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Chapter 1

Introduction

Figure 1.1. Stephan’s Quintet: a visual group-
ing of �ve galaxies in the constellation Pega-
sus. Image credit: NASA, ESA, and the Hubble
SM4 ERO Team.

�Twinkle twinkle little star. How I won-
der what you are?� Childhood wonder and
adulthood quest of �knowing thyself� make
us broaden our eyes through powerful tele-
scopes to get answers to all our unanswered
questions. Nowadays, we are well equipped
with tens of terabytes of data on millions of
stars, galaxies, and other astronomical objects,
thanks to astronomical sensors such as optical
telescopes, radio telescopes, and space tele-
scopes.

The adage �A picture is worth a thousand
words� could not be more true than it is in as-
tronomy. Spectacular images obtained with
telescopes are a means to understanding the
universe; see for example Figure 1.1. There-
fore, extracting information from images is
one of the fundamental tasks in astronomy.
Astronomers need to identify the stars and
galaxies, estimate their positions, photometry
and other related attributes from the images to populate their catalogues. The process of pop-
ulating catalogues from images is depicted in Figure 1.2. Telescopes, such as the VST (VLT
Survey Telescope) operated by the European Southern Observatory (ESO), with high resolution
CCD cameras (e.g., OmegaCAM) capture images of the sky. Those images later go through
various image processing and pattern recognition steps, such as �ltering, background estima-
tion, masking, artifact detection, deblending/merging, photometry, and classi�cation (Starck and
Murtagh 2002). After these processing steps, one point in the image has become a record with
hundreds of attributes in a table of a catalogue. A catalogue consists of a large collection of data
and thus acts as a source of scienti�c information.

The work described in this thesis concerns the information retrieval step using catalogue data.
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Figure 1.2. The process of creating catalogue data from the images captured by telescopes’
high resolution CCD cameras. Image credit: VLT survey telescope � ESO; OmegaCAM mo-
saic CCDs � ESO; Test image of OmegaCAM � Edwin A. Valentijn, Kapteyn Astronomical
Institute.

A table in a catalogue consists of M rows and N columns. In the rest of the thesis, columns are
considered as data dimensions (where variates, features, attributes, or parameters are considered
as synonyms), and rows are considered as N-dimensional data points (where records or cases are
considered as synonyms). To explore, analyze, and extract astronomically relevant information
from the sheer data volume which has entered the terabyte regime is a huge challenge. There
are not many adequate tools in the astronomical research community to explore and visualize
multi-dimensional data of this size. Such tools are very important for the understanding of the
physical processes at play.

The remainder of this chapter is organized as follows. Section 1.1 contains a more in-depth
illustration of the problem. Then we state the goal of the thesis in section 1.2. State-of-the-art
high-dimensional data visualization techniques will be described in Section 1.3. A brief descrip-
tion of the current tools used in astronomy is provided in section 1.4. Section 1.5 summarizes
the contribution and organization of this thesis.

1.1 Illustrating the Problem
The seventh and �nal data release (DR7) of SDSS (Sloan Digital Sky Survey) covers 11,663
deg2 of sky and contains 15.7 Tbyte of image data (in 5 bands: u, g, r, i and z, centered at a
wavelengths 3551, 4686, 6165, 7481 and 8931 ¯), and 44.8 Tbyte of catalogue data with 357
million objects, each with a few hundred attributes describing the object and its observations. Of
these objects, spectra (and hence redshifts) are available for about 929,555 galaxies and about
400,000 stars (a full description of SDSS can be found on the SDSS website: www.sdss.org).

www.sdss.org
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Figure 1.3. Legacy DR7 Imaging Sky Cov-
erage (Aitoff projection of Equatorial coordi-
nates). Image source: http://www.sdss.
org/dr7/

The earlier SDSS data releases have already
led to a large number of results, varying from
studies of the effect of the environment on the
properties of galaxies (stellar mass, star for-
mation activity, structure) (Kauffmann et al.
2004) to studies of the distribution and kine-
matics of stars in the Milky Way galaxy (Sirko
et al. 2004b, Sirko et al. 2004a). The study
of Kauffmann et al. (2004) shows the power
of relating the properties of galaxies (in this
case color, star formation activity and stellar
mass) to their environment and spatial distri-
bution. They obtained several interesting ob-
servations. For example, high density regions
are predominantly populated by galaxies with
a narrow range in color (0:8 < g� r < 1:0; these are mostly elliptical galaxies) while the low-
density areas are populated by galaxies with a wide range of colors (mostly star-forming disk
galaxies). This information was obtained by observing scatter plots of g� r color versus stellar
mass at different environmental densities. They also observed in the spatial distribution of galax-
ies in a ‘slice’ at redshift z= 0:05 that galaxies with high star-formation rates appear to populate
the densest areas, suggesting a link between local galaxy density and star formation activity.

The study of Kauffmann et al. (2004) has made use of known properties of galaxies, so that
the multi-dimensional parameter space has been explored using this prior knowledge. For exam-
ple: elliptical galaxies are known to populate preferentially the densest areas in the universe and
obey a well de�ned color-magnitude (CM) relation (Visvanathan and Sandage 1977, Sandage
and Visvanathan 1978b, Sandage and Visvanathan 1978a). But there may be other unexpected
properties of galaxies which remain unnoticed as it is impossible to search manually all of pa-
rameter space, given that each galaxy in the SDSS catalogue has more than several tens of usable
entries (shape in �ve color bands, position, redshift, spectral characteristics such as line strengths,
etc.).

Another example to illustrate the need for designing algorithms that work effectively in multi-
dimensional parameter spaces concerns research on our own Galaxy. In particular, a great deal of
effort has gone into isolating the remnants of satellite galaxies accreted in the past, as predicted
by modern galaxy formation theories, using the chemical composition, 3D spatial coordinates
and velocities of stars in the Milky Way. Stars harbor unique clues of the assembly history of our
Galaxy. Low-mass stars live for much longer than the present age of the universe, and so retain
in their atmospheres a record of the chemical elements of the environment in which they were
born (Christlieb et al.2002, Venn et al.2004).

The last decade has seen a large increase in the size and complexity of data sets containing
the relevant physical information required to disentangle the history of the Galaxy. The SDSS
survey has played a key role in this respect, with the discovery of streams associated to the most
recently accreted satellite, the Sgr dwarf. This discovery (as well as that of an �outer ring�) was
made from the distribution of the stars on the sky (a 2D projection of a 6D space). The recent

http://www.sdss.org/dr7/
http://www.sdss.org/dr7/
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nature of this event made the structure obvious on the sky. However, many more substructures
are predicted by models, and these ought to be buried in the SDSS and similar databases (e.g.,
RAVE, Steinmetz (2003)).

To explore properly these multi-dimensional (> 10) data volumes, new tools need to be de-
veloped to localize and characterize the coherence in parameter space and then to visualize the
structures found. Coherence in the data is of course not limited to a few dimensions: �nding
multidimensional and multiscale patterns must be the focus of new research in this area.

1.2 Goal of the Thesis
In the previous subsection, we discussed the problem of extracting information from large high-
dimensional astronomical datasets. Trying to �nd relations with a priori knowledge may hinder
�nding unknown relations that are hidden in the haystack of large datasets. Visualization can
be an invaluable tool in such cases that utilizes the human power of identifying structures and
relations. However, in that case it may be required to observe a huge number of visualizations
which is not feasible. Therefore coupling automation with visualization is needed. Hence, the
goal of this thesis is to provide new methods/algorithms which:

u are capable of coping with enormous amounts (terabytes) of multi-dimensional parameter
data in an automated fashion, thus should be scalable to ensure that processing methods
remain usable on data sets which keep growing in size;

u offer automated approaches for analyzing and in particular visualizing structures, patterns
etc., in multi-dimensional (N > 3) parameter space;

u are �exible and allow the observer to participate in the analysis by using interactive visu-
alization combined with the human processing/perceptive/analytical power.

In the following section we describe state-of-the-art high-dimensional data visualization tech-
niques, indicating their strengths, limitations and directions of improvement to satisfy our goal
of visualizing high-dimensional astronomical data.

1.3 High-Dimensional Data Visualization
Visualization is:

“to form a mental vision, image, or picture of (something not visible or present to
sight, or of an abstraction); to make visible to the mind or imagination”

� The Oxford English Dictionary (1989)

“more than a method of computing. Visualization is the process of transforming
information into a visual form, enabling users to observe the information. The re-
sulting visual display enables the scientist or engineer to perceive visually features
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which are hidden in the data but nevertheless are needed for data exploration and
analysis”

� Gershon (1994)
While the goal of visualization is to enhance understanding, gaining insight, exploration

and exploitation and so on, the data to be visualized often come with very high dimensionality.
Visualizing such data is not a trivial task because human perception is accustomed to a three-
dimensional world. There are several approaches for visualizing high-dimensional data.

Here, these techniques will be discussed according to three major categories:

1. methods that use a Cartesian coordinate system for the �rst three chosen dimensions, and
use colors, glyphs, size and shape attributes for any additional dimension;

2. methods that use a Cartesian coordinate system after applying dimension reduction tech-
niques such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA),
Sammon Algorithm, multidimensional scaling (MDS), projection pursuit, or any other
form of transformation of the high-dimensional data.

3. methods that visualize every dimension with equal treatment and without any transforma-
tion.

1.3.1 Volume Visualization
Spaces of dimensionality three or higher can be visualized with volume visualization. However,
spaces with dimensionality higher than three need to be reduced to 3D space using dimensionality
reduction techniques, before they can be visualized with volume visualization. This technique
normally is used for visualizing continuous data. Nevertheless, discrete data can be visualized
with the same technique as well. In that case, a continuous form of the discrete data such as a
density �eld calculated on a grid can be used.

There are two main groups of algorithms to visualize data volumes:

u visualization with surface �tting � extracts a surface and then visualizes it,

u direct volume visualization � visualizes directly, without extracting a surface, using struc-
tured or unstructured grids.

Visualization with Surface Fitting

Surface �tting, also known as isosurface visualization, visualizes the surface that corresponds
to points with a particular data value (known as the isovalue) in the volume. This is basically
a 3D version of the 2D contouring technique. A widely used technique for visualizing isosur-
faces is the marching cubes algorithm (Lorensen and Cline 1987), where points of interest are
tessellated with triangles in a regular grid by traversing every cubic cell. In information visual-
ization this technique can be very useful in visualizing structures (such as clusters) of varying
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Figure 1.4. Visualization of the olive oil dataset (Forina et al. 1983). (Left) Isosurface vi-
sualization of three of the dimensions (palmitic, palmitoleic, linoleic). At isovalue 190 the
presence of eight clusters can be observed. (Right) Xray volume visualization of the same three
dimensions.

density, present in a dataset. In the left of Figure 1.4, density image of the three of the dimen-
sions (palmitic, palmitoleic, linoleic) of the olive oil dataset (Forina et al.1983) is visualized by
isosurface visualization with a user-de�ned isovalue where eight dense clusters become easily
visible.

Direct Volume Visualization (DVV)

In surface visualization a particular set of data points (corresponding to a chosen isovalue) is
used, whereas in DVV all the data points in the volume can contribute in the visualization pro-
cess. DVV creates a direct mapping of the volume data onto the image plane where each voxel
(�volume element�, analogous to a pixel in a 2D image) is represented by a small cube. The
contribution of each cube depends on its distance from the image plane. There are several ap-
proaches in DVV, such as X-ray, Maximum Intensity Projection (MIP) volume visualization
etc. In X-ray volume visualization, data values along the line of sight are integrated (averaged)
whereas in Maximum Intensity Projection volume visualization the maximum data value along
the line is used. In information visualization this technique can be used to obtain an overview
of the structures present in data space. In the right of Figure 1.4, an X-ray volume visualization
of the 3D density �eld of three of the dimensions (palmitic, palmitoleic, linoleic) of the olive oil
dataset is shown.

1.3.2 Scatter Plot Matrix (SPM)
The scatter plot (Chambers et al. 1983) is a very popular way to represent the relationship
between two variables. The scatter plot matrix(SPM) is an extension to higher dimensions
and shows the pair-wise relationships of a set of variables in a matrix format. The SPM of a
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N-dimensional dataset comprises N rows and N columns, where the element in row i th and
column j th of the (N � N) matrix contains the scatter plot of dimension i versus dimension
j of the dataset. In Figure 1.5 the scatter plot matrix of the olive oil data set is visualized.

Figure 1.5. Scatter plot matrix of the olive oil
dataset.

SPM is very useful to obtain an overview
of pair-wise relationships of the dimensions.
However, for very high (� 3) dimensional
datasets SPM becomes unreadable due to
crowding and visual clutter. Interactive SPM
with zooming and panning features can solve
the problem for noise-free datasets. Datasets
with noise require �ltering of the noise and
less informative dimensions to make SPM
useful and interpretable (Peng et al.2004).

1.3.3 Parallel Coordinate Plot (PCP)
Parallel coordinate plots (Inselberg 2009,
Wegman 1990) are constructed by laying out
the axes of an N-dimensional data set in parallel as opposed to the more familiar orthogonal
arrangement of the Cartesian coordinate system. The number of axes in PCP in principle equal
the number of dimensions present, and is only limited by the horizontal resolution of the screen.
Instances in the data set are represented by a line trace, connecting the case values on each di-
mension axis, as shown in Figure 1.6. However, PCP suffers from a number of shortcomings. If
the number of instances is large, overlapping lines cause clutter and thus hide the structures of
interest (see the left of Figure 1.7, created with GGobi1, a high-dimensional data visualization
tool). It also requires reordering of the dimensions to observe certain structures, correlations,
etc. To reduce the clutter Fua et al. (1999) proposed hierarchical PCP. They used hierarchical
clustering to obtain a multi-resolution cluster display. Variable-width opacity bands were ap-
plied to visualize the clusters, where the lowest opacity represents the cluster mean. Depending
on the spreading of the clusters in each dimension the opacity of the band dissolves gradually to
the edge (see the middle of Figure 1.7, created with XmdvTool2). They also provided an inter-
face (as shown in the right of Figure 1.7) to allow structure-based brushing which facilitates the
visualization of structures. However, because of the method’s dependency on full-dimensional
clustering methods, it may not be possible to recover high-dimensional structures present in the
subspaces.
Blaas et al. (2008) proposed a method based on the joint histogram of each dimension pair.
Instead of drawing a line for each data point, histogram bins are used to draw the primitives.
A more detailed description of the method can be found in Chapter 3. The same dataset as
in Figure 1.7 visualized with the method of Blaas et al. can be seen in Figure 1.8. Now it is

1http://www.ggobi.org/
2http://davis.wpi.edu/xmdv/

http://www.ggobi.org/
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Figure 1.6. Basics of the parallel coordinate plot.

Figure 1.7. (Left) PCP for a dataset with 5500 data points, created with GGobi. (Middle)
Hierarchical PCP created with XmdvTool. (Right) Interface for structure-based brushing of
XmdvTool.

Figure 1.8. PCP of the same dataset as in Figure 1.7, visualized with the method of Blaas et al.
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possible to see the structures more clearly. Nevertheless, it is still not possible to perceive the
high-dimensional clusters present. To visualize such structures it is necessary to reorder the
dimensions properly. There are several methods for this purpose known in the literature (Ankerst
et al. 1998, Peng et al. 2004, Yang et al. 2003). A detailed description of these methods can be
found in Chapter 3.

1.3.4 Radial visualization (RadViz)
The RadViz technique for high-dimensional data visualization was �rst proposed by Hoffman et
al. (1997). Similar to PCP, it is capable of visualizing a large number of dimensions at a time.
However, unlike PCP, data points in RadViz are visualized by means of a non-linear transforma-
tion using a force-based model. The dimensions of the dataset are visualized along the perimeter
of a circle. Each N-dimensional data point is assumed to be connected with each dimension axis
by a spring, where the spring constant of each spring is equal to the value of the data point in
the respective dimension. The data point is visualized at a position inside the circle where the
spring forces are null (see Figure 1.9 for an example of RadViz obtained by the GeoViz Toolkit3).

Figure 1.9. RadViz visualization of USA state
data (obtained from the free distribution of the
GeoViz Toolkit).

RadViz is capable of visualizing multidi-
mensional clusters. However, it can loose de-
tails of local structures. Data points with quite
different values can get the same position in
the display and end up as clumps of points.
In addition, the visualization of RadViz de-
pends heavily on the ordering of the dimen-
sions. Therefore, it also requires methods to
�nd the optimal dimension ordering for visu-
alizing the structures.

1.3.5 Tours
Tours is an animation method of low-dimensional projections of high-dimensional data obtained
with linear transformations, where the sequence of projections is created by varying the projec-
tion matrix (Asimov 1985, Buja and Asimov 1986, Cook and Swayne 2007). Projections in
the animation can be chosen in three different ways: grand tour, projection pursuit guided tour,
manual manipulation. In grand tour mode, projections are selected randomly from the space of
all possible projections. To have a smooth transition between two selected projections, interme-
diate projections are created along a geodesic path. The projection pursuit guided tour (Cook et
al. 1995) selects the projections by optimizing a user-speci�ed function intended to �nd some
patterns of structures in the data. Manual manipulation of tours is obtained by user interaction
such as mouse movement that changes the projection matrix of a constrained dimension. Tours

3http://www.geovista.psu.edu/geoviztoolkit/

http://www.geovista.psu.edu/geoviztoolkit/
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produce nice visual effects of the low-dimensional projections of high-dimensional data. Never-
theless, it is not always easy to interpret the interesting projections found in tours due to the fact
that a transformation of the original data takes place.

