
Chapter 2

Scalar potential: Domain-walls and
other applications

In this chapter we will give some motivations for the research described in the remainder of this
thesis. We will briefly show the relevance of scalar potentials and domain-walls to supergravity,
field theories and cosmology. In the next chapters we will give two methods to obtain scalar
potentials from supergravity, dimensional reduction and conformal supergravity.

2.1 Gauged and massive supergravities

Gauged supergravities have played an important role during the past 25 years in a broad range of
applications. In most of these cases the key factor is the so-called scalar potential. Scalar poten-
tials e.g. in bosonic scalar-gravity models are essentially non-restricted massive deformations;
for example φ4 theory coupled to gravity. However, in supersymmetric models, like gauged
and massive supergravities, the form of the potential is fully determined. In that case the gauge
coupling constant g can be related to the mass parameter m by: m = κg. Supersymmetry in
general not only restricts the form of the potential; it also imposes a geometrical structure on the
collection of scalars in the theory, called the scalar manifold. We will see explicit examples of
this in chapters 6 and 7.

Strictly speaking gauged supergravities are defined as supergravity theories where either
a subgroup of or the full R-symmetry group is gauged, using one or more vectors present in
the theory. In some cases this will involve the coupling of extra matter multiplets, e.g. vector
multiplets. In practice the term gauged supergravity is often used to denote a gauging of an
arbitrary global symmetry group.

The general procedure of gauging a supergravity theory consists of

• choosing an appropriate gauge group G.

• performing a minimal substitution, i.e. coupling vector fields AI
µ to matter fields ΦI by
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introducing covariant derivatives

DµΦ
I = ∂µΦ

I + g AJ
µ fJ K

IΦK , (2.1)

locally invariant under

δGΦ
I = −gΛJ fJ K

IΦK , δGAI
µ = ∂µΛ

I − gΛJ fJ K
I AK

µ , (2.2)

where g is the gauge coupling constant, ΛI is the gauge parameter, and fI J
K are the struc-

ture constants encoding the properties of the specific gauge group. Note that non-Abelian
gaugings also allow for self-couplings between the vector fields.

• restoring supersymmetry by adding terms to the action and/or transformation rules, mak-
ing use of the Noether method. This procedure generally gives rise to mass-terms for the
fermions and contributes to the scalar potential.

In some specific cases a wide range of possible gauge groups have been classified, e.g. for
N = 2, D = 5 supergravity in [41]. More details on this subject will be given in chapter 7.

Note that not all potentials necessarily have to come from gauging. A good example of a so-
called massive supergravity theory is Romans’ [42] deformation of IIA (1.21) in ten dimensions
with one mass parameter, consistent with supersymmetry. Although the string theory origin
of these theories is somewhat unclear, their importance should not be underestimated. E.g.
Romans’ theory contains the D8-brane as a natural solution, coupling to the ‘zero-form’ mass
parameter.

2.1.1 Vacua
In this section we will illustrate the way in which the vacua of gauged/massive supergravities are
determined by the extrema of the scalar (super)potential. In conventional gravity or supergravity
theories the vacua are those solutions of the field equations with maximal symmetry, i.e. the
largest number of isometries. Let us first consider the D-dimensional Einstein-Hilbert action,
with cosmological constant Λ

S =
1

2κ2

∫
dDx

√
|g| (R − 2Λ) . (2.3)

The corresponding field equation is given by the vacuum Einstein equation

Rµν − 1
2 R gµν + Λ gµν = 0 , (2.4)

which, after taking the trace, gives an expression of the cosmological constant in terms of the
Ricci-scalar

Λ =
(D−2)

2D R . (2.5)

Depending on the curvature of space-time, the vacua correspond to de Sitter (dS), anti-de Sitter
(AdS) or flat Minkowski space:

anti-de Sitter (AdS) : negative curvature
Minkowski : zero curvature
de Sitter (dS) : positive curvature
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Figure 2.1: Critical points of the scalar potential.

