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Introduction

Elementary particle physics aims to describe the fundamental constituents of Nature and
their interactions. Experiments indicate that elementary particles fall into two classes:

leptons, containing among others the electron and the neutrino; and quarks, which form the
building blocks of protons and neutrons. The four known forces between these building
blocks of matter are the gravitational, the electromagnetic, the weak, and the strong interac-
tion.

At small length scales, the gravitational interaction is many orders of magnitude weaker
than all the other forces1, and it can therefore safely be neglected. The remaining three
interactions of elementary particles can be described by an elegant theory called the Standard
Model. This theory is a gauge theory: it has an internal local symmetry group in which each
interaction is described by the exchange of gauge fields. These gauge fields are called the
photon, the W-bosons and Z-boson, and the gluons for the electromagnetic, the weak, and
the strong interaction, respectively. Gauge fields are different from matter particles in several
aspects: the former fall into the class of bosons, particles with integer spin and commuting
statistics; the latter are called fermions, particles with half-integer spin and anti-commuting
statistics. It can be shown that internal symmetry groups, such as those of the Standard
Model, cannot mix bosons with fermions [1].

Microscopic physics is described by quantum mechanics, which can be seen as a deforma-
tion of classical dynamics. It has several non-intuitive properties: one cannot simultaneously
measure all observables with infinite accuracy, and many quantities can only be expressed in
terms of probabilities. The Standard Model is quantum mechanically completely consistent,
and the theory is in excellent agreement with experiments.

At macroscopic scales, the interactions of the Standard Model are virtually absent: the
strong interaction is confined to small distances; the weak interaction has an exponential
decay with distance; and although the electromagnetic force has an infinite range, all large
configurations of matter are approximately electrically neutral. Hence, the gravitational in-
teraction becomes the dominant force at large length scales.

Gravity is described by the theory of General Relativity. The basic ingredients of General
Relativity are that space and time merge into a spacetime, that matter induces a curved geom-

1The ratio of the gravitational and the electric force between a proton and an electron is 10−40.



2 Introduction

etry on spacetime, and that this geometry in turn determines the dynamics of matter. One can
also try to cast General Relativity in the form of a gauge theory: in this case a gauge theory
of spacetime symmetries, known as general coordinate transformations, rather than internal
symmetries. The corresponding gauge field in this case is called the graviton. General Rela-
tivity is a purely classical theory. It successfully explains physics in the range of terrestrial to
cosmological length scales.

However, this split of physics into the macroscopic theory of General Relativity and the
microscopic Standard Model is not without caveats, because General Relativity has some pe-
culiar properties. First of all, it turns out that certain solutions to the classical field equations,
known as black holes, have as a generic feature the occurrence of spacetime singularities [2]
around which the gravitational field becomes infinitely large. This undermines the reason for
ignoring gravitational interactions in elementary particle physics, and it becomes necessary
to treat the gravitational field quantum mechanically.

Most of these spacetime singularities are predicted not to be directly observable. Instead,
they are conjectured always to be hidden behind event horizons – surfaces from which not
even light can return. Singularities are therefore thought not to be directly observable. How-
ever, the quantum mechanical behavior of elementary particles around such event horizons
is problematic, since the one-way nature of event-horizons interferes with the probabilistic
interpretation of quantum mechanics. This gives rise to information paradoxes [3].

Although the energy scales necessary to probe microscopic gravitational effects are not
easily obtained in laboratory experiments, they did occur in the early universe. In order to
develop good cosmological models, it is therefore necessary to have a description of gravity
at small length scales. As a final remark, there is the related problem of the cosmological
constant, a parameter in General Relativity for which the Standard Model predicts a value
many orders of magnitude larger than the value inferred from astronomical observations [4].

To solve the problems sketched above, it is necessary to construct a theory of quantum
gravity. To see what problems can arise in quantizing gravity, it is instructive to compare
electromagnetism and gravity since at the classical and semi-classical level there are many
parallels between the two interactions, as we have summarized in table 1. They both share a
characteristic long range force, although gravity can never be repulsive. Both interactions also
fit into a relativistic framework, and covariant field equations for both theories were found by
Maxwell, and by Einstein, respectively. Both actions are invariant under local symmetries.
For electromagnetism, these symmetries form the group of phase transformations, known
as U(1); for General Relativity, they form the group of general coordinate transformations.
There is one particular classical effect of the gravitational interaction that has not yet been
observed directly: namely the radiation of gravitational waves2, the gravitational counterpart
of optics.