In this subsection, we discussed some of the high-dimensional data visualization techniques
that can facilitate understanding of the methods described in later chapters of the thesis. How-
ever, there exists several other high-dimensional data visualization techniques, such as Dimen-
sion Stacking, Worlds within Worlds, Circle Segment, Andrews Curve, Table Lens, Chernoff
Faces, query-dependent Spiral and Axes Techniques, etc. Brief descriptions of these methods
can be found in different surveys of high-dimensional data visualization techniques (Hoffman
and Grinstein 2002, Oliveira and Levkowitz 2003).

1.3.6 Interaction
While visualization concerns the formation of images from the data that helps the user to derive
insights, interaction is a tool to supplement visualization in this endeavor. Most of the time,
visualization and interaction go hand in hand. Useful and easy-to-use interaction methods add
value to the visualization. Several interaction techniques exist. Most of these techniques are
inspired by the visual information seeking mantra:

Overview �rst, zoom and �lter, then details-on-demand

� Shneiderman (1996)
A detailed survey of interaction taxonomy and techniques can be found in Kosara et al.

(2003). These techniques are in an information visualization context. However, they are appli-
cable to any kind of visualization. Here, we will discuss four of such techniques.

Focus+Context is one of the most common interaction techniques. It enables visualization of
a large amount of data in a relatively small screen space. It can emphasize regions of interest
without losing the overall context. There are several methods that can achieve such interac-
tion, such as distortion oriented �sh-eye views (Furnas 1986), the overview-based information
mural (Jerding and Stasko 1998), the �ltering-based magic lens (Bier et al.1994) etc.

Brushing and Linking is an interaction technique that becomes useful when both of these tasks,
i.e., brushing and linking of the multiple data view, are done together. Brushing is the process
where the user selects data points using the mouse or direct touch (in touch sensitive displays).
Brushed (selected) points can then be investigated using multiple views.

Interaction with Dimensions such as rotation around the x, y, or z axis, provides a new view of
the data points without direct interaction with these points.

Rearranging Dimensions is speci�cally useful for visualizations such as the parallel coordinate
plot, where reordering of the dimensions can reveal new insights of the data. It can be done with
drag and drop operations using the mouse or direct touch.
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1.4 Astronomical Tools in Use
There are several tools like TOPCAT, Aladin, VisIVO, VOSpec, Tipsy, VisIt, etc. that are used in
astronomy. Most of these tools are built to ful�ll the specialized needs of different astronomical
applications. There are tools to handle catalogue and tabular data (e.g., TOPCAT), image data
(e.g., Aladin), simulation data (e.g., VisIt, Tipsy), 3D visualization (e.g., VisIVO), or visualizing
spectral data (e.g., VOSpec).

Tool for OPerations on Catalogues And Tables (TOPCAT) was developed within the UK-
based Starlink 4 and AstroGrid 5 project. It offers fast access, viewing and editing of large
tabular datasets. Tables can be viewed in a scrollable browser where other manipulation such as
reordering, hiding existing columns, adding new synthetic columns or making subsets of rows
is possible. Rows in multiple tables can be concatenated based on astronomical features of the
objects.

The tool also provides visualization of the data through histograms, 2D/3D scatter plots, 3D
spherical polar plots, stacked line plots, and 2D density maps (histograms on a 2-dimensional
grid). Along with the visualization it also allows interaction with the plots, such as visual selec-
tion of rows. A snapshot of TOPCAT’s user interface along with its table browser and 4D scatter
plot is shown in Figure 1.10.

TOPCAT serves the astronomers quite well in the way its name indicates. However, al-
though it provides powerful table viewing and editing features, its visualization can only ful�ll
the requirement of 1D/2D/3D and at most 4D (using color axes) visualization requirements. Di-
mensions higher than four can not be visualized using TOPCAT. In addition, if the number of
columns is very high, the number of plots (1D/2D/3D) to observe can be quite high as well.
TOPCAT provides no guidance to explore such large number of subspaces and the user needs to
explore these manually.

Aladin6 is an interactive sky atlas developed by the Centre de DonnØes astronomiques de Stras-
bourg (CDS). It facilitates the visualization of part of the sky extracted from an image database
(Bonnarel et al.2000). This tool basically is used for identifying and cross-validating astronom-
ical sources (stars, galaxies, etc.). It allows the creation of scatter plots and contour plots using
catalogue data which are overlayed on the image of interest. In Figure 1.11 a snapshot of Aladin
is shown.

Visualization Interface to the Virtual Observatory (VisIVO) 7 is a tool for visualizing and an-
alyzing astrophysical data from virtual observatory (Becciani et al.2006). It offers 2D/3D scatter
plots for point data, volume and isosurface visualization, and orthogonal slice visualization for
mesh-based data (see Figure 1.12). It enables higher dimensional(> 3) visualization through
colors, glyphs and their size and shape attributes. It also provides a set of operations such as

4The Starlink Project was a long running UK project supporting astronomical data processing; http://
starlink.jach.hawaii.edu/starlink .

5Virtual observatory software for astronomers; http://www.astrogrid.org/ .
6http://aladin.u-strasbg.fr/
7http://visivo.oact.inaf.it/

http://starlink.jach.hawaii.edu/starlink
http://starlink.jach.hawaii.edu/starlink
http://www.astrogrid.org/
http://aladin.u-strasbg.fr/
http://visivo.oact.inaf.it/
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Figure 1.10. Interface of TOPCAT with table viewer and 3D scatter plot.

Figure 1.11. Interface of Aladin
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Figure 1.12. Interface of VisIVO with 2D/3D scatter plot, volume rendering and orthogonal
slice visualization.

Figure 1.13. Interface of VisIt with volume rendering, vector visualization, 3D scatter plot and
parallel coordinate plot.
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correlation �ltering, random subset generation, scalar histograms, mathematical operations, etc.,
for data analysis and modi�cation.

VisIVO produces nice 2D and 3D visualizations. However, its higher dimensional visual-
ization through color, glyphs, size and shape attributes in 3D Cartesian coordinates is not so
useful for very large and high-dimensional datasets, as usage of such techniques produces visual
crowding and clutter for large datasets, thus prohibiting perception of information. VisIVO does
not provide any guidance to explore very high-dimensional datasets where the number of plots to
observe can be quite large, especially when the task is to discover new or unexpected phenomena.

VisIt 8 is a visualization tool designed to accommodate very large datasets through distributed
and parallel processing. Because of its distributed architecture it is capable of visualizing sim-
ulation data in the place where generated without moving the data to a visualization server.
Astronomers who work with such data often use the tool. It offers several visualization tech-
niques such as scatter plots, contour plots, pseudo color plots, volume plots, vector plots, parallel
coordinate plots (PCP), etc. It also provides a set of operators such as cone, clip, onion peel, and
threshold. The cone operator slices 3D data with a cone, creating a surface in the shape of a cone.
The clip operator can clip box- or sphere-shaped regions from the dataset before the dataset is
plotted. The onion peel operator creates layers starting from a seed. At �rst only the seed cell is
visualized. When the user increases the number of layers, cells that are connected with the seed
cell are visualized. The threshold operator extracts and

VisIt provides a quite large set of options for visualization. However, the interface of VisIt is
not very intuitive. The choice of the variables to be plotted has to be made entirely by the user.
For example, to visualize data with parallel coordinates the user needs to choose the variables and
their position in the plot. In the case of very high-dimensional data complete manual exploration
is time consuming, tedious and may also prohibit extraction of unexpected phenomena. Another
dif�culty in the case of the parallel coordinate plot is to �nd a suitable ordering of the axes.
Without a proper ordering of the axes it is very dif�cult to perceive high-dimensional structures
using PCP. visualizes the cells within a speci�ed range of values.

VOSpec9 is a virtual observatory spectral analysis tool. It provides several analysis tools such as
measures of central tendency, dispersion, wavelet analysis, tuning of spectra and �tting utilities
such as TSAP (Theoretical Spectral Access Protocol), best �t, polynomial, Gaussian, etc. It
provides simple visualizations to support these operations on spectra.

Besides these tools, astronomers also use high-level programming languages such as IDL 10,
MATLAB 11, Python 12 etc., to produce custom visualizations of the data.

8Developed by the US Department of Energy (DOE) Advanced Simulation and Computing Initiative (ASCI);
https://wci.llnl.gov/codes/visit/

9Developed by ESA (European Space Agency) VO (Virtual Observatory) team; http://esavo.esac.esa.
int/vospec/

10http://www.ittvis.com/
11http://www.mathworks.com/products/matlab/
12http://www.python.org/

https://wci.llnl.gov/codes/visit/
 http://esavo.esac.esa.int/vospec/
 http://esavo.esac.esa.int/vospec/
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Figure 1.14. Interface of VOSpec

1.5 Thesis Contribution and Organization
This thesis describes methods and algorithms for high-dimensional astronomical data exploration
and visualization. In Chapter 2 (Ferdosi et al. 2011) we study the performance of four density
estimation techniques: k-nearest neighbors (kNN), adaptive Gaussian kernel density estimation
(DEDICA), a special case of adaptive Epanechnikov kernel density estimation (MBE), and the
Delaunay tessellation �eld estimator (DTFE). The adaptive kernel based methods, especially
MBE, perform better than the other methods in terms of calculating the density properly and
have stronger predictive power in astronomical use cases. Moreover, the computation time of
these methods is lower than for other methods and it computes the density on grids that can
facilitate visualization (as an image in 2D and a volume in 3D) and analysis of the data. Using
the MBE method we can also achieve scalability with respect to the number of data points. After
the original feature space has been transformed into image space, further computation can be
done in image space that has constant size, although the size of the dataset can grow very large.

The next step is to extract useful information from such spaces. Clustering is one of the
techniques that can help discovering structures in a dataset. However, full-dimensional clustering
is not so useful since structures may exist in different subspaces that may indicate different
relations among particular subsets of dimensions. Subspace clustering is an approach that can be
applied for this purpose. Subspace clustering is the process of �nding clusters in subspaces of the
full feature space, either directly (Agrawal et al. 1998) or by identifying relevant subspaces for
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(later) clustering based on some quality criteria (Baumgartner et al.2004). In Chapter 3 (Ferdosi
et al.2010) we propose an interactive approach to �nd relevant subspaces which is strongly tied
to morphological properties of object distributions. We used connected morphological operators
implemented using the Max-tree data structure to identify the clusters (high-intensity regions
in the density image). A �quality� of the subspaces is de�ned depending on their clustering
property. We recover various known relations directly from the data with little or no a priori
assumptions. Therefore, our method can act as a starting point in analyzing large datasets and
help users to �nd new relations as well.

Using the method described in Chapter 3 we can obtain interesting subspaces of any dimen-
sion. However, visualizing high-dimensional structures in a meaningful and user-interpretable
way is far from straightforward. Traditionally, low-dimensional representations of high-dimen-
sional spaces, obtained by methods such as Principal Component Analysis (PCA), Multi-Dimen-
sional Scaling (MDS), etc., are used to perform visualization in a Cartesian coordinate system.
However, they pose the problem of interpretation of the visualization, because of the transfor-
mation of the original feature space to a new coordinate system. Two widely used methods to
visualize high-dimensional data without transformation are the scatter plot matrix (SPM) and the
parallel coordinate plot (PCP). For effective visualization of high-dimensional structures, they
also require a proper ordering of the dimensions. In Chapter 4 (Ferdosi and Roerdink 2011)
we propose algorithms for reordering dimensions in PCP and SPM in such a way that high-
dimensional structures (if present) become easier to perceive. We use the quality criterion and
the cluster indication capability of the method described in Chapter 3 to present three algorithms:
two for �nding suitable dimension ordering for PCP and one for SPM.

In Chapter 5, we discuss several design issues of a visual analytic tool for astronomical
data using a large touch sensitive display and present a prototype for such a tool. Large touch-
displays provide more screen space, support more intuitive and natural interactions with touch
sensitive inputs, and can make sharing of the analysis process and collaboration with others
possible. Thus, they can facilitate analysis of astronomical data which are not only large in size
and dimension but also complex in nature.

Finally, in Chapter 6 we provide a summary, draw conclusions, and present an outlook for
future work.
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Chapter 2

Comparison of Density Estimation Methods
for Astronomical Datasets

Abstract

Galaxies are strongly in�uenced by their environment. Quantifying the galaxy density is
a dif�cult but critical step in studying the properties of galaxies. We aim to determine dif-
ferences in density estimation methods and their applicability in astronomical problems.
We study the performance of four density estimation techniques: k-nearest neighbors (kNN),
adaptive Gaussian kernel density estimation (DEDICA), a special case of adaptive Epanech-
nikov kernel density estimation (MBE), and the Delaunay tessellation �eld estimator (DTFE).
The density estimators are applied to six arti�cial datasets and on three astronomical datasets,
the Millennium Simulation and two samples from the Sloan Digital Sky Survey. We compare
the performance of the methods in two ways: �rst, by measuring the integrated squared er-
ror and Kullback–Leibler divergence of each of the methods with the parametric densities
of the datasets (in case of the arti�cial datasets); second, by examining the applicability
of the densities to study the properties of galaxies in relation to their environment (for the
SDSS datasets). The adaptive kernel based methods, especially MBE, perform better than
the other methods in terms of calculating the density properly and have stronger predictive
power in astronomical use cases. We recommend the Modi�ed Breiman Estimator as a fast
and reliable method to quantify the environment of galaxies.

2.1 Introduction

Estimating densities in datasets is a critical �rst step in making progress in many areas of astron-
omy. For example, a galaxy's environment apparently plays an important role in its evolution,
as seen in the morphology–density relation (e.g., Hubble and Humason 1931, Dressler 1980)
or the color–density and color–concentration–density relations (e.g., Baldryet al. 2006). For
these relations, a consistent, repeatable – and hopefully accurate – estimate of the local density
of galaxies is an important datum. As another example, reconstruction of the large-scale struc-
ture of the Universe requires a proper estimation of the cosmic density �eld (e.g., Romano-Díaz



18 2.1 Introduction

and van de Weygaert 2007). Even simulations require density estimation: smoothed particle hy-
drodynamics (SPH) is a method to create simulated astronomical data using astrophysical �uid
dynamical computation (Gingold and Monaghan 1977, Lucy 1977), in which kernel-based den-
sity estimation is used to solve the hydrodynamical equations. Density estimation is not only
required for analyzing spatial domain structures but also for structures in other spaces, like �nd-
ing bound structures in six-dimensional phase space in simulations of cosmic structure formation
(Maciejewskiet al. 2009) or in three-dimensional projections of phase space in simulations of
the accretion of satellites by large galaxies (Helmi and Zeeuw 2000).

In the current work we are motivated by a desire to quantify the three-dimensional density
distribution of galaxies in large surveys (like the Sloan Digital Sky Survey, York and others
2000, hereafter SDSS) in order to study environmental effects on galaxy evolution. We are also
interested in �nding structures in higher-dimensional spaces, like six-dimensional phase space
or even higher-dimensional spaces in large astronomical databases (such as the SDSS database
itself). We are therefore interested inaccurateand (computationally)ef�cient density estimators
for astronomical datasets in multiple dimensions.

In this paper we investigate the performance of four density estimation methods:

u k-nearest neighbors (kNN);

u a 3D implementation of adaptive Gaussian kernel density estimation, called DEDICA
(Pisani 1996);

u a modi�ed version of the adaptive kernel density estimation of Breimanet al.(1977), called
the modi�ed Breiman estimator (MBE); and

u the Delaunay tessellation �eld estimator (DTFE: Schaap and van de Weygaert 2000).

The �rst method is well-known to astronomers and involves determining densities by counting
the number of nearby neighbors to a point under consideration. This method is typically used
in studies of the morphology–density relation and other observational studies of the relation
between environment and galaxy properties (e.g., Dressler 1980, Baloghet al. 2004, Baldry
et al. 2006, Ballet al. 2008, Cowan and Ivezic 2008, Denget al. 2009, just to mention a few
studies). The second and third methods are both adaptive-kernel density estimators, where a
kernel whose size adapts to local conditions (usually isotropically), depending on some criteria
set before or iteratively during the estimation process, is used to smooth the point distribution
so that typical densities can be estimated. The fourth method, like the �rst, uses the positions of
nearby neighbors to estimate local densities. We compare the methods using arti�cial datasets
with known densities and three astronomical datasets, including the Millennium simulation of
Springelet al. (2005) and two samples of real galaxies drawn from SDSS.

This paper is organized as follows. Section 2.2 discusses the four density estimation methods
under consideration. Section 2.3 describes the datasets we used. Section 2.4 contains a compar-
ison between the methods based on datasets with both known and unknown underlying density
�elds. Finally, in Section 2.5 we summarize our �ndings and draw conclusions.

We point out here that our goal here isnot to quantify theshapeof the environments of
objects in datasets, but rather to estimate the density �eld or the densities at speci�c points in
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those datasets (see below). Information about the shapes of the structures found in the datasets is
beyond the scope of this work; we refer the interested reader to recent excellent studies by, e.g.,
Jascheet al. (2010), Aragón-Calvoet al. (2010) and Sousbieet al. (2009).

2.2 Density estimation methods

The purpose of a density estimator is to approximate the true probability density function (pdf) of
a random process from an observed dataset. There are two main families of density estimators:
parametric and non-parametric. In parametric methods the type of distribution (uniform, normal,
Poisson etc.) of the phenomenon needs to be known (or guessed) beforehand, whereas non-
parametric methods do not need this information. The methods under consideration in this study
belong to the second type.

First, though, we must distinguish different types of estimated densities. Starting from an
input dataset consisting of a list of point positions~r i 2 Rd, i = 1; : : : ;N in ad-dimensional spatial
domain, we de�ne two types of probability density as

1. Point probability densities: probability densities ˆp(~r i) at the original point positions~r i ;

2. Probability density �eld: probability densities ˆp(~r) at arbitrary points in the spatial domain
of Rd. We often evaluate �eld densities at the points of a Cartesiand-dimensional grid and
therefore also speak ofgrid densities.