Next consider a slight generalization corresponding to a minimal truncation of a gauged/massive
sugra action. The action for a scalar field coupled to gravity is given by

S =
1

2κ2

∫
dDx

√
|g|

(
R − 1

2∂µφ ∂
µφ − V(φ)

)
. (2.6)

The equations of motion of (2.6) are given by

∇µ ∂µφ =
∂V
∂φ

,

Rµν − 1
2 R gµν = 1

2∂µφ ∂νφ −
(

1
4∂ρφ ∂

ρφ + 1
2 V(φ)

)
gµν . (2.7)

In order to be consistent with maximum symmetry, the vacuum expectation value (v.e.v.) of the
scalar field has to be constant, and should correspond to a local extremum of the potential called
a critical point, see figure 2.1:

〈φ〉 = φc ,
∂V
∂φ

∣∣∣∣∣
φ=φc

= 0 . (2.8)

At these extrema the equations (2.7) reduce to the field equation describing three different
vacuum solutions, depending on the value and sign of the cosmological constant. In the (A)dS
cases the cosmological constant is given by

Λ = 1
2 V(φc) . (2.9)

In section 2.3 a specific class of vacuum solutions of (2.6) will be discussed, having (D − 1)-
dimensional Poincaré invariance and scalar v.e.v. that are dependent on the D-th coordinate. The
geometry of these half-supersymmetric solitons, called domain-walls, interpolates between two
conventional vacua with different cosmological constants.

2.1.2 Scalar (super)potential
Supergravity models generically consist of a basic supergravity multiplet coupled to any number
of supermultiplet representations of the underlying supersymmetry algebra. Interactions in those
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models are usually described by three types of potentials for the scalar fields in the theory: the
superpotential W and the potential V , derived from W.

The connection between V and W can be made clear by the following toy model. Let us
consider the same scalar-gravity model as given in (2.6) and describe scalar fluctuations ϕ around
the AdS vacuum associated with the critical point φc with V(φc) < 0

ϕ = φ − φc . (2.10)

Expanding the action (2.6) to lowest order around this critical point yields

S =
1

2κ2

∫
dDx

√
|g|

(
R − 1

2∂µϕ ∂
µϕ − 1

2 M2ϕ2 − V(φc)
)
, (2.11)

with the following equations of motion
(
∇µ ∂µ − M2

)
ϕ = 0 ,

Rµν − 1
2 R gµν + Λgµν = O(ϕ2) , (2.12)

describing a scalar particle of mass M in an AdS background with cosmological constant Λ

M2 ≡ ∂2V
∂φ2

∣∣∣∣∣∣
φ=φc

, Λ ≡ 1
2 V(φc) . (2.13)

A more general case was considered by Townsend [43]: supergravity coupled to vector multi-
plets, also called Einstein-Maxwell supergravity. This theory contains multiple scalars φx that
can be interpreted as coordinates on some manifold described by metric gxy

S =
1

2κ2

∫
dDx

√
|g|

(
R − 1

2 gxy(φ) ∂µφx ∂µφy − V(φ)
)
. (2.14)

In the bosonic case it was shown from stability requirements of the AdS vacua that the potential
can be expressed in terms of the superpotential

V(φ) = 4(D − 2)2
[
2gxy ∂W

∂φx

∂W
∂φy −

D − 1
D − 2

W(φ)2
]
. (2.15)

A similar result can be obtained by requiring supersymmetry invariance, where the superpoten-
tial can be read off from the transformation rules of the fermions

δψµ = (∂µ + 1
4ωµ

abΓab)ε +W(φ) Γµ ε ,

δλx = gxy /∂φ
yε − (D − 2)

∂W
∂φx ε . (2.16)

These contributions to the scalar potential are called the fermion-shifts. Note that not all po-
tentials in supersymmetric theories can be written in terms of a superpotential. We will see
examples of this in chapter 4.
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2.1.3 Applications

From the above it should be clear that it is very useful to study the properties of gauged su-
pergravities. In particular the scalar potential can provide crucial information about the vacua,
solutions and dynamics of supergravity theories, that can be used in many applications, some of
which will be further explained in the following sections.

• The DW/QFT correspondence is a conjectured duality between supergravity on a domain-
wall background and a quantum field theory. A special case of this duality is the AdS/CFT
duality. Useful properties of field theories can be obtained by studying domain-wall solu-
tions of supergravity, which are fully determined by the form of the scalar potential. By
using this duality, the domain-wall geometries describe renormalization group flows in
the dual field theory. See sections 2.2 and 2.3 for more details.

