti-de-Sitter spacetime
is described by a conformal field theory on its boundary, we are particularly interested in the

6A slightly negative m2 does not imply instability, as long as the bound m2 ≥ − d2

4
is satisfied [93] .
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boundary conditions of the scalar field. If we take the metric of the form (2.30) then scaling
arguments determine the behavior of solutions of the wave equation (2.56) near the boundary
z = 0

ϕ(~x, z) = zd−∆+

ϕ+(~x) + zd−∆−

ϕ−(~x) , ∆± =
d

2
±
√
d2 + 4m2

2
. (2.59)

In general, only one of the two solutions will give a finite-energy solution7: in particular, if
the mass does not saturate the Breitenlohner-Freedman bound [93], we can only select ∆+

m2 > 1− d2

4
, ∆ ≡ ∆+ , ϕ0(~x) ≡ ϕ+(~x) . (2.60)

The bound (2.60) corresponds to the unitarity bound on scaling dimensions of operators in a
conformal field theory

∆ ≥ d− 2

2
. (2.61)

Standard Green’s functions techniques then determine the complete solution to the equa-
tions of motion (2.56) in terms of the bulk-to-boundary propagator K∆(z, ~x, ~x′)

ϕ(~x, z) =

∫
ddx′K∆(z, ~x, ~x′)ϕ0(~x

′) , K∆(z, ~x, ~x′) ' z∆

(z2 + |~x− ~x′|2)∆
. (2.62)

Substituting the solution (2.62) into the Euclidean version of the action (2.52) and performing
the z-integral yields the on-shell action up to a constant factor

S[ϕ0] '
∫

d~x

∫
d~x′

ϕ0(~x)ϕ0(~x
′)

|~x− ~x′|2∆ . (2.63)

If we now view this action as a functional of the boundary data and differentiate its exponen-
tial with respect to the scalar fields

δ2

δϕ0(~x)δϕ0(~x′)
e−S[ϕ0] ' 1

|~x− ~x′|2∆ (2.64)

≡ 〈O∆(~x)O∆(~x′)〉CFT , (2.65)

then we observe that we have obtained the two-point correlation function for a conformal field
theory operator O∆ of scaling dimension ∆. Analogous formulae exist for the higher-point
correlation functions. One can view the scalar field φ0(~x) as a source term or generalized
coupling to the operator O∆

e−S[ϕ0] =
〈
e
∫

dd~xϕ0(~x)O∆(~x)
〉

CFT
. (2.66)

7For − d2

4
≤ m2 ≤ 1 − d2

4
, both ∆+ and ∆− are admissible [94].
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Figure 2.7: Witten diagrams of 2-, 3- and 4-point correlation functions.

The above equation can be made more precise: in particular, the precise regularizations
which need to be performed on both sides of (2.66) and the connection with the conformal
anomaly were discussed in [95].

There is also a diagrammatic way of displaying the equations involved, as we have indi-
cated in figure 2.7. The points in the Witten diagram labeled xi are positioned at the boundary
of AdS, whereas the points denoted by zi are located in the bulk of the Anti-de-Sitter space-
time. To each vertex one assigns a propagator for the corresponding field, and one integrates
the bulk coordinates zi over the entire Anti-de-Sitter spacetime, which can be quite compli-
cated in practice [96].

2.3.2 Approximations of the correspondence

In its strongest form, the AdS/CFT correspondence relates the partition function of a gravi-
tational theory on a manifoldM to the partition function for a conformal field theory on the
boundary ∂M

Zgravity(M) = ZCFT(∂M) , (2.67)

the canonical example being the equivalence of IIB string theory on AdS5 × S5 to N = 4
supersymmetric Yang-Mills theory in 3 + 1-dimensions

ZIIB(AdS5 × S5) = ZSYM(R1,3) . (2.68)

Since string theory on Anti-de-Sitter spaces is not well enough understood even at the
classical level, a weaker but more manageable form of the correspondence is to approximate
the full quantum string theory onAdS5×S5 in (2.68) with its effective classical supergravity
action which translates in the field theory to the regime of large gauge group and large ’t
Hooft coupling

e−SIIB(AdS5×S
5) = ZSYM(R1,3) , N, λ� 1 . (2.69)

Since the classical supergravity computations have to be compared with strong coupling re-
sults for the field theory, and since only for conformal field theory such calculations can be
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performed, the AdS/CFT correspondence has not yet been applied to theories without super-
conformal symmetry such as pure QCD in four dimensions.