Furthermore, the probability densities have to be converted to physical densities when com-
paring galaxies. This is because the parameter of interest is a quanti�cation of the environment
of individual galaxies, not the probability of �nding a galaxy at a speci�c position. The latter is
calculated by the density estimators and can be converted into the former by multiplying byN,
i.e.,

1. Point number densities: r̂ (~r i) = Np̂(~r i)

2. Number density �eld: r̂ (~r) = Np̂(~r)

2.2.1 k-nearest neighbor method

The kNN estimator is well-known in astronomy and its working principle is to center a spherical
window onto each point~r and let it grow until it capturesk samples (thek nearest-neighbors of
~r). Then the kNN density estimate for a dataset withN data points is de�ned at any~r 2 Rd by

p̂(~r) =
1
N

k
Vddd

k

; (2.1)

wheredk is the distance of thekth nearest neighbor from~r andVd the volume of the unit sphere in
d-dimensional space. The kNN approach uses a different window size for each point so it adapts
to the local density: when the density is high near~r, the window will be small; but when the local
density is low, the window will grow to a larger size.
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The kNN approach can be a good solution for �nding the “best” window size. However, this
method suffers from a number of de�ciencies. The resulting density estimate is not a proper
probability density since its integral over all space diverges, and its tails fall off extremely slowly
(Silverman 1986). The density �eld is very “spiky” and the estimated density is far from zero
even in the case of large regions with no observed samples, due to the heavy tails. Furthermore,
it yields discontinuities even when the underlying distributions are continuous (Breimanet al.
1977).

In astronomical work it is typically the case that the sample point is not considered to be its
own neighbor (e.g., Dressler 1980, Baldryet al. 2006). This presents a conceptual problem, as
the point density will then disagree with the �eld density at the location of a sample point. In our
work we take the sample point to be its own �rst neighbor as in Silverman (1986), and we use
the average of kNN-estimated densities withk = 5 andk = 6 when computing either the point
or grid densities. This is not precisely equivalent to the averagek = 4 andk = 5 kNN density
used in many astronomical papers (e.g., Baldryet al.2006). While theV in the denominator of
Eq. 2.1 would be equal, thek in the numerator is one higher in Silverman's de�nition.

2.2.2 Adaptive Epanechnikov kernel density estimation

Breimanet al. (1977) described a case of an adaptive (Gaussian) kernel approach. This method
begins by computing the distancedi;k to thekth nearest neighbor of each data point located at~r i ,
just as in a kNN density estimator. Rather than using this distance to compute the kNN density
estimate, it uses this to steer the local kernel size (also known asbandwidth) in an adaptive kernel
density estimator or Parzen estimator (Parzen 1962). For a sampleDN of N points with position
vectors~r i 2 Rd(i = 1; :::;N) and kernelK(~r), the adaptive kernel density estimate ˆp(~r) is then
given by:

p̂(~r) =
1
N

N

å
i= 1

(ak di;k)
� dK

�
~r � ~r i

ak di;k

�
: (2.2)

In their simulations Breimanet al. (1977) used a symmetric Gaussian kernel. Herek andak are
still to be determined. Fork or ak too small, the result will be noisy, whereas ifk andak are
large we lose detail. The proper parameter values fors (width of the normal distribution),k and
ak were determined by optimizing certain goodness-of-�t criteria (for details see Breimanet
al. 1977).

Silverman (1986) argues that we can interpret this as using a “pilot estimate” of the density.
We can understand this by observing from (2.1) that

p̂kNN(~r i) µ d � d
i;k (2.3)

Thus the bandwidth at each location is proportional to ˆp� 1=d
kNN (~r i). Thus, Breimanet al. (1977)

implicitly use a kNN pilot density estimate to steer the �nal density estimate. The effect is that
in low density regionsdi;k will be large and the kernel will spread out; in high density regions
the opposite occurs.
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Fundamentals of the modi�ed Breiman estimator (MBE)

The approach of Breimanet al. (1977) used for �nding proper parameter values is computa-
tionally expensive, because they need to run the estimator numerous times to �nd the optimal
parameters. This is even more costly because the kernel has in�nite support. This means that
each data point contributes to the density at every position, resulting in anO(N2) cost per param-
eter setting tested.

We want to apply the method for astronomical datasets that are very large in size (> 50;000
data points) and dimension (from 10 to hundreds). For this reason we use a fast and scalable mod-
i�cation of Breiman's method along the lines of Wilkinson and Meijer (1995). It was observed by
Silverman (1986), that the implicit kNN pilot estimate could be replaced by a different estimate
without signi�cant change in quality. Therefore, Wilkinson and Meijer (1995) used the kernel
density estimator itself for the pilot. Furthermore they replaced the in�nite support Gaussian ker-
nel by the �nite support Epanechnikov kernel, which increases computation speed signi�cantly,
and is optimal in the sense of minimal mean integrated square error (Epanechnikov 1969). To
increase computational speed of the pilot estimate, the pilot density �eld is calculated on grid
points �rst, after which the pilot density for each data point is obtained by multi-linear interpo-
lation. The method is also scalable: even when the number of data points grows very large, the
computation time remains bounded by the number of grid points (Wilkinson and Meijer 1995).

In the modi�ed version Eq. 2.2 becomes

p̂(~r) =
1
N

N

å
i= 1

(s l i)� dKe

�
~r � ~r i

s l i

�
(2.4)

whereKe is the Epanechnikov kernel de�ned as

Ke(~t) =
� d+ 2

2Vd
(1� ~t:~t) if ~t:~t < 1

0 otherwise
(2.5)

in whichVd is the volume of the unit sphere ind-dimensional space.
The density estimation proceeds in two phases.

Phase 1. Compute an optimal pilot window widths opt with a percentile of the data as de�ned
in Eq. 2.8 below. De�ne a pilot density ˆppilot by using Eq. 2.4 withs = s opt andl i = 1.

Phase 2. From the pilot density ˆppilot compute the local bandwidth parametersl i by

l i =
�

p̂pilot(~r i)
g

� � a

: (2.6)

Hereg is the geometric mean of the pilot densities anda = 1=d is the sensitivity parameter.
The value of 1=d is chosen to be equivalent to the method of Breimanet al.(1977), though
some authors prefer a value of 1=2 regardless ofd (Silverman 1986). The �nal density
estimate is given by Eq. 2.4 once again, but now withs = s opt andl i as given by Eq. 2.6.
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Compared to the original method of Breiman et al., it should be noted that a�xed window width
s opt for the pilot estimate is used, rather than a �xed value ofk. During the second phase of the
algorithm we vary the window width with the density at each data point via the local bandwidth
parameter. Data points with a low pilot estimate get a large window andvice versa.

The pilot density estimate

In the literature there exists a variety of methods to choose the optimal window widths opt auto-
matically. Basically there are two families of methods known: (i) classical (such as least-square
cross-validation) and (ii) plug-in methods. In the latter case, the bias of an estimate ˆp is written
as a function of the unknownp, and usually approximated through Taylor series expansions. A
pilot estimate ofp is then “plugged in” to derive an estimate of the bias (Clive 1999). However,
there is some debate about the merits of these methods. For example, Park and Marron (1990)
found that the performance of least squares cross-validation is not very satisfactory. They recom-
mended the plug-in methods for bandwidth selection. There are several other authors who have
made strong comments about the classical approach and advocated plug-in methods (Ruppertet
al. 1995, Sheather 1992). On the other hand, Clive (1999) strongly opposed these views. He
argued that the plug-in methods can be criticized for the same reason the above authors criticized
classical approaches.

We have already mentioned that the datasets that we will use are very large in size. Selecting
bandwidth by cross-validation or a plug-in approach could consume more time than the density
estimation itself. Therefore, we looked for simpler methods that can give an accurate estimate
for the window width. Moreover, this window width is only used for the pilot estimate and for
this purpose the desired window width should be large enough so that two consecutive window
placements cover an overlapping area. For window width we triedmax-min, percentile, median,
standard deviationandaverage distanceof the data points, normalized by the logarithm of the
number of data points. We found that usingpercentile(Eq. 2.8) as window width works well (in
terms of the integrated squared error, see Section 2.2.5) even in the presence of outliers. However,
the max-minwindow width works better if the dataset contains no outliers. Nevertheless, we
recommend user interaction for changing the window width in the case of an under/oversmoothed
density �eld.

Our procedure for the automatic determinations opt can be summarized as follows. First
window sizessx;sy;sz in each of the coordinate directions are computed by

s ` =
P80(`) � P20(`)

logN
; ` = x;y;z (2.7)

whereP80(`) andP20(`) are the 80th and 20th percentile of the data points in each dimension
` = x;y;z. Then, in order to avoid oversmoothing, the optimal pilot window sizes opt is chosen
as the smallest of these, i.e.,

s opt = minf sx;sy;szg: (2.8)
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2.2.3 Adaptive Gaussian kernel density estimation (DEDICA)

Pisani (1996) proposed a kernel-based density estimation method for multivariate data which is
an extension of his work for the univariate case (Pisani 1993). Again this is an adaptive kernel
estimator. The main differences with the MBE method are that a Gaussian kernel is used and
that the optimal bandwidths are determined in an iterative way by minimizing a cross-validation
estimate. In our study, we use the 3D density estimator DEDICA, which is the FORTRAN
implementation by Pisani.

Fundamentals of the method.

For a sampleDN of N points with position vectors~r i 2 Rd; (i = 1; :::;N) and kernel width of the
ith point given bys i , the adaptive Gaussian kernel density estimate ˆp(~r) is given by

p̂(~r) =
1
N

N

å
i= 1

Kn(j~r i � ~rj;s i) (2.9)

whereKn(t;s ) is the standardd-dimensional Gaussian kernel

Kn(t;s ) =
1

(2ps 2)d=2
exp

�
�

t2

2s 2

�
(2.10)

The kernel widthss i are chosen by an iterative method that minimizes the integrated square error
locally. The procedure is as follows.

1. Initialize the window width:

s (0) = 4s rt ; s rt = A(K)N� 1
d+ 4

vu
u
t 1

d

d

å
l= 1

s2
ll (2.11)

wheres rt is the rule of thumb prescription fors (0), sll is the standard deviation of thel th

coordinate of the data andA(K) = 0:96 for a Gaussian kernel (Silverman 1986).

2. Iteratively perform the following steps forn = 1;2; : : : :

(a) Halve the window width:s (n) = s (n� 1)=2

(b) Compute apilot estimatep̂(n)
pilot(~r i) by (2.9) with�xed kernel sizess i = s (n)

(c) compute local bandwidth factorsl (n)
i by (2.6) with p̂pilot = p̂(n)

pilot anda = 1=2

(d) Compute an adaptive kernel estimate ˆp(n)
ka (~r i) by (2.9) with adaptive kernel sizes

s (n)
i = s (n) � l (n)

i
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(e) Compute the cross-validation estimate (Pisani 1996, Eq. 7):

M( p̂(n)
ka ) =

1
N2

N

å
i= 1

N

å
j= 1

Kn(j~r i � ~r j j; ((s (n)
i )2 + ( s (n)

j )2)
1
2 )

�
2

N(N � 1)

N

å
i= 1

å
j , i

Kn(j~r i � ~r j j;s
(n)
j ): (2.12)

Minimization of the cross-validation estimate is equivalent to minimizing the inte-
grated square error between the true density and the estimated density, see Pisani
(1996) for more details.

3. Determine the iteration numbern = nopt for which the cross-validation estimate is mini-

mized, and return the corresponding optimal window widthss
(nopt)
i and the adaptive kernel

density estimate ˆp
(nopt)
ka (~r i) at the sample points.

The cross-validation procedure can be understood by looking at the behaviour of the different
terms inM( p̂(n)

ka ). Whens n
i decreases during iteration, some terms will keep on increasing while

others start to decrease when the local window sizes become much smaller than the inter-point
distances. This is the point where the minimum ofM( p̂(n)

ka ) is reached and the iteration stops.
Although, as we will see below, DEDICA gives good results in many cases, it fails in certain

situations. This can be attributed to some drawbacks of the method. First, the �xed kernel sizes
s (n) used for the pilot estimates form a discrete series of values (determined by the choice of
s (0)). This series of values may be too coarse for �nding the optimal window widths. Second,

the method seeks as
(nopt)
i which leads to a globally optimal result, which, however, may be far

from optimal in some regions.
We made an extension to the DEDICA code for obtaining the grid density, since the orig-

inal code computes only point densities. We used the optimal window widthss
(nopt)
i of each

point calculated during the point density estimation to obtain the adaptive kernel density esti-

matep̂
(nopt)
ka (~r) at each grid point~r by (2.9).

2.2.4 Delaunay Tessellation Field Estimator (DTFE)

DTFE is a well-known method in astronomy to reconstruct density �elds from a discrete set
of scattered points (see, e.g., Schaap and van de Weygaert 2000). In this method, the Delaunay
tessellation (Okabeet al.2000) of the points is constructed �rst. Then the point density is de�ned
as the inverse of the total volumeV of the surrounding tetrahedra (in 3D) of each point, multiplied
by a normalization constant (Schaap and van de Weygaert 2000). For a sampleDN of N points
with position vectors~r i 2 Rd; (i = 1; :::;N), the DTFE density estimate ˆp(~r i) is given by:

p̂(~r i) =
1
N

d+ 1
Vi

(2.13)
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whereVi = å K
j= 1Vtetra; j . HereVtetra; j is the volume of thej th tetrahedra andK is the number of

tetrahedra that contain point~r i .
In the next step, the density �eld is obtained by linearly interpolating the point densities ˆp(~r i)

at the vertices of the Delaunay tetrahedra to the full sample volume.

2.2.5 Error measures

Integrated Squared Error

The integrated squared error (ISE) between the true density �eld and the density �eld obtained
from each density estimator is one of our primary performance criteria in this study. The ISE is
de�ned as:

ISE=
Z ¥

� ¥
( p̂(~r) � p(~r))2d~r (2.14)

wherep̂(~r) is the estimated density andp(~r) is the true density.

Generalized Kullback-Leibler Divergence (Csiszar's I-divergence)

Kullback-Leibler divergence (KLD) is one of the fundamental concepts in statistics that measures
how far away a probability distributionf is from another distributiong. It can also be interpreted
in terms of the loss of power of the likelihood ratio test when the wrong distribution is used for
one of the hypotheses (Eguchi and Copas 2006). The value ofKLD( f ;g) = 0 if f = g. However,
the Kullback-Leibler divergence is only de�ned iff andg both integrate to 1. Among the four
methods under consideration, the density function estimated by kNN does not integrate to unity.
Therefore, we use the generalized Kullback-Leibler divergence (hereafter gKLD), also known
as Csiszar's I-divergence (Csiszar 1991), to quantify the difference between two non-negative
functions which have different integrals. For two positive functionsf (~r) andg(~r), the gKLD is
de�ned as:

D( f k g) =
Z ¥

� ¥

�
f (~r) log

�
f (~r)
g(~r)

�
� f (~r)+ g(~r)

�
d~r: (2.15)

We compare the methods by comparingD(p k p̂).
Strictly speaking, the (generalized) Kullback-Leibler divergence is only de�ned when both

true densityf (~r) or the method densityg(~r) are positive. This is a condition that is not ful�lled
by our data: �rstly, the boundary region of our `true' �elds (approximately 23% of the total
volume) has zero density; secondly, the DTFE and MBE methods produce density �elds with
zero values because they have �nite support.

All methods except the DTFE estimate non-zeros for regions for which the true density is
zero. This results in a gKLD value for kNN, MBE and DEDICA that is lower than is justi�ed:
the discrepancy between the true and estimated �eld in this boundary region is not accounted for
in the measure due to the multiplication by the true density (f ) in Eq. 2.15. The DTFE method
behaves in the opposite way: it estimates zero densities where the true density is non-zero. We
modi�ed the gKLD such that ifg(~r) = 0 we instead setg(~r) = e, wheree is a small number. This
results in a higher gKLD value for DTFE than is justi�ed: the discrepancy in the boundary region
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Table 2.1. Simulated datasets with known density distributions

Dataset Component Points Distribution
1 Trivariate Gaussian 1 40000M1 = ( 50;50;50) CM1 = diag(30)

Uniform random noise 20000 Uniform(x;y;z) = [ 0;100]
2 Trivariate Gaussian 1 20000M1 = ( 25;25;25) CM1 = diag(5)

Trivariate Gaussian 2 20000M2 = ( 65;65;65) CM2 = diag(20)
Uniform random noise 20000 Uniform(x;y;z) = [ 0;100]

3 Trivariate Gaussian 1 20000M1 = ( 24;10;10) CM1 = diag(2)
Trivariate Gaussian 2 20000M2 = ( 33;70;40) CM2 = diag(10)
Trivariate Gaussian 3 20000M3 = ( 90;20;80) CM3 = diag(1)
Trivariate Gaussian 4 20000M4 = ( 60;80;23) CM4 = diag(5)
Uniform random noise 40000 Uniform(x;y;z) = [ 0;100]

4 Wall-like structure 30000 Uniform(x;y) = [ 0;100];
Gaussian(z) = [ M = 50; var= 5]

Filament-like structure 30000 Uniform(z) = [ 0;100];
Gaussian(x;y) = [ M = 50; var= 5]

5 Wall-like structure 1 20000 Uniform(x;z) = [ 0;100];
Gaussian(y) = [ M = 10; var= 5]

Wall-like structure 2 20000 Uniform(x;y) = [ 0;100];
Gaussian(z) = [ M = 50; var= 5]

Wall-like structure 3 20000 Uniform(x;z) = [ 0;100];
Gaussian(y) = [ M = 50; var= 5]

6 Log-normal 60000 Log-normal(x;y;z) = [ M = 3; var= 4]
Notes.M=Mean,CM=Covariance Matrix

can have a arbitrarily large effect (by choosing an arbitrarily lowe) on the measure. However,
we determined that this effect is small by comparing our gKLD value with the gKLD value
calculated only over the regions where both �elds are non-zero.