• Brane-world scenarios try to describe our four-dimensional world by assuming that we
live on the worldvolume of a domain-wall solution in five dimensions. Whether a su-
persymmetric embedding of these scenarios is possible or not depends on the vacuum
solutions of the scalar potential in gauged N = 2 supergravity in five dimensions.

• Inflationary models are used to study several issues in cosmology like the smallness of
the cosmological constant, the horizon problem and the isotropy of the universe. These
models try to explain the dynamical properties of the universe by studying the scalar-
potentials occurring in specific scalar-gravity systems. For certain values of the so-called
“slow-roll parameter” cosmic inflation occurs, as the result of the “rolling” of the scalar
field towards the minimum of the potential. For a review see [44, 45].

2.2 AdS/CFT

One of the most important developments of the past few years has been the conjecture of Mal-
dacena in 1997, called the AdS/CFT correspondence [46]. This was later generalized to the
DW/QFT correspondence [47, 48]. Before giving a brief explanation of this conjecture, let us
first give some relevant information about the geometry of anti-de Sitter.

2.2.1 (A)dS geometry

The geometry of AdS D is given by the SO(2,D−1) invariant hyperboloid in (D+1)-dimensional
space

−X2
−1 − X2

0 +

D−1∑

i=1

X2
i = −R2 , (2.17)
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Figure 2.2: AdS D and dS D as hyperboloids in �2,D−1.

whereR denotes the AdS-radius, see figure 2.2. This induces the following line element in terms
of so-called horospherical coordinates {xα,U,V}:

U = X−1 + XD−1 ,

xα =
XαR

U
, (α = 0, . . . ,D − 2) ,

V = X−1 − XD−1 =

( U
R2

)
x2 +

(
R

2

U

)
, (2.18)

ds2 =

(U
R

)2

dx2 +

(
R

U

)2

dU2 .

A more convenient parametrization in the context of brane-world scenarios, that we will en-
counter further on, are the so-called Poincaré coordinates

ds2 = e−2r/Rdx2 + dr2 , e−r/R =
U
R
. (2.19)

2.2.2 Maldacena conjecture
In 1997 a remarkable connection between string theory and gauge theory was conjectured by
Maldacena [46], proposing an equivalence between string theory on an AdS p × S D−p and a
conformal field theory (CFT) in (p − 1) dimensions, on the boundary of the AdS space. We will
illustrate this statement by briefly describing Maldacenas original motivation.

First imagine we have an open string with both endpoints ending on a single D3-brane.
As the lowest mode is given by a vector field with U(1) gauge invariance, this induces a four-
dimensional U(1) gauge theory on the brane. Since the D3-brane is a half-BPS solution, break-
ing half of the total number of supersymmetries, the D = 4 U(1) theory has N = 4 supersym-
metry.

Now extend this to a system of N parallel D3-branes, separated by a distance r. The open
strings stretching between the various branes again induce a U(1) gauge theory on each brane.
In the limit of r → 0 we have a stack of coinciding branes and the gauge symmetry on the branes
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is enhanced from U(1)N to U(N), which in the low energy limit describes a four-dimensional
CFT with gauge group SU(N), known as D = 4 N = 4 super-Yang-Mills (SYM) theory. The
bosonic symmetry group of this gauge theory is given by the product of the conformal group in
four dimensions, SO(4, 2) and the R-symmetry group SO(6).

On the other hand we know that the stack of D3-branes, like any massive object, causes the
space-time to curve. Far away from the branes the space-time is given by Minkowski space but
in the near-horizon limit, i.e. near the branes, the geometry can be shown to resemble that of the
space AdS 5 × S 5. Since the radii of the sphere and of the AdS space are proportional to N, the
resemblance gets better for increasing N. The isometry group of this background geometry is
given by SO(4, 2) × SO(6).

Consequently it was conjectured that IIB string theory on a AdS 5 × S 5 background in the
large N limit is dual to a CFT on the boundary of AdS 5, given by N = 4 SYM. This statement
was later generalized to the so-called Domain-wall/Quantum field theory (DW/QFT) correspon-
dance, that relates supergravity on a near-horizon geometry of a p-brane to a (non-conformal)
QFT on the brane. The most striking result of these correspondances is that they relate a gravi-
tational theory, like supergravity or string theory, to a non-gravitational conformal field theory.