The quantum mechanical motion of particles in the background of classical force fields
is sometimes called first quantization. For the electromagnetic force, this was studied in
the first few decades of the twentieth century during which in particular the nature of black

2Indirect evidence for gravitational waves comes from the rotation time decay of binary star systems [5].
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Process Electromagnetism Gravity

Force Fel = q1q2
r2 Fgr = −Gm1m2

r2

Relativistic ∂νFνµ = Jµ Rµν − 1
2gµνR = 8πGTµν

Classical action Lem = − 1
4FµνF

µν LGR = 1
16πG

√
|g|R

Symmetry U(1) General coordinate transf.

Radiation Optics Gravitational waves

Spectrum Black body Hawking radiation

Phenomenology H-atom spectral lines Black hole entropy

Microscopic origin Energy levels Density of states

Table 1: (Semi-)classical electromagnetism versus gravity.

body radiation and the origin of the energy levels of the hydrogen atom were clarified. In
the last few decades of the last century, the quantum mechanical behavior of particles in
gravitational fields has been clarified: in particular, the process of Hawking radiation [6] and
the microscopic origin [7] of entropy [8,9] for certain classes of black holes were discovered.

To continue the discussion of quantum gravity, it is more useful to compare the grav-
itational with the weak or the strong interaction, as we have summarized in table 2, since
electromagnetism has no self-interactions at the quantum level, in contrast to the other three
interactions. For the electromagnetic interaction, one can apply quantization methods to the
classical action Lem given in table 1, but this procedure fails for the action of General Rel-
ativity since it has an energy-dependent coupling constant G – this makes the theory non-
renormalizable.

Some progress towards solving this non-renormalizability problem was obtained by the
discovery of supergravity in 1976 [10]. Supergravity is a modified version of General Relativ-
ity having spacetime symmetries as well as internal symmetries. A characteristic property of
this so-called supersymmetry is that it mixes bosons with fermions [11]. In chapter 5, we will
be more precise about the structure of supersymmetry and its cousin conformal supersymme-
try. Although supergravity is better behaved at high energies than General Relativity, it is still
non-renormalizable. The best one can hope for is that supergravity is a low-energy effective
description of a theory of quantum gravity. This is rather similar to the situation concerning
the weak interaction where Fermi’s theory of beta-decay is also a non-renormalizable theory,
but it can be seen to arise from the Standard Model.

In order to go beyond the low-energy effective description of a theory, a prescription
for calculating scattering amplitudes at higher energies is necessary. For the strong interac-
tion, this so-called S-matrix theory was developed during the nineteen sixties, and it uses
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Process Weak or strong interaction Gravity

Low-energy theory Fermi’s theory of beta-decay Supergravity

Scattering amplitudes S-matrix theory: Perturbative string theory:

Feynman graphs Riemann surfaces

Classical action Standard Model: String field theory:

LSM = − 1
4F

a
µνF

µν
a + . . . LSFT = 1

2Ψ ? QΨ + . . .

Symmetry SU(2) or SU(3) Unknown

Solitonic solutions Monopoles Branes

Duality Electric/magnetic charges Strong/weak coupling

Quantization method BRS-method BV-formalism

Table 2: Quantizing the weak or strong interaction versus gravity.

a perturbative expansion over Feynman graphs in order to calculate amplitudes. The precise
prescription is fixed by a Lagrangian formulation. In the case of the strong interaction, as well
as the electroweak interactions, all the Feynman rules can be derived from the Lagrangian of
the Standard Model.

A corresponding formalism yielding scattering amplitudes for gravity involves the con-
cept of strings: i.e. at small length scales, particles are postulated to be tiny vibrating strings.
The motivation is that the spectrum of a closed string contains the graviton, the gauge field
for gravity. Since strings sweep out worldsheets rather than worldlines, as particles do, the
idea of Feynman graphs has to be extended to surfaces. It was shown in the nineteen eighties
that a perturbative expansion over Riemann surfaces gives quantum mechanically consistent
scattering amplitudes.