2.3 Datasets

We examined the performance of the four density estimation methods on three classes of datasets:
a number of simulated datasets with known density �elds to test the ability of each method to
recover relatively simple density distributions; an astronomical dataset with an unknown but
well-sampled density �eld based on the Millennium Simulation of Springelet al. (2005); and
two different observed galaxy samples drawn from the Sloan Digital Sky Survey (SDSS: see,
e.g., Adelman-McCarthyet al.2007, Abazajianet al.2009).

2.3.1 Simulated datasets with known density �elds

We begin by constructing six simulated datasets with known density distributions (Table 2.1).
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Figure 2.1. Scatter plot representations of simulated datasets. Left to right, top to bottom:
Datasets 1–6.

u Dataset 1 is a unimodal Gaussian distribution with added uniform noise.

u Dataset 2 contains two Gaussian distributions with an equal number of points but different
covariance matrices (CMs) and different centers, again with added uniform noise; this
dataset has the same number of points as Dataset 1.

u Dataset 3 contains four Gaussian distributions with an equal number of points but different
CMs and different centers, again with added uniform noise; this dataset has twice as many
points as Datasets 1 and 2.

u Dataset 4 contains a wall-like and a �lament-like structure. Thex- andy-coordinates of
the wall-like structure are drawn from a uniform distribution and thez-coordinate is drawn
from a Gaussian distribution. The �lament-like structure is created with a Gaussian distri-
bution in thex- andy-coordinates and a uniform distribution inz-coordinate.

u Dataset 5 contains three wall-like structures where each wall is created with a uniform
distribution in two of the dimensions and a Gaussian distribution in the third.

u Dataset 6 contains points drawn from a lognormal distribution.

Scatter plot representations of these datasets are shown in Figure 2.1.
The increasing complexity of these datasets allow us to probe simple situations ranging from

idealized clusters to density �elds that look somewhat like the large-scale structure of the Uni-
verse, with walls and �laments. The advantage of using simple simulations withknowndensity
distributions is clearly the ability to test the ability of the methods to recover the “true” point or
�eld densities.
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Figure 2.2. Scatter plot representation of MSG and MSG-derived datasets. Left to right: MSG
data, Dataset MSG-DTFE, Dataset MSG-MBE.

2.3.2 Astronomical datasets with unknown density �elds

To test the performance of the methods on astronomical data we use three astronomical datasets:
semi-analytic model galaxies drawn from the Millennium Simulation (Springelet al.2005), and
two samples of galaxies drawn from SDSS.

The MSG dataset

Our �rst astronomical dataset consists of the L-Galaxy sample of the “milliMil” subsample of
the Millennium Simulation1. The Millennium Simulation is one of the largest simulations ever to
study the development of the Universe (Springelet al.2005), following nearly 2� 1010 particles.
It was created to make predictions about the large-scale structure of the universe and compare
these against observational data and astrophysical theories. The L-Galaxies are created by pop-
ulating halo trees drawn from the Millennium Simulation with semi-analytic models following
the precepts in De Lucia and Blaizot (2007). We use the much smaller “milliMillennium” (“mil-
liMil”) simulation, which sampled only� 2� 107 particles, and its associated L-Galaxies data.
We refer to this dataset as the MSG dataset, which contains 53918 points. In a visual representa-
tion the output of the simulation looks like a �ne three-dimensional web of �laments with fractal
self-similarity and multiple layers of organization.

Our goal is to use the complexity of the MSG dataset to test the performance of the methods
with a well-sampled but reasonably “astronomical” setting. Unfortunately, thetrue underlying
density �eld of the MSG dataset is unknown. We therefore bootstrap MSG samples to de�ne a
“true density” for astronomical data. The density �eld of the MSG data is used to create new
datasets and their density is taken to be the true density of those datasets. The process of creating
new datasets can be described as follows:

Step 1: Calculate the density �eld of the MSG dataset using one of the density estimation meth-
ods.

Step 2: Generate a new dataset by a Monte Carlo process, which will have a probability density
function similar to that of the MSG data, as follows:

1Seehttp://www.g-vo.org/Millennium/Help?page=index

http://www.g-vo.org/Millennium/Help?page=index
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1. Generate a random2 positionr i(x;y;z) within the original sample and a random value
p between zero and the maximum �eld density of the sample.

2. Interpolate the densityP of a pointr i(x;y;z) in the �eld obtained from step 1.

3. if p < P accept the pointr i(x;y;z) as a point in the new dataset;P will be the “true”
density ofr i(x;y;z).

4. repeat step 2a-2c until the required number of points is obtained.

We generated two such datasets, one using DTFE (called the “MSG-DTFE” dataset) and another
using MBE (called “MSG-MBE”), each with the same number of points as the initial MSG
dataset. For the MSG-MBE dataset the true densityP was interpolated from the grid of 2563

points and for the MSG-DTFE dataset from the Delaunay tessellation (see Appendix 2.B). Scatter
plot representations of these three �elds – the original MSG dataset and the two derived datasets
– are shown in Figure 2.2. Note that both derived datasets look reassuringly like the original
MSG dataset, although slight smoothing can been seen in both derived datasets.

Next, the �eld densities – on the grid – of the two new datasets generated by all density
estimation methods are compared with the true densities obtained with the process described
above.

SDSS datasets

Finally, to apply these density estimation methods to observed astronomical data we extract two
galaxy samples from the Seventh Data Release (DR7) of SDSS (Abazajianet al.2009): a “cone”
of galaxies over a relatively small solid angle on the sky but extended in redshift, and a “z-shell”
of galaxies over a small redshift interval but a large solid area.

The spectroscopic redshift is used to calculate the comoving distanceRwhich is subsequently
converted to Cartesian coordinates for density estimation, using a �at cosmology withWm = 0:28,
WL = 0:72,h0 = 0:7.

Completeness Corrections

A completeness correction is required when calculating densities from SDSS data, which we
discuss before presenting the samples. SDSS is magnitude-selected but not (initially) constrained
in redshift. This means that with distance, the number of galaxies in the sample drops because
fainter galaxies can no longer be detected, causing underestimated densities for distant galaxies.
To counter this effect, weights are calculated for every distance assuming a Schechter luminosity
function (Schechter 1976, Felten 1977), following the procedure of Martínez and Saar (2002).
For this calculation all SDSS galaxies with spectroscopic distance between 50 and 2000 Mpc
(corresponding to redshifts from 0.0117 to 0.530) and Petrosianr < 17:7 are used. If the galaxies
follow a Schechter luminosity function, they should also follow a number distribution

dN
dR

= hr (~r)i WR2F (R) (2.16)

2We used a random number generator based on the subtractive method of Knuth 1981 with a period of 255.
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wherehr (~r)i is the average �eld density,Wthe survey area andF (R) is the selection function
given by

F (R) = e� ( R
Rc )b

: (2.17)

The best �t of Eq. 2.16 to our data (W= 2:447sr) is given byhr (~r)i = 0:013Mpc� 3, Rc =
299:8Mpc andb = 1:5 and is shown in Figure 2.3, top. The corresponding selection function
is shown in Figure 2.3, bottom. After calculation, the densities are corrected by dividing by the
value of the selection function at the distance of the galaxy.

We note that due to the �ber masks used for the spectroscopy of SDSS, not all (bright)
sources in dense environments have spectroscopic redshifts. These sources are not included in
our sample, and we have not corrected for this, resulting in a bias of underestimated densities in
the densest regions.

The “cone” sample

We choose 1939 “primary” galaxies within the rectangular boundary RA= ( 185;190) and Dec=
(9;12) and with Petrosianr < 17:7 and that have spectroscopic redshifts. The sky coverage of
our sample is 14:72 � .

A lower completeness limit (Fig. 2.3) of 10% is chosen to truncate the galaxy sample to
limit the effect of high distance outliers; an incompleteness up to 90% does not cause unaccept-
ably large errors when attempting to estimate the density of galaxies (see Appendix 2.A). This
corresponds to a distance ofRmax = 515Mpc (redshift 0.123).

To prevent edge effects and to limit the effects of local motion, a lower limit for the distance
is set atRmin = 50:0Mpc (corresponding to a redshift of 0.0117). This results in a �nal number of
galaxies in the “cone” sample of 1030. Volume densities were calculated using this magnitude-
and redshift-limited sample of 1030 galaxies.

From integration of Eq. 2.16 for our cone sample (Wcone= 0:00449sr), it is expected that
there are 2702 sources in the region of which we would detect 692. Instead, the cone sample has
1030 galaxies, 49% more than expected. Comparing with other regions of the same size shows
that our cone sample is indeed extraordinary dense: out of the 24 other regions, only one had
more sources than ours. Therefore we correct the average �eld density of the “cone” sample to
hr cone(~r)i = 0:0196Mpc� 3.

The de�nition of s opt for the MBE in Eq. 2.8 does not suf�ce for narrow cone-like samples.
Problematic cases for such samples are a strong alignment with one axes (or planes) of the
Cartesian coordinate system (our case), or an alignment with one of the space diagonals. The
former results in a too-smalls opt value because one or two of thes l values will be much smaller
than the other(s), while the latter results in a too-highs opt becauseN (in the denominator of
Eq. 2.7) does not re�ect the incomplete �lling of space by the sample. Therefore we created a
new de�nition of s opt for conical samples: �rst the average distance of the nearest half of the
galaxies is determined; thens opt is chosen as the square root of the cross section of the cone at
that distance.

We explore the effect of the “cone” sample selection on the performance of the density esti-
mators in Appendix 2.A.
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Figure 2.3. Top: Distance distribution of the SDSS spectroscopic legacy data in comoving
distances assuming a concordance cosmology (Wm = 0:28, WL = 0:72, h = 0:7). The dashed
line is a �t to this distribution assuming the galaxies follow a Schechter luminosity function,
with an apparent magnitude limit ofr < 17:7 (see Eq. 2.16). Bottom: The corresponding inverse
weight as derived from the luminosity function. A 10% completeness level (corresponding to
R= 515Mpc, equivalent toz= 0:123) is chosen to remove high redshift outliers.
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Figure 2.4. Left: The cone sample, a152 � area within a redshift range ofz < 0:123 (R <
515Mpc). Right: The shell sample, selected from SDSS Northern Galactic Cap over the redshift
range0:10< z< 0:11, corresponding to a distance range of 418–459 Mpc.

The “shell” sample

To avoid the complication of the changing luminosity limit on the inferred densities, we also
selected galaxies from SDSS in a thin shell in redshift space. For this “shell” sample, we choose
34558 “primary” galaxies in the Northern Galactic Cap (Abazajianet al.2009) with redshifts in
the range 0:10< z< 0:11 and a Petrosian magnitudesr < 17:7 (Fig. 2.4).

To compare with the “cone” sample, the incompleteness correction is applied to the shell
sample as well, enhancing the estimated densities by a factor of 5.3 to 6.9.

2.4 Results

We begin by examining the performance of the four density estimation methods on simulated
datasets with known density �elds. We �nd that the adaptive-kernel-based methods, MBE and
DEDICA, best recover the input density distributions in these cases. We conclude this section
by applying the density estimation methods to the SDSS samples and examine their utility for
determining the color–density and color–concentration–density relations.

2.4.1 Simulated Datasets

We �rst examine the performance of the four density estimation methods on the six simulated
datasets and then on the two MSG-derived datasets.
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Table 2.2. Performance of density estimators: simulated and MSG datasets.
Integrated Squared Error Generalized Kullback-Leibler divergence

Dataset MBE DEDICA DTFE kNN MBE DEDICA DTFE kNN
1 2:23� 10� 7 6:44� 10� 6 1:54� 10� 5 2:82� 10� 5 5:61� 10� 2 7:62� 10� 2 1:83� 10� 1 1:59� 10� 1

2 3:04� 10� 6 1:75� 10� 6 5:85� 10� 5 1:19� 10� 4 4:53� 10� 2 8:34� 10� 2 1:90� 10� 1 1:62� 10� 1

3 4:74� 10� 6 9:10� 10� 6 1:99� 10� 4 4:28� 10� 4 3:90� 10� 2 6:77� 10� 2 1:62� 10� 1 1:54� 10� 1

4 2:35� 10� 6 2:91� 10� 4 1:12� 10� 5 2:02� 10� 5 6:22� 10� 2 1:33� 10+ 1 2:34� 10� 1 1:79� 10� 1

5 5:65� 10� 7 5:38� 10� 7 1:31� 10� 6 2:13� 10� 6 1:01� 10� 1 9:12� 10� 2 2:42� 10� 1 2:12� 10� 1

6 7:66� 10� 4 7:94� 10� 5 1:96� 10� 3 3:71� 10� 3 3:21� 10� 1 6:32� 10� 2 1:07� 10� 1 1:43� 10� 1

MSG-DTFE 1:68� 10� 3 4:86� 10� 3 1:24� 10� 3 1:39� 10� 3 6:50� 10� 1 2:18� 10+ 1 5:74� 10� 1 5:73� 10� 1

MSG-MBE 6:89� 10� 7 5:88� 10� 4 1:95� 10� 1 1:71� 10� 4 3:00� 10� 2 2:26� 10+ 1 1:25� 100 3:08� 10� 1

Notes.Entries highlighted inboldfacerepresent the smallest ISE or gKLD value and therefore the “best”
method for that dataset under that performance measure.

Arti�cial datasets

We compare the performance of the methods for the arti�cial datasets in the top rows of Table 2.2
using the ISE and the gKLD measure. The true densities are parametric densities calculated using
the parameters with which the datasets are created. It is clear that the adaptive-kernel-based
methods, MBE and DEDICA, perform signi�cantly better than kNN or DTFE in recovering the
input density distributions. For all but Dataset 6, the lognormal distribution, the performance of
MBE is better than or roughly equal to that of DEDICA. We note that the MBE densities were
calculated with the automatic choice of the kernel size, and better performance of MBE might
be obtained by modifying the smoothing parameter manually.

We note also that DEDICA performs very poorly for Dataset 4 (wall plus �lament), where
it fails to estimate the proper density. Examining the point densities in Figure 2.5, it is clear
that DEDICA underestimates the densities in the wall. We attribute this to the method failing
to choose the proper kernel size during the automatic (cross-validation) kernel size selection on
this dataset. We also see similar behavior when considering the MSG and SDSS datasets. We
discuss this issue in more detail in Section 2.5.3.

Furthermore we note that the �eld produced by kNN is not normalized. For datasets 1 to 6,
the �elds are approximately 25 to 30% over-dense on average. This is part of the reason that
kNN performs the worst in terms of the integrated square error on these datasets.

The MSG datasets

We compare the performance of the density estimators on the MSG datasets in the bottom rows
of Table 2.2. As expected, DTFE performs best on the MSG-DTFE dataset, and MBE performs
best on the MSG-MBE dataset. Interestingly, kNN performs as well as DTFE on the MSG-DTFE
dataset. This is not a complete surprise, as DTFE and kNN are conceptually similar, because both
use only points in the immediate vicinity of the current location to estimate the density directly.
Because of this, both may perform better than kernel estimates in the presence of strong gradients
or even discontinuities in the underlying density. Despite this, MBE performs nearly as well as
DTFE and kNN on the MSG-DTFE dataset, suggesting that MBE continues to perform well even
on spatially-complex datasets.
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Figure 2.5. Performance of DEDICA for dataset 4. Filament in red and the wall in blue.
Left: Spatial representation of the dataset. Right: Comparison of true and DEDICA-inferred
densities.

Figure 2.6. Plot of true versus estimated �eld densities of the MSG-MBE dataset by MBE (top
left), DEDICA (top right), DTFE (bottom left) and kNN (bottom right). Approximately 16000
random grid locations are shown.
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Figure 2.7. The normalized distribution of the density values in log-space for each estimator.
The distributions are smooth and close to Gaussian. The average �eld densities as calculated
with Eq. 2.19 are plotted as dashed lines. A broader range in densities (DTFE, kNN) denotes
that the estimator detects more clustering. More clustering results in more galaxies in higher
density regions, shifting the peak of the distribution to the right. The dotted line represents
the measured average �eld density from the selection function (see text). Left: “cone” sample.
Right: “shell” sample.

The gKLD measure in Table 2.2 reveals that DEDICA fails to estimate proper densities for the
samples from the Millennium dataset. For both MSG samples, DEDICA produces very different
density distributions when compared with the “true” distribution (see the MSG-MBE dataset
Fig. 2.6). As noted above, we observed a similar performance of DEDICA on the simulated
Dataset 4, which contains a �lament-like structure. The MSG dataset also contains obvious
�lamentary structure. Again, it appears that the automatic kernel size selection (using cross-
validation) of DEDICA failed to choose proper kernel size for such datasets (although it performs
quite well in Gaussian and lognormal cases). We summarize this issue in Section 2.5.3.

2.4.2 Application to SDSS datasets

We now examine the application of our density estimators to the two observed galaxy datasets
from SDSS, the “cone” and “shell” samples de�ned in Section 2.3.2 above.

Density magnitude distributions

We begin by comparing the distributions of thevaluesof the densities [recall that̂r (~r i) = Np̂(~r i)]
produced by the four different methods (Figure 2.7). (Note that in this subsection “density
distribution” refers to the 1-D distribution of themagnitudeof the density, not to the density
distribution in space.) All four density estimation methods produce approximately lognormal
distributions of the valueŝr (~r i) for the SDSS samples (as expected from previous studies and
theoretical ideas: see, e.g., Coles and Jones 1991). Therefore our analysis is performed with the
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logarithm of the densityr l = log10(r̂ (~r i)) or else a “standardized density” de�ned as

r s =
r l � ml

s l
; (2.18)

whereml ands l are the mean and standard deviation of the (almost) Gaussian density distribu-
tions. We plot the logarithmic density distributions in Figure 2.7.