In the context of this conjecture, it is useful to study N = 8, D = 5 gauged supergravity; the
dimensional reduction of IIB on AdS 5 × S 5 gives SO(6) gauged D = 5, N = 8 sugra [49, 50].
This reduction is believed to be a consistent nonlinear truncation, meaning that all classical
solutions of the five-dimensional theory can be uplifted to IIB solutions. For example, the
SO(6)-invariant AdS 5 groundstate can be uplifted to an AdS 5 × S 5 vacuum. Therefore the five-
dimensional theory should contain all relevant deformations ofN = 4 SYM, and all domain-wall
solutions in this theory can be uplifted.

During the past few years a considerable amount of evidence has been gathered in many
different applications to support the AdS/CFT conjecture. For more details we refer to the
reviews [46, 51].

2.3 Domain-walls
Domain-walls are (D-1)-dimensional solutions of the sugra equations of motion, separating two
regions of space-time. In the case of a (singular) (D-2)-brane solution, also called ‘thin’ domain-
wall, the brane couples to a volume form which can be dualized to a cosmological constant. The
value and/or sign of the cosmological constant usually is different when passing both sides of
the domain-wall. The other type of domain-wall is the ‘smooth’ or ‘thick’ domain-wall.

2.3.1 Solution

The ‘thin’ domain-wall solution is a δ-function singularity, given by (1.45) with p = D − 2

domain-wall =



ds2 = H(y)2αdx2
(D−1) + H(y)2βdy2 ,

eϕ = H(y)−
2a
∆ ,

F(D) =

√
4
∆

dd x ∧ dH−1 ,

H(y) = 1 + Q|y| .

(2.20)
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Figure 2.3: Warp-factor for singular and smooth branes.

with
α = 2

∆(D−2) , β = 2(D−1)
∆(D−2) , Q =

√
Λ∆ , (2.21)

where the parameter ∆ given by
∆ = a2 − 2 D−1

D−2 . (2.22)

This expression for ∆ is bounded from below by the value ∆AdS corresponding to the AdS
vacuum solution of pure supergravity1

∆ ≥ ∆AdS ≡ −2 D−1
D−2 . (2.23)

It was indeed shown [52] that the corresponding domain-wall solution describes two regions of
AdS-space. More generally it can be shown that the near-brane limit of solutions of this type
are flat Minkowski, and the asymptotic limit far away from the brane describes AdS geometry.
Domain-walls therefore are solutions interpolating between two vacua of the theory.

In phenomenological and cosmological models people are usually more interested in non-
singular solutions, where there is no δ-function source. A more general domain-wall Ansatz can
be written as

ds2 = a(y)2dx2
(D−1) + dy2 , (2.24)

where the function a is called the warp factor; see figure 2.3. For a(y) = e−|y|/L this corresponds
to the domain-wall consisting of two slices of AdS in Poincaré coordinates. Depending on the
properties of the scalar potential smooth solutions for a(y) can exist corresponding to so-called
thick domain-walls.

2.3.2 Toy model: domain-walls as RG-flows
In this section we will show how domain-walls can be associated with renormalization group
flows (RG-flows). The application of the AdS/CFT duality shows that supergravity flow equa-
tions, connecting critical points of the scalar potential, describe (holographic) RG-flows of quan-
tum field theories, connecting different fixed points.

An exact analysis of the scalar potential is in general not possible, due to the non-trivial
geometry of the scalar manifold and the large number of scalars appearing in the potential.
Instead of trying to solve the minimization problem at the level of the second order equations of
motion, there is a more appealing method.

1Corresponding to the case a = 0, i.e. constant dilaton; the metric therefore describing AdS-space.
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Figure 2.4: Fixed points of the beta-function.