The string theory analog of the Standard Model was developed in the nineteen eighties,
this goes under the name of string field theory. In this theory, one single string field describes
all string vibrations simultaneously. For the simplest models of perturbative string theory,
it can be shown that the corresponding string field theory yields the same answers for scat-
tering amplitudes, but for more complicated perturbative string theories, there are technical
complications in constructing the corresponding string field theories.

The fields in the Lagrangian of the Standard Model can be rotated by two- or three-
dimensional unitary matrices, in which case the gauge group is called SU(2) or SU(3),
respectively. Since matrices do not commute, such theories are called non-Abelian gauge
theories. The quantization of the classical action of an interaction is often called second
quantization, and for the weak and the strong interactions this can be consistently done using
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the methods of BRS-quantization [12, 13]. The symmetry groups of string field theories are
much larger and much more complicated than the gauge groups of the Standard Model, and
in many cases not known explicitly. This means that traditional methods of quantization fail,
and one needs to use more sophisticated methods such as the BV anti-field formalism [14].
Just as the quantization of the weak interaction required more sophisticated tools than the
quantization of electromagnetism, it seems also likely that the quantization of gravity will
require new methods in this area.

Gauge theories often have solitons – solutions of the classical field equations with fi-
nite energy. In modified theories of the weak interaction there are for example magnetic
monopoles. The presence of such magnetic monopoles can imply that there is a duality be-
tween electric and magnetic charges. Such dualities are powerful symmetries, since they
often relate separate regimes of a given theory. String theory has higher-dimensional soli-
tonic solutions called branes3. In string theory, there is also a number of dualities, such as
dualities between strongly and weakly coupled regimes of different versions of string theory.
In all of these dualities, branes play an essential role. The overall framework of string the-
ory and branes is called M-theory, where the M can mean anything ranging from Mystery to
Membrane, according to taste. It is not clear yet whether strings are the fundamental degrees
of freedom of quantum gravity, or if there is perhaps a formulation in terms of branes.

The organization of this thesis is as follows. We will start in chapter 1 with a more elabo-
rate treatment of the string theory framework, including the basic features of string theory and
supergravity, as well as the various dualities and brane solutions of these theories. In chap-
ter 2, we will describe the AdS/CFT correspondence – a recently discovered duality between
theories of gravity in Anti-de-Sitter spacetimes and conformal quantum field theories. This
is a remarkable duality, because several quantities within quantum gravity can be expressed
in terms of concepts known from quantum field theory. A central theme in the AdS/CFT
correspondence is a special brane solution of string theory: the D3-brane.

In chapter 3, we will present our results [15] that show how this duality can be extended
to a duality between gravity in more general curved spacetimes called domain-walls and
more general quantum field theories – the DW/QFT correspondence. In particular, we will
discuss a large class of brane solutions that includes the D3-brane. After choosing a suitable
coordinate frame, the so-called dual frame, we will study the near-horizon geometry of these
brane solutions of supergravity, and we will analyze what kinematical information can be
extracted from the dual field theories.

The domain-walls that appear in the analysis mentioned above describe spaces that are
separated into several domains by a boundary surface – the domain-wall. Across such domain-
walls, physical quantities can change their values in a discontinuous fashion. Domain-walls
that have such discontinuities are sometimes called “thin” domain-walls. On the other hand,
domain-walls that can be interpreted as smooth interpolations between different supergravity
vacua go under the name of “thick” domain-walls. At the end of chapter 3, we will explain
how these thick domain-walls have the interpretation of renormalization group flows in their

3Compare 0,1,2, . . . many with particle, string, membrane, . . . brane.
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dual quantum field theories.
Domain-wall spacetimes have attracted renewed attention recently: they are a member of

the class of brane world scenarios. In chapter 4, we will describe such brane world scenarios
in more detail: the basic idea is that our four-dimensional universe is actually a hypersurface
within a five-dimensional supergravity theory. The size of the extra fifth dimension trans-
verse to the so-called brane world can be used to gain insight in the origin of some unnatural
properties of four-dimensional physics. For instance, the so-called Randall-Sundrum sce-
narios were used to obtain a better understanding of the cosmological constant problem, as
well as the unnatural ratio of the strength of the gravitational force and the remaining three
interactions, the so-called hierarchy problem.