The true mean density of galaxieshr (~r)i for the “cone” and “shell” samples is respectively
0:0196 and 0:013 galaxies per cubic megaparsec (Section 2.3.2). The mean of the estimated
densitieshr̂ (~r i)i cannot directly be compared against this number, sincehr̂ (~r i)i is averaged
over the set of galaxies andhr (~r)i over the �eld. High density regions contain more galaxies
and therefore have a heavier weight in the mean of the point densitieshr̂ (~r i)i . This weight is
proportional to the density and if a lognormal distribution of the estimated densities is assumed,
the mean of the estimated �eld densitieshr̂ (~r)i can be calculated as

hr̂ (~r)i = eln10ml �
( ln10sl )

2

2 : (2.19)

For each estimator, the calculated value ofhr̂ (~r)i is plotted in Figure 2.7 as well as the known
average �eld density. For the “cone” sample, DTFE best approximates the known �eld average
density, closely followed by MBE. For the “shell” sample this order is reversed. DEDICA does
not correctly represent the known �eld average density and kNN is in between.

The distributions of the “shell” sample are smoother than those of the “cone” sample, due
to the higher number of data points. Even for the “shell” sample, the DEDICA density dis-
tribution is not smooth, due to its global optimization nature that leads to tiny window widths
(see Section 2.5.3). The MBE density distribution peaks at slightly higher densities for the
“shell” sample. Apart from the difference in means and widths, the differences of the density
methods manifest themselves in the tails of the estimated density distribution. DTFE produces
high-density tails, as it is sensitive to overdensities due to the local nature of the method. MBE
produces a low-density tail. The distribution from kNN both has stronger high- and low-end tails
(compared to a Gaussian).

The density distribution of DEDICA is offset from the other distributions. By comparing
the estimated �eld average density and the true �eld average density it is clear that the calculated
values cannot represent the actual densities. This is due to the sensitivity of DEDICA to overden-
sities: in case of highly clustered data such as ours, it creates very small kernels, undersmoothing
the density �eld (see Section 2.5.3). Moving the positions of the galaxies by 1 Mpc in a random
direction, thereby homogenizing the sample a little, removes this effect almost entirely. How-
ever, even though the densities of the DEDICA galaxies are much higher than is expected, it can
still be used as a parameter describing the environment of the galaxies by using it in standardized
form.

Galaxy color and concentration as a function of environmental density

Two applications of the estimated densities are the exploration of morphology–density relation
(see, e.g., Dressler 1980; and Baldryet al. 2006 in the context of the concentration–density
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Figure 2.8. The color distribution of the SDSS samples. The dotted line is the division between
blue (u� r < 1:9) and red (u� r � 1:9) galaxies.

relation) and environmental effects on the color–magnitude relation (e.g., Baloghet al. 2004,
Baldryet al.2006, Ballet al.2008). We de�ne the inverse concentration index as

iC =
r50

r90
; (2.20)

wherer50 and r90 are the radii containing 50% and 90% of the Petrosian �ux (Baldryet al.
2006). For each galaxy,iC is taken as the average of this ratio in ther andi bands. For typical
galaxies, the inverse concentration ranges from 0.3 (concentrated) to 0.55 (extended). A uniform
disc would haveiC = 0:75. Galaxy colors are computed as the difference betweenabsolute
magnitudes afterk-correction3 and extinction corrections.

It has been long known that the distribution of galaxy colors is bimodal, with blue galaxies
being dominantly extended and disk-like and red galaxies being mostly compact and spheroidal
(at least in the local Universe: see, e.g., Stratevaet al. 2001, for a recent restatement of this

3k-corrections are calculated withKCORRECT V4.1.4 (Blanton and Roweis 2007) using the Petrosian apparent
magnitudes and spectroscopic redshifts.
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Figure 2.9. Fraction of red galaxies as a function of standardized density. In reading order:
MBE, DEDICA, DTFE, kNN. The data is binned in 20 bins of width0:25s centered around
the mean. The yellow region denotes the error in the calculated red fraction as determined from
the Monte Carlo simulation. In all cases, a clear color–density relation can be seen. The MBE
shows a clear dip in high density regions. DEDICA has such a dip in low density regions.

observation). We show the color distributions of the two SDSS samples and our selected cut
between blue and red galaxies in Figure 2.8.

The color–density relation

As discussed in the introduction, “early-type” red galaxies are far more common in clusters of
galaxies than in the general, low-density �eld, which is populated mostly by “late-type” blue
galaxies (see, e.g., Hubble and Humason 1931, Dressler 1980, Baloghet al. 2004, Baldryet
al. 2006).

We compare the ability of the density estimators to recover the existence of this relation. We
examine the galaxy colors in our “cone” SDSS samples as a function of environmental density
parametrized as the “standardized” density de�ned above. The standardized density is binned in
ten steps of 0:25s from the mean, resulting in 20 bins. The distribution for the counted numbers
of red (Nr ) and blue (Nb) galaxies in each bin is Poissonian around the respective meansmr and
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mb,

P(Njm) =
e� mmN

N!
: (2.21)

The parameters of interest aremr andmb, the distributions of which are also given by a Poissonian
distribution,

P(mjN) =
e� mmN

N!
: (2.22)

The fraction (f ) of red galaxies relative to the total number of galaxies is

f =
mr

mr + mb
: (2.23)

A Monte Carlo process is used to estimate the 68% con�dence intervals for the expected value
of f for every bin. To model this fraction as function of the standardized densityr s, a straight
line parametrized as

fmodel= ar s+ c (2.24)

is �t to the data. Bins without either red or blue galaxies are given a zero weight so they do not
contribute to the �t. The degrees of freedom (dof) are the number of bins that contain red and
blue galaxies minus two, since the �tted model has two parameters.

Figure 2.9 shows the fraction of red galaxies of the “cone” sample as a function of standard-
ized densities and the best-�tting straight lines. All estimators consistently �ndc = 0:60 within
one standard deviation ofsc = 0:015. The slopes differ signi�cantly, DEDICA and MBE �nd
the strongest relation witha = 0:090 anda = 0:103 respectively, DTFE and kNN follow with
a = 0:081 anda = 0:075, all withsa = 0:014� 0:015.

There appears to be a signi�cant dip at high densities (at 0:9s , r̂ (~r i) = 0:045galMpc� 3) in
the color–density relation for the MBE-inferred densities. The cause of this dip is unclear, but
could conceivably be due to a morphological or color transition at the edge of clusters in this
sample (see, e.g., van Dokkumet al.1998, Bragliaet al.2007, for more direct evidence of such
transitions).

The color–concentration–density relation

There exists also a correlation between thestructureof galaxies and their environment (e.g.,
Dressler 1980, Driveret al.2006); by combining the color–density and color–structure relations
together, an even clearer bimodality in galaxy properties can be found (Baldryet al.2006). Here
we use the inverse concentrationiC as a tracer of a galaxy's structure, following Baldryet al.
(2006). We show the color–inverse concentration relations for six bins in standardized density
for the “shell” sample in Figure 2.104. In all density bins (and for each density estimator) a well-
de�ned red, concentrated (smalliC) peak and a blue, extended (largeiC) clump can be seen; but
the contrast between these features varies with density as expected.

4We note that these �gures arenot directly comparable with, say, Figure 10 of Baldryet al. (2006), for two
reasons: (1) the densities used for the binning arethree-dimensional, standardizeddensities, not two-dimensional
surface galaxy densities, (2) we consider different mass ranges.
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For all methods, the �gures in the �rst and last column of �gure 2.10 indicate that the blue,
extended clump is more pronounced in the lowest density regions and that the red, concentrated
galaxies are more common in the highest density regions. However, the �gures in the inner four
columns show a clear transition from the �rst column to the last for MBE, but hardly for DTFE,
with DEDICA and kNN in between. Therefore, MBE differentiates the two classes of galaxies
in the intermediate density regions better.

2.5 Conclusions and Recommendations

All four methods are applicable in astronomical problems; overall we prefer the Modi�ed Breiman
Estimator. For the arti�cial datasets the kernel based methods outperform the DTFE and kNN
with respect to the integrated square error and Kullback-Leibler divergence. The correct kernel
size determination is a crucial factor, and DEDICA fails to estimate the kernel size correctly in
more complex datasets such as the Millennium simulation and SDSS.

2.5.1 Arti�cial and Simulated Datasets

From our arti�cial datasets we conclude that the adaptive-kernel-based methods, MBE and DED-
ICA, are better at recovering the “true” density distributions than the kNN or DTFE methods.
However, DEDICA clearly has dif�culties with spatially-complex distributions, making it unsuit-
able for use on problems related to the large-scale structure of the Universe (see Section 2.5.3).

All methods overestimate the density of dense regions, with DTFE having the highest devi-
ation from the true density because the DTFE density approaches in�nity if the volume of the
surrounding tetrahedra approaches zero. On the other hand, all methods almost equally underes-
timate the density in low density regions.

The DTFE even produces zero densities for points on the convex hull of the dataset. However,
in an astronomical setting, this is not always problematic. The convex hull represents the edge
of the sample: physically there are galaxies beyond the edge which are not represented in our
estimated densities. Therefore all methods produce densities that are lower than the unknown
`true' densities in these regions. The zero values of the DTFE density estimator can be used as
an implicit indicator that the density estimation was not successful for these galaxies. With the
other methods, these galaxies silently end up in a too-low density bin.

Pelupessyet al.(2003) have performed a similar comparison of a kernel-based method (using
a spline kernel with a window size of 40 nearest neighbors) with DTFE, with the true density
being unknown. They found that in dense regions the kernel-based method yields lower densities
than DTFE. However, they also mentioned that the performance of the kernel-based method
varies with the choice of kernel and smoothing parameter. DTFE indeed performs better than the
kernel-based method in producing a high-resolution density �eld with highly detailed structure.
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Figure 2.10. Normalized contour plots in color–concentration space for six bins in standard-
ized density, for the SDSS “shell” sample and for each of the four density estimators. The
sub�gures are cropped to the same color and concentration range as Baldryet al. (2006). To
aid comparison, every sub�gure uses the same color levels. The red number in the lower left
corner shows the number of galaxies in the bin.

2.5.2 SDSS Datasets

From the SDSS datasets we conclude that although the estimators produce different distributions
of densities, they all give results in analysis that are consistent with the literature. While the
densities produced by DEDICA are inconsistent with the expected average �eld density, they
can still be used in standardized form.

The kNN and DTFE are very sensitive to local perturbations, producing high densities in
overall low density environments. This places the more uniform distributed blue galaxies in
higher density bins and broadens the distribution of densities. Therefore it is more dif�cult to
appreciate the effect of density, e.g., in the relation with color and concentration, for DTFE and
kNN than for MBE and DEDICA. Furthermore, the kNN method overestimates the average �eld
density. We attribute this to the fact that kNN does not produce normalized �elds.

For kernel based methods it is crucial to select a good kernel size. From our experience we
conclude that it is dif�cult to de�ne a one-size-�ts-all initial kernel size algorithm.

The MBE indicates a peculiarity in the color distribution of galaxies at intermediate densities.
This could be an indication of evolution of galaxies at the edge of galaxy clusters that could not
be detected with the other methods.

2.5.3 DEDICA

Although DEDICA performs very well for most simulated datasets, it performs badly for the
simulated dataset 4 (Figs. 2.5, 2.6) and the astronomical datasets (Fig. 2.7).
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We attribute the failure of DEDICA in these cases to the behaviour of the cross validation for
inhomogeneously distributed data. As we already indicated in Section 2.2.3, DEDICA aims for
a globally optimal result, instead of performing a locally adaptive optimization of kernel widths.
This may result in low performance in cases where the underlying distribution consists of two
quite different components, as is the case for the simulated dataset 4.

For the astronomical data, DEDICA produces kernels with very small sizes. As an example,
we compare the optimal window widths for dataset MSG-DTFE as found by DEDICA and MBE,
respectively; see Fig. 2.11. It is very clear that DEDICA has optimal kernel sizes which are much
smaller than those of MBE. In this case, the data are highly clustered and the underlying den-
sity distribution is very non-smooth. Probably, the millennium density has a non-differentiable,
fractal-like nature, which violates the basic assumption of kernel density estimators that the
underlying density should be continuous, differentiable, and bounded. For MBE this has less
serious consequences, as it only computes a pilot estimate once, instead of trying to optimize the
window widths iteratively.

Figure 2.11. Optimal window sizes (showing color in log-scale) for dataset MSG-DTFE pro-
duced by DEDICA (left) and MBE (right).

2.5.4 Computational Complexities

In Table 2.3 we present a summary of the computational complexities and memory require-
ments of the various density estimation methods. MBE is the most ef�cient (linear complexity),
DTFE and an ef�cient kNN implementation using kd-trees have slightly higher complexity, while
DEDICA has quadratic complexity. Regarding memory usage, MBE has the advantage that its
memory requirement only depends on the number of grid points, but it does not scale well with
increasing number of dimensions.
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Table 2.3. Computational complexity and memory requirement of density estimation methods.
Method Computational Complexity Memory Requirement Comments

kNN straightforward:O(dN2)
using kd-tree :
O(dNlogN)

Nd kd-tree inef�cient whend � 1

DTFE O(NlogN) N Available implementation only
for d = 3

MBE O(dN) Gd Inef�cient with memory when
d > 3

DEDICA O(dN2) dN Computationally inef�cient

Notes.N=number of data points,d=dimension,G=number of grid points. DTFE numbers ford = 3 only.

2.5.5 Recommendations

Each method has its own strengths, therefore the choice of method may vary depending on the
problem at hand. For example, having a proper point density is important when studying the
relationships between properties of individual galaxies and their environment, while a high reso-
lution density �eld is more important when studying the large scale structure of the universe.

In this paper we focus on point densities and we conclude that MBE is our preferred density
estimator. It produces densities that are consistent with expectations from literature and provides
more discriminating power than the other methods. Furthermore it is the fastest method of our
tests. A drawback is that a good determination of the initial kernel size is non trivial. We
recommend an interactive process.

The other kernel method, DEDICA, fails to produce correct densities for our astronomical
datasets. Furthermore it is the slowest of the tested methods. Therefore we cannot recommend
DEDICA, at least not for highly clustered data.

The DTFE produces overall good densities, but is very sensitive to local effects. It pro-
duces small regions of large densities, even in otherwise low density regions. The computational
complexity puts an upper limit on the number of sources to include, even though very fast im-
plementations exist. However, the DTFE is better in discovering shapes in the density �elds than
the kernel based methods, such as determining the �lamentary structure of the cosmic web.

The kNN method, one of the most used density estimators in astronomy, performs rather
badly in our tests. It does not produce normalized density �elds, which results in overestimated
densities. The kNN is very sensitive to local effects which broadens the density distribution. At
the same time it produces non-zero densities in regions far away from any sources. The positive
side of kNN is that it can be implemented quickly in a few of lines of code. This makes the kNN
an attractive choice for quick and dirty density estimations, but we recommend that it should not
be used for more serious density estimation.
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2.A Appendix. Mock samples – selection effects

In order to study the impact of selection effects on the density estimations of SDSS galaxies –
in particular for the “cone” sample – we created four mock samples. The densities produced for
these mocks are compared to our “cone” sample. The cone sample represents a region of SDSS
that is 49% more dense than average. To compare with this overdensity, the mock samples were
created with the same average �eld density ofhr cone(~r)i = 0:0196 which corresponds to 4024
sources.

We distinguish �ve different effects that we want to investigate. Any difference of the results
of the density estimators that is not explained by the points below are attributed to effects intrinsic
to the “cone” sample.

Figure 2.12. Radial distribution of the mock samples. The dashed black line shows the expected
distribution of the galaxies, the black solid line after applying a luminosity selection. The
(red) distribution of the “cone” sample shows more structure than a uniform mock would have
(green), due to internal clustering.
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1. Background differences of the estimators. A uniform box with of size 58.9 Mpc with an
average density ofhr cone(~r)i = 0:0196 is created (“Mock Sample A”, 4020 sources).

2. Effects of the conical shape of the “cone” sample. A sample with the same average density
but with the shape of our “cone” sample is created (“Mock Sample B”, 4010 sources).

3. Effects of the luminosity selection. Using the derived selection function, sources are re-
moved from Mock Sample B in such a way that the radial distribution of sources repre-
sents the radial distribution of the “cone” sample (“Mock Sample C”, 1027 sources). This
is done by assigning to every mock source a uniform random number between 0 and 1 and
removing all sources where this number is larger than the value of the selection function at
that distance.

4. Effects of clustering of the sources. A sample of 49287 galaxies with the same angular
shape as Sample B is selected from the L-Galaxies of the full Millennium Simulation. A
distance and magnitude limit is imposed to select 4024 galaxies with the same shape as the
“cone” sample (“Millennium Mock Sample”).

5. Edge effects. Sources at the edges will have underestimated densities. To study this effect
we removed about 30% of sources that are closest to the edge in our mock samples.

The radial distributions of the samples are shown in Figure 2.12. The corresponding density
distributions of all the points are plotted in Figure 2.13 and without the edge points in Figure 2.14.
In the uniform box (Sample A), the density distributions of kNN and DTFE are very similar
(except for the high-end DTFE tail). The cone shape only has a signi�cant effect on the kernel
based methods, DEDICA producing slightly higher densities and MBE slightly lower. When
simulating and correcting for a luminosity selection (Sample C), the distributions change only
slightly, justifying the 90% incompleteness we allow. The MBE and kNN distributions look
very similar, as do the DEDICA and DTFE distributions. From the Millennium Mock Sample,
it is clear that the clustering of the sources has a large effect on the estimated densities. The
densities estimated by DEDICA are several orders of magnitude higher than the estimations of
the other methods. This overestimation correlates with the small kernel sizes used by DEDICA,
as discussed in Section 2.5.3. There is also an apparent bimodality visible in the MBE density
distribution.