Our starting point is the smooth domain-wall Ansatz in the context of the scalar-gravity toy
model (2.6)

ds2 = e2A(y)ηµνdxµdxν + dy2 , φ = φ(y) . (2.25)

As we saw before, at the critical points of V(φ) the scalar φ is constant and the geometry be-
comes AdS with cosmological constant given by Λ = 1

2 V(φc). However, we also saw that these
AdS vacua are dual to a conformal field theory on the boundary of the AdS space-time. Rele-
vant deformations of these CFTs on the field theory side give rise to so-called RG-group flows
to other conformal theories. Mapped to its gravity dual this corresponds to scalar fluctuations
around AdS space-time. The RG-flow of the coupling constants is described by the U depen-
dence of the scalar fields. These scalars φ can be interpreted as coupling constants g and the
warp-factor a(y) = eA(y) behaves as a renormalization group scale or energy scale U in the dual
field theory side. The expression of the field theory beta-function is conventionally given by

β(g) ≡ U
∂g(U)
∂U

, (2.26)

and is depicted in figure 2.4. The arrows denote the flow-direction of the coupling constant g
with increasing energy U. The zeroes of the beta-function, called fixed points, correspond to
scale-independent conformal field theories. These fixed points correspond to critical points of
the scalar potential on the supergravity side. There are two types of fixed points: IR points
corresponding to low energy scales and UV points at high energy scales, behaving as attractors.
A small dictionary mapping between objects in gauge/gravity theory is given in table 2.1.

Returning to equation (2.25), we see that this geometry describes anti-de Sitter space if we
take A(y) = − y

L . Using the metric-Ansatz (2.25) the equations of motion (2.7) become [53]

φ′′(y) + (D − 1)A′(y)φ′(y) = ∂V
∂φ
,

(D − 2)A′′(y) + (D−1)(D−2)
2 A′(y)2 = − 1

4φ
′(y)2 − 1

2 V(φ) ,
(D−1)(D−2)

2 A′(y)2 = 1
4φ
′(y)2 − 1

2 V(φ) .

(2.27)

These equations can be interpreted as Euler-Lagrange equations for the energy functional

E =
∫ ∞

−∞
dy

e(D−1)A(y)

D − 2

(
−(D − 1)(D − 2)A′(y)2 +

1
2
φ′(y)2 + V(φ)

)
. (2.28)
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Sugra on AdS D (D − 1)-dim. gauge theory

Critical point: AdS space-time Fixed point: CFT β = 0

Warp-factor a(y) Energy scale U

Scalar φ(y) Coupling constant g(U)

Domain-wall flow-equations RG-flow

Table 2.1: A domain-wall/RG-flow dictionary.

Substituting equation (2.15), and using the Bogomol’nyi trick to write E as a sum of squares we
obtain

E =

∫ ∞

−∞
dy

e(D−1)A(y)

D − 2


1
2

[
φ′(y) ∓ (D − 2)

∂W
∂φ

]2

− (D − 1)(D − 2)
[
A′(y) ± 1

2
W(φ)

]2

±
[
e(D−1)A(y)W(φ)

]∞
−∞ . (2.29)

Written in this form the equations minimizing the energy are easily read off to be

φ′(y) = ∓(D − 2)
∂W
∂φ

,

A′(y) = ±1
2

W(φ) . (2.30)

These equations describe gradient-flows on the hypersurface given by the functional W(φi) in
the scalar manifold. Contrary to the second order equations of motion, the analysis of these first
order equations is much simpler. Solutions of the flow-equations are automatically solutions of
the equations of motion.

Remarkably, in gauged supergravity theories the flow equations could also have been ob-
tained by plugging the same Ansätze (2.25) and (2.15) into the BPS-equations corresponding to
the domain-wall solution

δψµ = (∂µ + 1
4ωµ

abΓab)ε +W(φ) Γµ ε = 0 ,

δλ = /∂φε − (D − 2)
∂W
∂φ

ε = 0 . (2.31)

In any theory there are generally different relevant deformations possible, all describing cer-
tain RG-flows: IR-UV, UV-UV, IR-IR. For instance, in [54, 55] a flow was constructed from
N = 4 SYM to N = 1 SYM by studying the scalar potential of N = 8, D = 5 supergravity.
Flows of the type IR-IR are of particular interest in the context of supersymmetric brane-world
scenarios as we will see in the following section. Figure 2.5 gives an example of a flow between
two IR-IR fixed points. The big question however still remains. . . does there exist a correspond-
ing domain-wall? The answer to this question can be given by studying the scalar potential of
the most general matter-coupled gauged supergravity theory.
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Figure 2.5: Domain-walls as Renormalization Group Flows.