Supersymmetric versions of such theories have proven to be hard to find. The main ob-
stacle is realizing supersymmetry on the four-dimensional brane world solution: it is related
to finding the vacuum structure of the corresponding five-dimensional supergravity theory.
This, in turn, requires a detailed knowledge of all possible couplings of five-dimensional
matter models to supergravity. The scalar fields of these matter models can be interpreted as
coordinates on an abstract space. Many properties of the matter-coupled supergravity theory
can then be expressed in terms of the geometrical properties of the corresponding space of
scalar fields.

In particular, the scalar fields generate a potential that determines the vacuum structure
of the supergravity theory. For supersymmetric brane worlds to exist, this scalar potential
needs to possess two different, stable minima that need to satisfy some additional constraints.
Moreover, one needs to find a suitable solution that smoothly interpolates between two such
minima. Such an analysis, which had been started in the nineteen eighties (albeit for different
reasons), has recently been renewed, but still does not encompass the most general five-
dimensional matter-coupled supergravity theory.

We will take a systematic approach to construct these five-dimensional matter-couplings.
This so-called superconformal program starts from the most general spacetime symmetry
group, the group of superconformal transformations, which considerably simplifies the anal-
ysis of matter-couplings to supergravity. The different models possessing superconformal
symmetry are called multiplets. First of all, there is the so-called Weyl multiplet: this is the
smallest multiplet of the superconformal group that possess the graviton. On the other hand,
there are the matter multiplets: they interact with the Weyl multiplet that forms a fixed back-
ground of conformal supergravity. Matter-couplings to non-conformal supergravity can then
be obtained by breaking the conformal symmetries.

In chapter 5, we will present our results [16] on the five-dimensional Weyl multiplets.
We will see that there are two versions of this multiplet: the Standard Weyl multiplet and
the Dilaton Weyl multiplet. Multiplets similar to the Standard Weyl multiplet also exist in
four and six dimensions, but the Dilaton Weyl multiplet had so far only been found in six
dimensions. We will use a well-known method to deduce the transformation rules for the
different fields: the so-called Noether method. In particular, we will construct the multiplet
of conserved Noether currents for the various conformal symmetries. A remarkable detail
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is that the current multiplet that couples to the Standard Weyl multiplet contains currents
that satisfy differential equations, a mechanism that so far had only been known from ten-
dimensional conformal supergravity.

Our results [17] on five-dimensional superconformal matter multiplets will be presented
in chapter 6. We will discuss so-called vector multiplets: these are multiplets that contain
the gauge field of the gauge group under which the multiplet transforms. We will analyze
vector multiplets that transform under arbitrary transformations of the gauge group: the so-
called vector-tensor multiplets. In particular, we will consider representations of the gauge
group that are reducible but not completely reducible. This gives rise to previously unknown
interactions between vector fields and tensor fields. The conformal symmetries can only be
realized on the tensor fields if these satisfy their equations of motion. By dropping the usual
restriction that the equations of motion have to follow from an action principle, we can also
formulate vector-tensor multiplets with an odd number of tensor fields.

Apart from vector-tensor multiplets, we will also consider hypermultiplets in chapter 6.
These multiplets also possess scalar fields but not gauge fields. The scalar fields span a vector
space over the quaternions. Realizing the conformal algebra on the scalar fields will induce
a non-trivial geometry called hyper-complex geometry on the space of scalars. Similarly
as for tensor fields, the superconformal algebra can only be realized on the fields of the
hypermultiplet with the use of equations of motion. Also in this case, we will consider
equations of motion that do not follow from an action principle. The special cases for which
there is an action correspond to hyper-complex manifolds possessing a metric: the so-called
hyper-Kähler manifolds. Furthermore, we will analyze the interaction of hypermultiplets
with vector multiplets, and we will also make use of the scalar field geometry in this case. At
the end of chapter 6, we will give an overview of all the geometrical concepts that we will
make use of.

The matter-couplings to conformal supergravity that we will construct in this way can
be used as a starting point to construct matter-couplings to non-conformal supergravity. At
the end of chapter 6, we will sketch some ingredients of this procedure. Whether the five-
dimensional matter-couplings of supergravity that can be obtained in this way will actually
modify the vacuum structure in such a way that supersymmetric brane world scenarios can
be realized, remains an open question that will have to be answered by future research.
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