2.A.1 Edge Effects

By comparing Figure 2.13 with Figure 2.14, it is possible to study the effect of edges on the
density distributions. In Figure 2.14 30% of the points closest to the sample edges are removed.
In all methods, the lower density bins are overrepresented in Figure 2.13 due to edge effects but
in Figure 2.14 the low-end tails are still visible. Any edge effect on the tails therefore must be
minor.
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Sample A Sample B

Sample C Millennium
Figure 2.13. Normalized density distributions from the four density estimators for the
four mock samples (A, B, C, and Millennium), all with the same average density (r̂ (~r) =
0:0196galMpc� 3).



Comparison of Density Estimation Methods for Astronomical Datasets 47

Sample A Sample B

Sample C Millennium

Figure 2.14. As in Figure 2.13, but now with approximately 30% of data closest to the edges
of each sample removed.

Figure 2.15. The original (left) and modi�ed (right) Monte Carlo process for a 1-dimensional
sample. The vertices on the blue line are the original sample points, the blue line itself the
DTFE �eld. Black points are uniformly drawn in the area below the red line, those below the
blue line are included in the new sample. In this 1D example, the lowering of the red line gives
a factor 6 improvement in performance, in our MSG dataset this is more than a factor 10000.
The weights are given by the colored areas: the cyan cells have the same weight. The yellow
cell has the same maximum density or volume as one of the cyan cells but a lower weight.
(Densities are linear spatial densities, not probability densities.)
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2.B Appendix. DTFE Monte Carlo sampling

A modi�ed, but equivalent, version of the sampling procedure described in Section 2.3.2 is used
for the Monte Carlo sampling of the DTFE �eld. Due to the high sensitivity of DTFE to shot
noise, the estimated �eld will contain very small regions with very high density: The maximum
estimated density for the milliMillennium dataset is more than 10000 times higher than the aver-
age density. Following the exact procedure as with MBE will result in more than 10000 randomly
chosen points to be discarded for every accepted point, slowing the procedure signi�cantly.

This can be alleviated by lowering the maximum possible value forp in regions with a low
density. The height of this maximum can vary as function of location without affecting the Monte
Carlo simulation, as long as it is always above or equal to the true densityP and all the points
(x;y;z; p) are drawn uniformly below it. The maximum density for a �eld location is set to the
maximum densityDc of the Delaunay cellc at that location. Figure 2.15 shows the maximum
density value for a one dimensional example as a dotted red line.

Step 2a of Section 2.3.2 is modi�ed to ensure a uniformly drawn sample. First a Delaunay
cell (simplex)c is selected, and then a pointr within the simplex with a test densityp below
Dc. More points should be drawn from larger cells and from cells with a higher density in order
to get a uniform selection. This is achieved by giving these cells a higher preference when
selecting a random cell. This preference is quanti�ed by a weightw and uniformity is ensured
by choosingw = VcDc, because this is exactly thed + 1-dimensional volume below the red line
that corresponds to that cell.

The cells are simplices (tetrahedra whend = 3) with d + 1 verticesv0 to vd. A random
positionr i within the cell is selected by choosingd uniform random numbersa j between 0 and
1 as

r i = v0 +
d

å
j= 1

a j
�
v j � v0

�
; (2.25)

keeping only the 1=d! points actually within the cell. The random densityp is selected uniformly
between 0 andDc. A new cell is selected if the test densityp is higher than the interpolated `true'
densityP at the locationr i .
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Chapter 3

Finding and Visualizing Relevant
Subspaces for Clustering
High-Dimensional Data Using Connected
Morphological Operators

Abstract

Data sets in many scienti�c areas are growing to enormous sizes. For example, modern
astronomical surveys provide not only image data but also catalogues of millions of ob-
jects (stars, galaxies), each object with hundreds of associated parameters. Gene expression
experiments produce data about the complete genome of an organism under different con-
ditions and at a sequence of time points. Exploration of such very high-dimensional data
spaces poses a huge challenge. Subspace clustering is one among several approaches which
have been proposed for this purpose in recent years. However, many clustering algorithms
require the user to set a large number of parameters without any guidelines. Some methods
also do not provide a concise summary of the datasets, or, if they do, they lack additional
important information such as the number of clusters present or the signi�cance of the clus-
ters.
In this chapter, we propose a method for ranking subspaces for clustering which overcomes
many of the above limitations. First we carry out a transformation from parametric space to
discrete image space where the data are represented by a grid-based density �eld that also
provides visual support for the analysis of the important subspaces. Then we apply so-called
connected morphological operators on this density �eld. Clusters in subspaces correspond
to high-intensity regions in the density image. The importance of a cluster is measured by a
new quality criterion based on the dynamics of local maxima of the density. Connected op-
erators are able to extract such regions with an indication of the number of clusters present.
The subspaces are visualized during computation of the quality measure, so that the user
can interact with the system to improve the results. In the result stage, we use three visu-
alization toolkits linked within a graphical user interface so that the user can perform an
in-depth exploration of the ranked subspaces. Evaluation based on synthetic as well as real
astronomical and gene expression datasets demonstrates the power of the new method. We
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recover various known relations directly from the data with little or noa priori assumptions.
Hence, our method holds good prospects for discovering new relations as well.

3.1 Introduction

Data sets in many scienti�c areas are growing to enormous sizes. For example, modern astro-
nomical surveys provide not only image data but also catalogues of millions of objects (stars,
galaxies), each object with hundreds of associated parameters. In genomics, DNA microarrays
are used to measure the expression levels of thousands of genes simultaneously. In addition, the
gene expressions are measured as a function of time or under different experimental conditions,
leading to a very large amount of high-dimensional data.

A main line of research is geared toward investigating multidimensional and multiscale pat-
terns in the data. For example, an important task for data analysis in astronomical research is to
explore the relation between galaxy morphology (i.e., the spatial distribution of objects) and the
parameters associated to the objects which characterize the stellar environment. In genomics,
one is interested to explore how cellular processes and functions are regulated by the complex
interactions between large numbers of genes, proteins and metabolites. Although the high data
rates required for acquisition, processing and populating the databases in these �elds are well
under control and are supported by dedicated project teams and software pipelines, we need to
develop new approaches for extracting, analyzing and visualizing relevant information out of the
�ood of high-dimensional data.

Exploration of very high-dimensional information spaces poses a huge challenge. On the
one hand, the techniques should cope with enormous amounts of data in a highly automated
fashion, and be scalable to ensure that the newly developed methods remain usable while the
data catalogues increase in size. On the other hand, the approach should allow the observer to
participate in the analysis by using interactive visualization combined with the human perceptive
and analytical power. This is especially true as the goal is to �nd “unexpected” phenomena in the
data, for which by de�nition noa priori description is available, thus precluding the possibility
of fully automated search.

Combining data mining approaches with visualization can enable users to explore such large
datasets. Clustering is a well known data mining task that helps to discover natural structures in
a dataset (Kriegelet al. 2009). Due to the exploratory nature of the task, full dimensional clus-
tering techniques cannot help much. Clusters may exist in different subspaces that may indicate
different relations among particular subsets of dimensions. Subspace clustering is an approach
that can be applied for this purpose. Subspace clustering is the process of �nding clusters in sub-
spaces of the full feature space, either directly (Agrawalet al. 1998) or by identifying relevant
subspaces for (later) clustering based on some quality criteria (Baumgartneret al.2004).

In this chapter, which is an extended version of Ferdosiet al.(2010), we propose an approach
to �nd relevant subspaces which is strongly tied to morphological properties of object distribu-
tions. Therefore, we apply techniques from the �eld of mathematical morphology, which was
developed to describe image operators for enhancement, segmentation and extraction of shape
information from digital images (Serra 1982, Heijmans 1994). In contrast to traditional linear
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image processing, the morphological image operators focus on thegeometricalcontent of images
and are nonlinear, and many ef�cient algorithms are available for binary and grey scale images.

The main steps of our approach can be summarized as follows. First we carry out a trans-
formation from the parametric space of the objects (galaxies, genes, etc.) to a discrete image
space where the data are represented by a density �eld. This transformation is obtained by us-
ing grid-based density estimation. Local maxima in the grid density pro�le can be indicators of
clusters/outliers in the dataset. Next we determine for each local maximum of the density �eld
whether it represents a relevant subspace by applying quality criteria based upon the notion ofdy-
namics(Bertrand 2007), which indicates the signi�cance of a local maximum, see section 3.3.4.

The search for modes/local maxima is done on the so-calledMax-tree representationof
the density image. Such a representation is used in mathematical morphology to implement
an important class of morphological operations known asconnected operators(Salembier and
Wilkinson 2009, Salembieret al. 1998). The main property of connected operators is that they
do not process individual data points, but entire connected components at each grey level. Such
components are either kept or completely removed by the operator. Therefore, such operators
can be used to perform �ltering based on various shape and size attributes. More information
on connected operators is provided in section 3.3.3. For subspaces of dimension higher than
three we apply principal component analysis (PCA) and use the �rst three principal components
for subspace ranking. The main reason for using PCA is that for higher dimensions the current
Max-tree implementation becomes prohibitive in terms of computing time and memory use.

Along with the quality measure and ranking of the subspaces we provide quantitative in-
formation such as the number of clusters present, degree of separation, size and shape of the
clusters, etc. Note that our method does not perform the actual clustering itself, i.e., it does not
assign points to clusters. For this purpose, existing clustering algorithms (such as k-means) may
be used.

Visualization plays an important role in our approach. The subspaces are visualized during
computation of the quality measure, so that the user can interact with the system to improve the
results. In the result stage, we use an interactive tree visualization providing all sorts of statistics
about each subspace along with the ranking. We also link three visualization toolkits within
a graphical user interface so that the user can perform an in-depth exploration of the ranked
subspaces.

Our main contributions can be summarized as follows:

• We introduce the use of connected morphological operators to analyze grid density pro�les of
subspaces of parameter space;

• We propose a subspace quality criterion based on the dynamics of maxima found in the density
pro�le;

• Linked visualizations are used to support the user in the exploration of the subspaces.

The remainder of the chapteris organized as follows. Related work is discussed in section 3.2.
Section 3.3 then describes the working principle of our subspace �nding method, including the
background on density estimation, connected morphological operators and the concept of dy-
namics. Our interactive visual subspace exploration system is described in section 3.4. We
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present the experimental results of the method in section 3.5. Section 3.7 gives a summary along
with plans for future work.

3.2 Related Work

3.2.1 Subspace Clustering and Ranking

A well known method to rank subspaces for clustering is the SURFING (“SUbspace Relevant
For clusterING”) method (Baumgartneret al.2004). It belongs to the class of methods that only
compute interesting subspaces rather than �nal subspace clusters (Kriegelet al.2009). Relevance
of a (sub)space is measured through a quality criterion based on a hierarchical clustering structure
of subspaces. The method is based on the idea that subspaces with clusters of different densities
and noise will show signi�cant variation in k-nearest neighbor distances compared to subspaces
with a uniform distribution. The quality of a subspace is determined as a function of differences
of distances to the mean distance of the objects. The precise de�nition of quality is as follows.
Let DB be a set of feature vectors

quality(S) =

(
0 if BelowS = 0

di f fmS
jBelowsj:mS

otherwise
(3.1)

where
di f fmS =

1
2 å

02DB
jmS� nn� DistSk (o)j (3.2)

wheremS is the mean of k-nearest neighbor distances of the objects, and for an objecto, nn�
DistSk (o) = maxf distance(os; ps)j p 2 NNS

k (o)g. SURFING can be very helpful where in-depth
knowledge of the spaces can be traded against high processing speed, e.g., in web services.
However, this method only gives a qualitative ranking of the subspaces without any quantitative
information such as the number, size, shape or separation of the clusters.

In Kailing et al. (2003) another density-based subspace selection method called RIS (“Rank-
ing Interesting Subspaces”) is proposed. Relevance is computed as a function of core objects
(i.e., objects inside a cluster, Sanderet al. (1998)). Subspaces that contain no core objects are
pruned in a bottom-up way. The performance of this method largely depends on proper tuning of
a large number of parameters, which is sometimes hard to achieve. It also uses a global density
threshold for subspaces with different dimensionality that can prevent the method from �nding a
proper clustering structure existing in different subspaces of varying dimensionality.

There are other methods like CLIQUE (CLustering In QUEst) (Agrawalet al. 1998), EN-
CLUS (ENtropy-based CLUStering) (Chenget al.1999), DOC (Density-based Optimal projec-
tive Clustering) (Procopiucet al. 2002), or PROCLUS (PROjected CLUStering) (Aggarwalet
al. 1999) that perform direct cluster computation in subspaces. CLIQUE �rst �nds candidate
subspaces by computing a histogram in each of the dimensions and selecting the dense ones.
Then clusters are computed in the subspaces that are selected by a criterion that satis�es a down-
ward closure (or monotonicity) property (Kriegelet al.2009). This criterion says the following:
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if a subspaceS contains a cluster, then any subspaceT � S must also contain a cluster; see
also Kriegelet al.(2009). Pruning subspaces is done by the MDL (Minimal Description Length)
principle. However, CLIQUE provides no information on the subspaces in which the whole
dataset clusters best. Top-down pruning can miss many small but signi�cant clusters. It also is
dif�cult to �nd a proper tuning of parameters for different datasets.

ENCLUS is based on the CLIQUE algorithm but instead of density it uses entropy to �nd the
candidate subspaces. This method also has all the advantages and disadvantages of CLIQUE.
DOC proposes a mathematical de�nition of an optimal projective cluster in subspaces. Density
is measured with a �xed-width hypercube. However, this may not be appropriate for varying
density of different subspaces. Finding proper values for a large number of parameters is another
problem of this method. PROCLUS is one of the clustering oriented approaches that focus on
the clustering result by directly specifying objective functions, like the number of clusters to be
detected or the average dimensionality of the clusters. Both parameters are hard to set because
in most of the cases they are unknown. Taking a �xed dimensionality of the subspaces is not
appropriate either, since clusters may be present in various combinations of dimensions.

3.2.2 Visualization

Integration of visualization in the subspace ranking and clustering process seems to be a less
explored area. Assentet al. (2007) proposed a visualization paradigm to present and explore
clusters from subspace clustering. Using multidimensional scaling (MDS) they present informa-
tion like (dis)similarity, overlap, size, dimensionality etc., of the resulting clusters. They provide
an aid to parameter tuning in terms ofbracketing, a technique originating from photography. A
matrix representation is used to visualize the grouping of clusters. However, these visualization
approaches are about presentation of clustering results, but do not aid in exploring individual
subspaces, our goal in this Chapter.

3.3 Searching Relevant Subspaces for Clustering

3.3.1 Overview of the Method

Let us denote byDATAa set ofN data points (rows) withd dimensions (columns), i.e.,DATA�
Rd. Let A = {a1; :::;ad} be the set of all attributesai of DATA. A subspace inDATA is a setS
with S� A. We de�ne a subspace asrelevantif it does not contain uniform noise or only a single
Gaussian distribution spread over the whole attribute range. Therefore, the emphasis is given on
multimodality of the density where each mode is indicative of a cluster. The degree of relevance
is determined in terms of signi�cance and separability of each mode (indicator of a cluster) in
the multimodal distribution.

We search for the modes and determine their signi�cance and separability in grey level image
space, whereas most of the traditional subspace clustering methods work in parametric space.
The motivation for working in discrete image space is that the number of grid points can be
chosen to match the desired grid resolution, while the number of data points may grow very
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large. This representation facilitates the analysis of the subspaces because of the structured
representation using the Max-tree. Also, it allows an easy integration of the visualization of the
density �eld.

Therefore, a transformation of parametric space to image space is required. This transfor-
mation is obtained by using grid-based density estimation, as described in section 3.3.2. Thus
modes in the distribution are transformed into high-intensity peaks (local maxima) in the den-
sity image. However, densities produced by the estimator have continuous values and thus the
densities have been discretized to obtain discrete gray levels in images used in the later stages.

The search for modes/local maxima is done on the Max-tree representation of the density
image, see section 3.3.3. Each node of the Max-tree with a certain grey level contains all the
connected components at that level. Connected components are obtained using neighborhood
relationships in the grid. The root of the tree contains the connected components with lowest
intensity and the leaves contain the connected components with highest intensity. Therefore,
counting the number of leaves gives us the number of clusters.

The signi�cance and separability of modes is determined using the concept of relative dy-
namics as described in section 3.3.4. Signi�cant and well-separated modes will have higher
relative dynamics compared to overlapping clusters. To derive a quality criterion for subspaces
we use the number of modes (number of leaves in the Max-tree) and their relative dynamics, see
section 3.3.5.

3.3.2 Density Estimation

Density estimation is one of the techniques of choice to uncover structure in point-set data (Silverman
1986). We estimate the density of each subspace by a fast and scalable modi�cation from
(Wilkinson and Meijer 1995) of the adaptive kernel density estimation method of Breimanet
al. (Breimanet al. 1977). A brief discussion of the method is presented here; for details please
see chapter 2.