2.4 Brane-world scenarios

The idea of brane-worlds rests on the assumption that our four-dimensional space-time is given
by an infinitesimally thin three-brane floating in (4+n) dimensions. Standard model particles are
living on the brane but gravity extends in the transverse dimensions. In 1999 Randall and Sun-
drum proposed two specific brane-world models, motivated to solve a couple of long standing
problems in theoretical physics: the hierarchy problem and the cosmological constant problem.
The hierarchy problem covers the huge difference of order of magnitude between the Planck
scale and the weak scale. Some of the older models tried to explain this using large extra di-
mensions [56,57]. Although the idea by Randall and Sundrum is not completely new [58], their
approach came with remarkable new insights that stimulated further research until the current
moment. In their original two papers they gave two different models, RS I [59] and RS II [60]
which will be schematically described below. For more details we refer to the original papers or
the reviews [61–63].

2.4.1 Randall-Sundrum I: two branes

The two-brane scenario is a model of five-dimensional gravity on an orbifoldM4 × S 1/�2 with
two three-branes located on both �2 fixed points, separated by a distance πrc. The brane at
y = 0 is called the “hidden” or “Planck” brane and the one at y = πrc the “visible” or “Standard
model” brane (see figure 2.6). The idea is simple:
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Figure 2.6: The two-brane Randall-Sundrum scenario.

• Symbolically write down an action for the combined system

S = S gravity + S vis + S hid ,

S gravity =

∫
d4x dy

√
|G|

(
2M3R − Λ

)
, (2.32)

S brane =

∫
d4x

√
|gind| (L − Vbrane) , (for both branes)

where gind is the induced metric on the brane, Vbrane the vacuum energy of the brane, and
M the five-dimensional Planck mass.

• Write down an Ansatz for the background metric, possessing four-dimensional Poincaré
invariance

ds2 = a(y)2ηµνdxµdxν + r2
c dy2 , a(y) = e−σ(y) . (2.33)

• Deduce the modified Einstein equations from (2.32) and (2.33). These equations are
solved by

σ(y) = rc|y|
√
−Λ

24M3 , Vhid = −Vvis = −Λ/k , Λ = −24M3k2 , (2.34)

where k is some integration constant. We see that the solution of the warp-factor requires
the background to consist of two slices of AdS in Poincaré coordinates.

As a result of the above procedure the effective Planck scale on the brane can be calculated to
be

M2
pl =

M3

k

(
1 − e−2πrck

)
. (2.35)

The hierarchy problem can now be solved by taking the five-dimensional Planck scale to be of
the order of the weak scale, and considering the effective theory on the visible brane at y = πrc. If
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Figure 2.7: The single-brane Randall-Sundrum scenario.

we take rck ≈ 50, this results in a scale hierarchy due to the exponential form of the warp-factor.
This was concluded by considering matter fields living on the visible brane. Although solving
the hierarchy problem, nevertheless this scenario is still problematic; it lacks the possibility of
localization of gravity on the visible brane. Also the presence of a negative tension brane was
required. Soon after the RS I model was proposed, another model was suggested, with only one
brane, to resolve these problems.

2.4.2 Randall-Sundrum II: one brane

The one-brane scenario initially starts off with the same setup as the one described in the pre-
vious section , but the invisible brane is sent to infinity, and is therefore physically removed
from the model, see figure 2.7. The brane-tension of the remaining brane is positive and again
fine-tuned against the bulk cosmological constant. Instead of solving the hierarchy problem, the
warp-factor is now used for the localization of the graviton to the brane. By studying fluctua-
tions of the metric G it was shown that they are effectively described by Newton’s equation on
the brane, predicting higher order corrections to the Newtonian potential

VN(r) = GN
m1m2

r

(
1 +

1
r2k2

)
. (2.36)

Although both these models have appealing properties, fermions will have to be included in
order to obtain phenomenologically interesting models.