Combining the original ten-dimensional equations of motion [39] with the complete
Kaluza-Klein mass-spectrum of Type IIB supergravity on S5 [97,98] would in principle give
the complete dynamics for fluctuations around the AdS5 × S5 background. Since the ex-
pansion in spherical harmonics on S5 is quite complicated, one would like to eliminate the
higher Kaluza-Klein modes.

Since the radius of the sphere is proportional to the Anti-de-Sitter radius, a normal Kaluza-
Klein reduction (i.e. taking the radius to zero) will not solve this problem: instead one needs
to make a consistent truncation to the zero-modes. However, finding the correct reduction
Ansatz is already complicated at the linearized level, and the non-linear interactions are even
more daunting: they have been worked out in only a few sectors of the theory [99].

On the other hand, there is a known complete non-linear five-dimensional supergravity
theory, the SO(6) gaugedN = 8 theory of [100,101], which has the same graviton multiplet
as Type IIB supergravity and is invariant under the same superalgebra. It is widely believed,
but nevertheless still unproven, that this D = 5, N = 8 theory is a consistent truncation of
Type IIB theory on AdS5 × S5, meaning that any classical solution of the five-dimensional
theory can be lifted to ten dimensions.

For practical calculations, the form of the AdS/CFT correspondence is therefore

e−S
N=8
D=5 (AdS5) = ZSYM(R1,3) , N, λ� 1 , (2.70)

which is similar to the relation (2.66) for our toy model example (2.52) if we keep in mind
that every fluctuating field on the Anti-de-Sitter side appears as a term in the Lagrangian on
the conformal field theory side as a coupling to some composite conformal operator.

2.3.3 Evidence for the AdS/CFT correspondence

We can summarize the kinematic evidence for the AdS/CFT correspondence with the dictio-
nary given in table 2.2.

There is also a large body of dynamical evidence in favor of the AdS/CFT correspon-
dence. Soon after Maldacena’s conjecture [73] and the concrete proposals [74, 75] for cal-
culating amplitudes, a whole class of correlators was calculated [102] from the supergravity
side. In most cases, perfect agreement with the known field theory results was found. In
other cases, computations from the supergravity point of view yielded new and unexpected
non-renormalization theorems for certain classes of field theory correlators [103, 104].

Many other calculations have been performed: instanton corrections to perturbative re-
sults [105, 106], relations between Wilson loops in gauge theory [107] and minimal surfaces
in string theory [108], and thermal properties of black holes [109] in relation with the field
theory free energy [110]. In chapter 3, we will discuss some of the generalizations of the
AdS/CFT correspondence.
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Concept Gravity Gauge theory

UV/IR length y energy U = y
`2s

Decoupling near-horizon low-energy

Regime curvature radius R
`s

’t Hooft coupling λ

Coupling constant gs g2
YM

Stringy corrections O(α′) O( 1
λ )

Quantum corrections O(gs) O( 1
N )

Isometry/symmetry SO(2, 4)× SO(6) SU(2, 2|4)
S `(2,Z)-duality τ = C(0) + i

gs
τ = θ

2π + 2π i
g2
YM

Scalar field ϕ(~x, z) coupling ϕ0(~x)

Dimension mass m scaling ∆

Bound m2 ≥ 1− d2

4 ∆ ≥ (d−2)
2

Table 2.2: A gravity/gauge theory dictionary.

We conclude by remarking that it is fair to say that the AdS/CFT correspondence is no
longer a mere conjecture, but that it is a firmly established gravity/gauge theory correspon-
dence. For more details, we refer to the review [76].
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