For a data sample ofN points with position vectors~r i = ( r1;i ; r2;i ; : : : ; rd;i) 2 Rd; (i = 1; :::;N),
the adaptive kernel density estimate ˆp(~r) is given by:

p̂(~r) =
1
N

N

å
i= 1

(h1 : : :hd)� 1l � d
i Ke

�
r1 � r1;i

h1l i
; : : : ;

rd � rd;i

hdl i

�
(3.3)

Here the local bandwidth is the product of a window sizeh` depending on the coordinate direction
` = 1;2: : : ;d and a local bandwidth parameterl i for each data pointi. In this formulaKe is the
Epanechnikov kernel de�ned as

Ke(~t) =
� d+ 2

2Vd
(1� ~t:~t) if ~t:~t < 1

0 otherwise
(3.4)

in whichVd is the volume of the unit sphere ind-dimensional space. In this model we have to
choose the local bandwidth parametersl i in such a way that in low-density regionsl i will be
large and the kernel will spread out; in high-density regions the opposite should occur.

The density estimation proceeds in two phases.
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Phase 1. Use a percentile of the data to compute an optimal pilot window widthhopt
` in each of

the coordinate directions:

hopt
` =

P80(`) � P20(`)
logN

; ` = 1; : : : ;d (3.5)

whereP80(`) andP20(`) are the 80th and 20th percentile of the data points in dimension`.
De�ne a pilot density ˆppilot usingl i = 1 for all i = 1;2: : : ;N andh` = hopt

` in formula (3.3).

Phase 2. From the pilot density ˆppilot compute the local bandwidth parametersl i by

l i =
�

p̂pilot(~r i)
g

� � a

: (3.6)

Hereg is the geometric mean of the pilot densities anda = 1=d is the sensitivity parameter.
The �nal density estimate is given by formula (3.3) once again, but now withl i given by
(3.6) withh` = hopt

` .

The Epanechnikov kernel has �nite support so that computation time is reduced signi�cantly.
The density is estimated on a Cartesian grid, which includes all data points. The method is
computationally effective: the complexity isO(N); the computation time will increase for larger
values of the smoothing parameter. Because of its grid structure the computed density can be
visualized immediately by standard volume rendering techniques ford � 3. In our method a fun-
damental use of the grid structure is to obtain a neighborhood de�nition for computing connected
components in the density �eld. Note that the grid must be �ner than the smallest window size.

3.3.3 Connected Morphological Operators

A connected operator can extract and �lter connected components known as �at zones, i.e.,
constant intensity regions, where connectivity is de�ned on the digital grid. Connected operators
create a hierarchy of �at-zone partitions with an ordering relation. The Max-tree data structure
can be used to implement such a hierarchy (Salembier and Serra 1995, Salembieret al.1998).

Consider a digital imageI on a domainD � Zn with 2-adjacency forn = 1, 4 or 8-adjacency
for n = 2, and 6 or 26-adjacency forn = 3. A setX � D is connected if each pair(p;q) of points
in X can be joined by a path(p0; p1; : : : ; p`� 1; p` ) such thatp0 = p, p` = q and(pi ; pi+ 1) are
neighbors8i 2 [0; `). A connected component ofX is a connected subsetC(X) of X which is
maximal. A �at zone at grey levelh of I is a connected component of the level setXh(I ) = f p 2
DjI (p) = hg.

Max-tree representation.In the Max-tree representation of an image the root corresponds to the
�at zone with lowest intensity and leaves contain the �at zones with highest intensity (Salembier
and Serra 1995, Salembieret al.1998). Local maxima in the image correspond to connected sets
of constant value which are separated from other local maxima by local minima. An illustration
is given in Fig. 3.1. In the left image of this �gure there are three well-separated clusters with
varying intensity. In the right image the corresponding Max-tree representation is shown. The
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Figure 3.1. Left: grey level image that contains three connected components with varying
intensity. Right: Max-tree representation of the left image. Max-tree node A0 represents the
background, and the other connected components are indicated by B to G along with their grey
values. The relative dynamics of peak D3 is also indicated.

Max-tree node A0 represents the background. As there are two �at zones with grey level 1 and
one with grey level 2, the root has two child nodes (B1, G1) at level 1 and one child node (E2) at
level 2. Each of the �at zones can be a leaf or have children. Flat zones with maximum intensities
are in the leaves (G1, F3, D3). The Max-tree is a rooted tree, thus every node has a pointer to its
parent. The Max-tree is constructed with a recursive �ood �lling with a FIFO queue to process
the pixels/voxels in the correct order.

Each node in the Max-tree can contain several size or shape attributes that can be calculated
incrementally during the tree construction. Some example attributes areSize, i.e., the areaA of
the �at zone as de�ned by the number of pixels in that zone, or the scale invariant shape attribute
de�ned byM=A2, i.e., the ratio of moment of inertiaM and the square of the areaA. The Max-
tree along with the attributes can be computed in a time which is linear in the number of pixels.

3.3.4 Dynamics

In image analysis the concept of “dynamics” is used as a measure of contrast. It can be used
to rank the local maxima of an image (Bertrand 2007). In the image processing literature the
dynamics of a minimumm with heightHm is generally de�ned with the concept of �ooding.
After placing a unique �ooding source atm, if the height of the �ood isH1 when for the �rst time
during �ooding a catchment basin with a deeper minimum thanm is reached then the dynamics
of m is de�ned asH1 � Hm. The dynamics of a regional maximumm is de�ned analogously, by
considering the path of minimal altitude linking m for the �rst time to another maximum of higher
altitude thanm(Vachier and Vincent 1995). However, in our work we used a modi�ed de�nition
of dynamics: instead of considering “another maximum of higher altitude thanm” we only
consider “another maximum”. In the Max-tree the local maxima are in the leaves. Therefore, the
dynamics of a local maximum is the difference between the intensity value of the corresponding
leaf and the intensity value of the �rst ancestor with multiple children that corresponds to the
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Figure 3.2. Dynamics of a local maximumm.

minimum that linksm with another maximum (cf. Fig. 3.1). One problem with this de�nition is
that a maximum with low amplitude can be treated as insigni�cant compared to a maximum with
large amplitude. Therefore, we userelativedynamics so that all maxima are treated equally, i.e.,
whenm is a local maximum its relative dynamics is de�ned by

RelativeDynamics(m) = ( Hm � H1)=Hm: (3.7)

For the example of Fig. 3.1 this means that all the maxima have a relative dynamics of 1. Relative
dynamics are also scale-invariant, because a linear scaling of the data space scales all the densities
linearly as well.

The reason behind our modi�ed de�nition of dynamics is that it allows us to identify the sep-
arability of the modes. For example, in �gure 3.3 we show a schematic diagram of two overlap-
ping modes and one well separated mode, their Max-tree representation, and the corresponding
relative dynamics of the modes. The well separated mode received the relative dynamics of 1
and the overlapping modes received the relative dynamics of 0.25 in this example.

3.3.5 Subspace Quality Criterion

Let S be a subspace of the spaceA of attributes. The quality ofS, denoted byQuality(S), is
de�ned as follows

Quality(S) =
�

N� 1
L å NL

i= 1RelativeDynamics(i) if NL > 1
0 otherwise

(3.8)

whereNL is the number of leaves in the Max-tree. In this criterion the sum of the dynamics of
all local maxima is normalized by the number of local maxima and thus the value ofQuality
ranges from 0 to 1. A subspace that contains modes/clusters with high dynamics will have a
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Figure 3.3. Measuring separability of the modes using a modi�ed de�nition of dynamics. (Left)
schematic diagram of two overlapping modes and one well separated mode; (right) Max-tree
representation of the modes and their relative dynamics (RD).

higher value ofQuality than a subspace with clusters of lower dynamics. A subspace as depicted
in Fig. 3.1 will have a quality of 1 according to equation (3.8) because of the presence of three
modes with dynamics of 1 each. Two important aspects of our quality criterion are: (i) the use of
relative dynamics allows us to treat clusters with varying density equally; (ii ) the quality criterion
is unbiased in ranking subspaces with varying number of clusters because of the normalization
by the number of leaves.

Note that in our method, subspaces with the same quality, but with varying numbers of clus-
ters, get the same ranking and thus they will be grouped together in the rank list. However, along
with the ranking, our method also provides information about the number of clusters that may
be present. Therefore, it becomes possible for the user to choose the subspace of interest (with
more/less clusters) from the group of subspaces with the same quality, unlike other methods
where such grouping is not available.

3.3.6 Subspace Finding

The search for subspaces is performed in a bottom-up fashion, i.e., starting from one-dimensional
subspaces, then moving to two-dimensional subspaces, etc. The process of �nding relevant
subspaces is summarized in the pseudo code of Algorithm 3.1. Up to dimension three the creation
of the density image, Max-tree construction and computation of the quality index is done on the
original feature space. For subspaces of dimension higher than three we apply PCA and use
the �rst three principal components for subspace ranking. The main reason is that for higher
dimensions the current Max-tree implementation becomes prohibitive in terms of computing
time and memory use. Using PCA globally in the full dimensional feature space is open to
criticism. However, in our approach we are using it in local feature spaces. Therefore, we can
avoid the drawbacks of global usage of PCA. An added bene�t of our choice to use the �rst
three principal components of PCA is that we can use standard volume rendering to visualize the
density �elds.

Ranking and Pruning. Based on the quality of the subspaces we produce a ranking. Unlike
SURFING we do not discard any of the subspaces in the one dimensional search. Discarding
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spaces in such an early stage can reduce the search space dramatically but it also precludes the
possibility of �nding interesting relations in later stages that may arise with the combination of
discarded 1-D subspaces. However, it is necessary to prune the subspaces because of their ex-
ponential growth. Therefore, we introduce pruning for 2-D and higher dimensions. We prune a
subspace if it has a quality value less than a threshold valueq. From our study on several uni-
formly distributed spaces we found that they always have a quality value less than 0.1. Therefore,
we setq = 0:1.

1: DATA d-dimensional dataset;
2: A={a1:; ::;ad}; // attribute set
3: n = 1;
4: while n � d do
5: NrO f Spaces 

� d
n

�
;

6: Sn  set ofn-dimensional subspacesSn; j , j = 1; : : : ;NrO f Spaces;
7: for j = 1 toNrO f Spacesdo
8: if (n > 3) then
9: Sn; j  ComputePCA(Sn; j );

10: end if
11: Denn; j  ComputeDensityField(Sn; j );
12: Visualize(Denn; j );
13: WaitForInteraction;
14: if (interaction) then
15: Accept new smoothing parameter
16: go to 11;
17: else
18: Mn; j  CreateMaxTree(Denn; j );
19: quality(Sn; j )  ComputeQuality(Mn; j );
20: end if
21: end for
22: rank according to quality;
23: //Pruning forn > 1
24: if (n > 1 and quality(Sn; j ) < q) then
25: removeSn; j ;
26: end if
27: n  n+ 1;
28: end while

Algorithm 3.1: SubspaceFinding
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Figure 3.4. Schematic diagram of our interactive search and exploration system.

3.4 Interactive Visual Subspace Exploration

An overview of our subspace search and exploration system is given in Fig. 3.4. The left part of
the �gure shows the quality computation process. It is very important to choose a proper value
for the smoothing parameter during density computation. Most of the current density-based
approaches for subspace clustering and ranking try to �nd a proper parameter by trial and error,
which is very cumbersome (Mülleret al. 2009). Initially, we provide an automatic setting of
the smoothing parameter as described in section 3.3.2. Most of the time this automatic selection
works. However, it may produce an under-/ over-smoothed density �eld, which is best detected
through visual inspection by the user. Therefore, in our method we visualize the density �eld
with standard volume visualization for 3-D and higher dimensions. For 2-D we visualize it as
an image and for 1-D the histogram of the point densities is used. If the users detect any over-/
under-smoothing they can interact with the system to give a new smoothing parameter value.

We represent the result of the relevant subspace �nding method by a tree visualization (see
right side of Fig. 3.4). The root represents the complete dataset, the next level containsd nodes
whered is the dimensionality of the dataset. Each node contains a number of leaves, saym, where
m is the number of relevant subspaces. If the mouse pointer hovers over a node an information
box will appear with all the relevant information about that subspace. By clicking on the node
a window will appear with a 1-D or 2-D density plot for dimension one and two, and a volume
visualization of the density �eld for dimension three. For dimensions higher than three the
density �eld of the �rst three principal components is visualized.

The tree can be panned (scrolled) to explore the branches. The user can also zoom in/out
for better reading in case that the tree is large or too cluttered. We combine three visualization
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tools with our interface. From the top panel the user can choose Topcat1, GGobi2 or MTdemo3

to check if the subspaces are really relevant. Topcat is a well known table visualizer in the astro-
nomical community that also has different plotting capabilities. It is quite competent in handling
very large high-dimensional data. GGobi is also a well-known information visualization tool
that provides several high-dimensional data visualization techniques. For volume visualization
we use MTdemo, a Max-tree-based volume visualization tool presented by Westenberget al.
(2007). It renders the volume with three different rendering techniques, X-ray, Maximum Inten-
sity Projection (MIP) and Isosurface. MTdemo is not only a volume visualization tool but also
an attribute �ltering tool. It allows the user to explore the volume by applying different shape
preserving attribute �lters.

In the overall work�ow, the user would start with the subspace search, and interact until the
result is satisfactory. Then the results are inspected by the tree visualization system described
above. At this level, the subspace identi�cation process can only be changed by restarting the
process. However, in the future we will consider adding a feedback loop to the subspace search
module by allowing the user to change the parameters of the subspace ranking process.

The amount of interaction will differ in the two phases. In the subspace ranking phase the
smoothing parameter can be changed interactively. To make the subspaces comparable we nor-
malized the units along each axis. Therefore, the scaling parameter should not vary for different
subspaces of a particular dimension. Thus, inspecting one subspace per dimension should be suf-
�cient. Still the number of inspections per dimension will depend on how often the smoothing
parameter is changed, which can vary from user to user. Once the subspace ranking is complete,
the number of inspections will be limited, as the subspaces are ranked by relevance. Usually,
domain users have concrete hypotheses they want to verify and hence they will only explore the
most relevant subspaces.

3.5 Experiments and Results

We compare the ranking performance of our method with SURFING, and the performance in
�nding the number of clusters with CLIQUE, as SURFING does not provide the latter informa-
tion. As the source code was not available to us we used our own implementation of SURFING
following the algorithm presented in Baumgartneret al.(2004). For CLIQUE we used the ELKI4

platform (Achtertet al.2008). We used several synthetic datasets, two astronomical datasets and
one gene expression dataset for this purpose. Reported timings were obtained with an AMD
athlon 64 X2 Dual core processor 5200+, 2.6 GHz and memory 1.94 GB.

1http://www.star.bris.ac.uk/~mbt/topcat
2http://www.ggobi.org
3http://www.cs.rug.nl/~michael/MTdemo
4http://www.dbs.i�.lmu.de/research/KDD/ELKI
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3.5.1 Synthetic Data

We created several synthetic datasets with varying numbers of clusters of varying dimensionality
with different noise levels. Clusters were created as multimodal Gaussian distributions with
different mean and variance. Depending on the value of the variance we created clusters with
varying density. Then impulse noise was inserted uniformly, where the number of noise points
varied from 0% to 10% of the number of points in the clusters. In Table 3.1 a brief summary of
the synthetic datasets can be found.

The �eld “data dimension” indicates the dimensionality of the dataset. “Number of clusters”
indicates the number of Gaussian clusters present in the dataset and “Cluster dimensions” indi-
cates the dimensionality of the Gaussian clusters. For example in dataset 2, the dimensionality
of the dataset is 12 (d1;d2; : : : ;d12), and there are four 3D Gaussian clusters (ind2, d4, andd6)
with 10% uniformly distributed noise added and two 6D Gaussian clusters (ind7 � d12) present
in the datasets without noise; the remaining dimensions (d1, d3, andd5) of the dataset contain
uniformly distributed random noise.

Table 3.1. Synthetic datasets
Dataset Data Dimension Number of clusters Cluster dimensions

1 16 2 3
2 12 4,2 3,6
3 15 3 4
4 22 5 5
5 12 3 2

Figure 3.5. Scatter plot of subspace-A (left), subspace-B from (middle), subspace-C with noise
added to subspace-B (right).

Performance for synthetic data. The performance of our method for synthetic datasets is sat-
isfactory. It ranks subspaces with clusters always high in the list irrespective of the noise levels.
It ranks subspace-A,B,C (Fig. 3.5) as equally relevant since they all get a quality value of 1. Our
method puts emphasis not only on the number of clusters but also on their separability. Sub-
spaces that have well separated clusters always come up high in our ranking. It also can indicate
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the number of clusters properly in most of the cases. Sometimes fewer clusters than present are
reported if there are overlapping clusters with one very high density and another with very low
density.

SURFING puts most of the subspaces which do contain clusters higher in the ranking. How-
ever, noise-free cluster structures are penalized compared to clusters with noise in this method,
see `subspace-A' and `subspace-B' in Fig. 3.5, left and middle, respectively. In subspace-A there
are four Gaussian clusters of varying density with uniformly distributed noise that covers all clus-
ters. In subspace-B there are two clusters without noise. The SURFING method put subspace-A
in the top ranking as expected. However, it ranked subspace-B only as the 20th relevant sub-
space in the list. Note that this result was obtained in spite of the fact that we introduced 1%
of additional random points when calculating the SURFING quality measure, as recommended
by Baumgartneret al. (2004). The motivation for adding a small percentage of random points is
that SURFING's quality measure is based on the difference betweenk-nearest neighbor distances
and mean distances. Hence, if a subspace has multiple clusters with the same density and without
noise, it would get the same quality value as uniformly distributed points and thus remain lower
in the ranking. By contrast, for cases where the clusters are fully covered by noise, as in Fig. 3.5
right, we found that SURFING does rank the subspace equally high as subspace-A in the list of
relevant subspaces.

CLIQUE missed some of the clusters and sometimes detected unclear clusters. The main
dif�culty of CLIQUE is the need to �nd proper parameter sets that work for individual datasets.

Figure 3.6. Scatter plot ofGalactic stellar halodataset.E vs Lz (left), E vs L (middle),L vs Lz

(right).