34 Scalar potential: Domain-walls and other applications

2.4.3 Supersymmetric Randall-Sundrum scenario
The simplest way of including fermions in the theory is by trying to embed the model in a
supersymmetric theory. The best candidate for this theory is thought to be D = 5, N = 2
supergravity. As we saw in the previous sections some parameter tweaking was necessary for
obtaining a consistent model. The main obstruction of a supersymmetric analog however is that
the scalar potential is now more restricted, not leaving a lot of room for tweaking the parameters
of the solution. Furthermore, the three-brane used in the model should be a valid supergravity
solution, namely a domain-wall in five dimensions. Several possible solutions were suggested
to resolve this issue.

One solution was given by [64, 65] who considered the insertion of singular brane sources
in order to restore supersymmetry in spaces with singularities such as the thin domain-walls.
This scenario is conjectured to be the dimensional reduction of the eleven-dimensional Hořava-
Witten model [27], on some six-dimensional Calabi-Yau manifold [66, 67].

Another, more appealing, solution would be to find a smooth soliton solution interpolating
between two AdS vacua. For such solutions to be compatible with a supersymmetric Randall-
Sundrum scenario, the scalar potential should have at least two connected stable IR critical
points with the same value of the cosmological constant. Secondly, the flow-equations should
be solvable for the smooth domain-wall Ansatz and the corresponding warp-factor should be
exponentially decreasing for y → ±∞. In order to find such solutions a thorough investigation
of the most general gauged N = 2, D = 5 sugra is needed. Note that brane-world models
can be given a place in string theory, by requiring this five-dimensional theory to follow from a
specific Calabi-Yau compactification of M-theory. Alternatively one could try to find an explicit
embedding of N = 2 in N = 8 sugra in D = 5, which could be related to string theory by the
AdS/CFT conjecture.

Let us give a brief description of the field content of ungauged N = 2, D = 5 supergravity
and its relevant matter multiplets (I labelling the representation of the gauge group):2

• (8 + 8) Gravity multiplet: vielbein eµa, two gravitinos ψi
µ, graviphoton Aµ

• (8 + 8) Vector multiplets: vector AI
µ, two gauginos ψiI , scalar σI

• (4 + 4) Hyper multiplets: four quaternions qX , two hyperinos ζA

In five dimensions we can also have self-dual tensor multiplets, provided the vectors are in
the adjoint representation. Otherwise the tensors can be dualized into vectors. Normally these
tensors are self-dual in the sense as explained in [68].

Pure ungauged N = 2, D = 5 sugra was constructed by Cremmer in 1980 [69]. A few years
later Günaydin, Sierra and Townsend constructed U(1)- and SU(2)-gauged N = 2, D = 5 sugra
coupled to an arbitrary number of vector multiplets [70–72]. Several years ago Günaydin and
Zagermann added tensor-couplings for specific gauge groups [73–75]. Finally, in 2000, Ceresole
and Dall’Agata constructed gauged N = 2, D = 5 sugra coupled to nV vectors, nT tensors and
nH hyper multiplets [76].

The analysis of the scalar potential in these such theories is highly non-trivial. Several
simplified cases therefore have been considered in the literature. Many NO-GO theorems have

2The bosonic and fermionic degrees of freedom are denoted between parenthesis.
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been posed [77–81]. It was found that without hyper-couplings no IR critical points could be
found [55, 77, 78, 82]. After including hypermultiplets several solutions were found yielding
only one single IR critical point [54, 55, 83]. In [79] multiple critical points were found, having
at least one IR direction 3, but they were not connected.

Last year however a possible solution of a smooth domain-wall was found, by Behrndt and
Dall’Agata [84], admitting a supersymmetric extension of the Randall-Sundrum scenario. They
considered N = 2 sugra coupled to a single hypermultiplet. The crucial ingredient was the
restriction to a specific class of non-homogeneous quaternionic manifolds. A generalization to
more general non-homogeneous quaternionic manifolds was recently considered by Anguelova
and Lazaroiu [85]. Although solutions already have been found, they are not by far the most
general solutions possible. First of all because only the coupling of one hypermultiplet was an-
alyzed. Secondly, because a specific type of tensor-couplings was overlooked in the literature,
corresponding to non-compact gaugings, which could have surprising implications. We con-
structed this extension in the context of N = 2, D = 5 conformal supergravity [86]; this will be
discussed in chapters 5, 6 and 7.

3Saddle points of the scalar potential.
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