For the synthetic datasets we checked whether the use of PCA caused any high (i.e., larger
than 3) dimensional clusters to be missed. We found that this only occurred in dataset 3, where
one of the three 4D clusters was missed. In dataset 4 all the �ve 5D clusters and in dataset 2 both
6D clusters were indicated.

3.5.2 Astronomical Data

We used two astronomical datasets. The �rst one is theGalactic stellar halo(roughly spherical
outskirts of a galaxy) dataset, which is the result of a simulation. The second is a galaxy sample
from SDSS (SloanDigital Sky Survey), cf.http://www.sdss.org .

http://www.sdss.org
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Table 3.2. Comparison of methods onGalactic stellar halodataset
Method Ranking Nr. clusters indicated

1-D 2-D

Our method
Lz E � Lz

E E � L 31
L L � Lz

SURFING
E L � Lz

L E � Lz n.a.
Lz E � L

CLIQUE

(in terms of coverage) (in terms of coverage)
E L � Lz

L E � Lz 15
Lz -

Galactic stellar halo dataset.This consists of 33 satellite galaxies each of them represented by
a collection of 105 particles. It has been assumed that the whole stellar halo is the superposition
of several disrupted satellite galaxies which fell into the Milky Way about 1010 years ago. It
is possible to isolate remnants of satellite galaxies since stars in galaxies harbor unique clues
of the assembly history of galaxies. The dataset contains three phase space coordinates, i.e.,
energyE, total angular momentumL and the z-component of angular momentumLz. These three
parameters are approximately conserved quantities that do not evolve much. Among them only
Lz is fully conserved and thus should play the most important role in �nding clusters. According
to Helmi and de Zeeuw (Helmi and Zeeuw 2000) most structure is visible in the 2-D subspace
E � Lz. With current approaches such as thefriends of friendsalgorithm (Efstathiouet al.1988)
only 50 percent of the clusters have been recovered so far.

We applied all the methods to theGalactic stellar halodataset. The results are shown in
Table 3.2. Our method has the best performance in correctly ranking the parameters and also in
indicating the maximum number of clusters. The fact that our method is able to detect 31 out
of 33 clusters is a great advance compared to the performance of state of the art astronomical
methods which reach only half of this (Helmi and Zeeuw 2000). However, it may be worth
mentioning that in this work we do not perform the clustering itself. Therefore, we cannot ensure
a one-to-one association of the particles in the cluster with the original satellites. In the future,
we plan to obtain such an association and �nd out the clustering performance.

The ranking of our method is understandable if we look at the scatter plot of the 2-D spaces,
see Fig. 3.6. The highest ranked 2-D subspace isE � Lz, which indeed has the largest number
of clusters. However, CLIQUE's ranking in terms of coverage does not correspond to existing
astronomical knowledge about the parameters. For example according to CLIQUELz has clus-
ters with the least coverage of the dataset. However, according to Helmi and de ZeeuwLz should
contain more clustering information than the other parameters, as it is the most conserved quan-
tity. Ranking of the 2-D subspaces is reasonable, although the method did not �nd any cluster
in subspaceE � L. CLIQUE found that subspaceL-Lz has the clusters with highest coverage. It
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can be inferred that this subspace has less clusters with large size. CLIQUE found less than half
of the clusters present.

The ranking of SURFING for this dataset corresponds to the results of CLIQUE. In 1-D
subspaces energyE is in the top ranking, followed byL andLz respectively. In 2-D subspaces
L-Lz is indicated as the most relevant subspace. If we look at the scatter plot of Fig. 3.6 it is
evident that theL-Lz andE-L subspaces have more variations in their point distribution in space.
On the other hand, theE-Lz space has more clumped structures when compared to the other two
subspaces. This may indicate the weakness of measuring relevance only based on variation in
point distances.

Galaxy sample from SDSS.This data set contains mainly photometric information of galaxies
in the Northern Galactic Cap of SDSS Data Release 7 (Adelman-McCarthyet al. 2007). There
are 32228 galaxies with 15 attributes in total present in this dataset, see Table 3.3.

The sample is limited to a spectroscopically measured distance range of 418 to 460 Mpc
(1Mpc � 3� 1019km) to control distance related effects. It is dif�cult to compare galaxies at dif-
ferent distances: they are observed at different cosmological times and with different recessional
velocities. An upper r-band Petrosian (Petrosian 1976) magnitude of 17.7 is imposed, to ensure
a volume-complete sample for the quanti�cation of the environment around the galaxies.

Two of the attributes, i.e.,magnitudeandcolor, are important in optical astronomy and need
some elaboration. Magnitude refers to the luminosity of a galaxy in a speci�c wavelength band
of the electromagnetic spectrum. Higher magnitude values correspond to fainter objects, lower
values to brighter objects. In the galaxy dataset we used extinction-corrected model magni-
tudes: dered_r is the magnitude of galaxies measured in the r-band (around a wavelength of
6280 Å). The colors of a galaxy are de�ned as the differences between magnitudes in two differ-
ent bands (Zeilik and Gregory 1998) such that the higher the color value the redder the galaxies
are. In this dataset 10 different colors are used, such asu-r, u-g, etc. This allows us to study the
in�uence of different colors in �nding galaxy properties. The (inverse) concentration index is a
measure of the light distribution of a galaxy.

In our performance measurement on theSDSS galaxy sampledataset we recover several well
known relations of galaxy properties. In color vs magnitude a bi-modal distribution of red and
blue galaxies can be observed (Baldryet al. 2004). Red galaxies are elliptical galaxies with
mostly old stars and blue galaxies are spiral galaxies with mostly young stars. In the color
vs inverse concentration index relation, this galaxy bimodality can also be observed (Baldryet
al. 2006).

In 1D, the galaxy bimodality can be observed in the histogram of colors. Current astronomi-
cal research shows that this can best be seen incolor(u-r). This is con�rmed by our method for
ranking for 1-D subspaces, wherecolor(u-r) is ranked �rst. On the other hand, SURFING ranked
logMasshighest. If we compare the histogram of these two subspaces (see Fig. 3.7) it is clear
that logMassis not relevant in terms of clustering. On the other hand thecolor(u-r) histogram
con�rms the astronomical �ndings.

When we search in 2-D subspaces the combinationdered_rvscolor(u-r) is the �rst subspace
among color vs magnitude combinations that appears in the ranking of our method. On the other
hand SURFING ranksdered_rvs color(r-i) �rst. We can see a clear bimodality in the density
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Figure 3.7. SDSS galaxy sampledata set. Histograms of (left)color(u-r): ranked 1 in our
method, (right)logMass: ranked 1 in SURFING among 1-D subspaces.

Figure 3.8. SDSS galaxy sampledata set. Color vs Magnitude relation. Left: ranked 1 in our
method:dered_rvs color(u-r). Right: ranked 1 in SURFING:dered_rvs color(r-i).

Figure 3.9. SDSS galaxy sampledata set. Color vs inverse Concentration index relation. Left:
ranked 1 in our method:iC vs color(u-g). Right: ranked 1 in SURFING:iC vs color(r-i).
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Table 3.3. Attributes used inSDSS galaxy sample
Attribute Name Description
dered_r Extinction corrected model-magnitude in the r-band.
10 colors:u-g, u-r , u-i,
u-z, g-r, g-i, g-z, r-i , r-
z, i-z

A quantitative measure of color of a galaxy is de�ned as the differ-
ence between magnitudes at two different effective wavelengths

logMass Mass of the galaxy (in logarithmic scale)
logDensity Number density of galaxies of the environment surrounding the

galaxy (in logarithmic scale)
iC Inverse Concentration index, a measure for the structure of the galaxy
SBr Surface brightness of the galaxy

plot of dered_rvs color(u-r) subspace, see �gure 3.8, whereas virtually no bimodality can be
seen in thedered_rvscolor(r-i) subspace. Similar observations hold for thecolor vs iC relation.
Here we also found that the bimodality is best visible in the subspace chosen by our method, see
Fig. 3.9. The performance of our method remains the same in higher dimensions, see Figure 3.10,
where our method shows its strength in detecting relevant subspaces.

The performance of CLIQUE on the galaxy dataset is poor. We experimented with various
parameter settings but could not �nd any of the known galaxy relations we were looking for.

Computation time. For synthetic dataset 1 (5000 data points) it took 0.001s, 1.15s, and 7.75s
for computing the 1D, 2D, and 3D density �eld, respectively, while for theGalactic stellar halo
dataset (with 3.3 million data points) it took 1.52s, 3.6s, and 217.72s. For both datasets an
automatic choice of the smoothing parameter was used.

3.6 Gene Expression Data

We used the gene expression data of the budding yeast Saccharomyces Cerevisiae described by
Spellmanet al. (1998). We downloaded the dataset from the websitehttp://genome-www.
stanford.edu/clustering , which is an on-line supplement to the paper of Eisen et al. (Eisen
et al. 1998). Each cell of the data table represents the measuredCy5=Cy3 �uorescence ratio
(log2-transformed) at the corresponding target element on the appropriate microarray. Genes
are mapped to rows, time points to columns of the data table. That is, each row in the data
table contains the time pro�le of the expression of a particular gene. Each column represents
the expression values of all genes at a particular time point at which the array experiment was
carried out.

Eisenet al.(1998) presented a visualization of this gene expression dataset using hierarchical
clustering. They devised a similarity measure between the time pro�les as the basis for the clus-
tering and visualized the corresponding dendrogram along with the table where each cell value is
transformed into a color (red/green/black). With such a visualization it is possible to gain insight
in clusters formed by groups of genes with similar expression patterns. However, as they applied

http://genome-www.stanford.edu/clustering
http://genome-www.stanford.edu/clustering
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Figure 3.10. Visualization of SDSS galaxy sampledataset. Row 1: Volume visualization of
3-D subspaces. From left to right: ranked 1 in our method:dered_rvs color(u-r)vs SBr (Xray
and isosurface); ranked 1 in SURFING:dered_rvs color(i-z) vs SBr (Xray and isosurface).
Row 2: Volume visualization of �rst three principal components of 5-D subspaces. From left to
right: ranked 1 in our method:dered_rvs color(u-i) vs color(i-z) vs iC vs logMass(Xray and
isosurface); ranked 1 in SURFING:color(g-r) vs color(g-z)vs color(r-i) vs color(i-z) (Xray
and isosurface).

Figure 3.11. Density images (zoomed for better observation) of subspace ranking for the gene
expression dataset.Top row: the three highest ranking 2D subspaces selected by our method;
from left to right: subspace (cdc15_50, cdc15_230) with two clusters; (cdc15_110, cdc15_230)
with three clusters; and (cdc15_150, cdc15_230) with �ve clusters. Bottom row: the three
highest ranking 2D subspaces selected by SURFING; from left to right: (cdc15_50, cdc15_70),
(cdc15_70, cdc15_90), and (cdc15_110, cdc15_130), all of these subspaces showing a single
cluster.



Finding and Visualizing Relevant Subspaces for Clustering High-Dimensional Data 69

a full-dimensional clustering technique, it is possible to miss some of the clusterings/groupings
of genes that cannot be seen in the full-dimensional space. Further insights and new relations
among genes can be explored using our subspace clustering approach.

Similar to Baumgartneret al. (2004), we only used the part of the data table that refers to
the cell-cycle, i.e., thecdc15 “arrest and release” experiment. This means that the cells were
�rst synchronized by growing them at a very high temperature until most of them had reached
a similar state of arrest characterized by large dumbbells. Then the cells were released from the
arrest by shifting the culture to a 23� C water bath, and samples were taken starting att = 10 min
with 20 min intervals (Spellmanet al. 1998). The cell cycle was monitored by the appearance
of new buds. During the cell cycle, �rst new buds appeared att = 50 min, t = 150 min, and
t = 270 min, meaning that the cells completed slightly more than two full cycles during the
experiment. From the �gures in Spellmanet al. (1998) it can be observed that the expression
patterns vary periodically, with different groups of genes being co-expressed at different phases
during the cell cycle, although the �rst and second cycle are not of the same length.

Figure 3.12. Subspace ranking for the gene expression dataset.Left: highest ranking 9D
subspace selected by our method: (cdc15_10, cdc15_70, cdc15_90, cdc15_110, cdc15_130,
cdc15_150, cdc15_210, cdc15_230, cdc15_270) (isosurface rendering of the �rst three prin-
cipal components, with isovalue3845). Right: highest ranking 9D subspace selected by
SURFING: (cdc15_10, cdc15_30, cdc15_50, cdc15_70, cdc15_90, cdc15_110, cdc15_130,
cdc15_150, cdc15_190) (same isovalue).

We removed genes with missing cell values. The resulting dataset has 1938 genes (rows) and
15 time points (columns) of thecdc15 experiment. The task is to �nd interesting subspaces of
the multidimensional space spanned by the time points, i.e., sets of times at which the expression
of particular sets of genes shows strong signs of clustering. Such clustering is a strong indication
of co-regulation of genes during the cell cycle.

In the top row of �gure 3.11, density images of the three highest ranking 2D subspaces
selected by our method are shown. The sample times are used as experiment identi�er, for
example,cdc15_50 denotes the sample of thecdc15 experiment at timet = 50, etc. In the
subspace (cdc15_50,cdc15_230) a bi-modality can be seen, with one large and one small cluster.
In the subspace (cdc15_110,cdc15_230) we can observe three clusters, two linked and one
separate cluster. Five clusters can be observed in the subspace (cdc15_150,cdc15_230), four
linked clusters and one separate cluster. From the observation of these three density images
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Figure 3.13. Isosurface rendering of (left) the highest ranking 3D subspace (cdc15_90,
cdc15_230, cdc15_250) found by our method; (right) the subspace (cdc15_190, cdc15_270,
cdc15_290) found by SURFING.

we note that our method selects subspaces where the time points refer to different cell cycles
during the experiment. Also, we �nd that the number of clusters increases in later stages of the
experiment. This could be attributed to the fact that the synchronization of the cells became less
tight towards the end of the experiment (Spellmanet al.1998).

On the other hand, the bottom row of �gure 3.11 shows that the subspaces (cdc15_50,
cdc15_70), (cdc15_70,cdc15_90), and (cdc15_110,cdc15_130) chosen by SURFING display a
unimodal distribution and all of the subspaces refer to a single cell cycle during the experiment.
In the 1D ranking of SURFING,cdc15_230 (one of the highest ranking 1D subspaces in our
method) gets the lowest quality value, which is even lower than (2

3� quality of highest ranked
1D subspace). According to SURFING's pruning criteria this subspace is removed as irrelevant
from the set of subspaces, see the algorithm in (Baumgartneret al.2004, Fig. 3).

In �gure 3.12 an isosurface rendering of the �rst three principal components of two 9D
subspaces can be seen. Subspace (cdc15_10,cdc15_70,cdc15_90,cdc15_110,cdc15_130,
cdc15_150,cdc15_210,cdc15_230,cdc15_270) is the highest ranking 9D subspace in our
method (�gure 3.12, left). Three dense clusters are visible in the isosurface rendering of the
subspace with isovalue 3845. On the other hand, in the rendering (with the same isovalue)
of the highest ranking 9D subspace (cdc15_10, cdc15_30, cdc15_50, cdc15_70, cdc15_90,
cdc15_110,cdc15_130,cdc15_150,cdc15_190) chosen by SURFING, only one cluster is visi-
ble (�gure 3.12, right).

Baumgartneret al. reported a number of signi�cant clusters using the SURFING method for
the gene expression data set studying the yeast mitotic cell cycle (Table 2 of Baumgartneret
al. (2004)). One cluster is formed by a 3D subspace comprising time points 190, 270, and 290
(shown in the right of �gure 3.13). They also found two 4D subspaces (bottom of �gure 3.14),
one subspace with time points 90, 110, 130, and 190 with three clusters and another one with
time points 70, 90, 110, and 130 with three clusters. The latter one is among the top 10 subspaces
found in our implementation of SURFING. Though the 3D subspace and other 4D subspace are
not in the top 10 in our implementation, they have quality values greater than the threshold
quality value.
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Figure 3.14. Isosurface rendering of the �rst three principal components of (top left and
right) the two top ranked 4D subspaces (cdc15_70, cdc15_130, cdc15_190, cdc15_210)
and (cdc15_190, cdc15_210, cdc15_250, cdc15_270) chosen by our method; (bottom left
and right) the two subspaces (cdc15_70, cdc15_90, cdc15_110, cdc15_130) and (cdc15_90,
cdc15_110, cdc15_130, cdc15_190) found by SURFING.
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3.7 Summary and Future Plans

In this chapter, we have presented a method for ranking subspaces in high-dimensional data in
terms of their relevance for clustering. We used connected morphological operators on a grid-
based density �eld that provides not only a good quality criterion but also has visual support
for the analysis of the subspaces. Evaluation of the method on synthetic, astronomical and gene
expression datasets con�rmed its strength in �nding relevant subspaces and the usefulness of
its visualization. In our approach we allow the user to interact with the system even during
the search process, and directly con�rm the results by looking into the density image produced.
Our interactive application where tree visualization has been integrated with well-established
visualization tools aids the user to achieve further in-depth knowledge by exploration of the
subspaces.

Future work will concern further improvement of the results using dynamics-based �ltering
of the density image. Our quality criterion could also be used to �nd an optimal smoothing
parameter. We also will investigate extension of the Max-tree algorithm to dimension higher than
three. This would enable subspace ranking without recourse to PCA in higher dimension. This
however would also require the use of visualization techniques in dimension higher than three.
Several methods are available for this purpose, such as parallel coordinate plots (Inselberg 2009),
scatter plot matrices (Chamberset al.1983), or tours (Asimov 1985, Cooket al.1995, Feigelson
and Babu 2003). However, parallel coordinate plots are less intuitive and it is hard to discern
structures, especially if the dataset is very large. It can be even dif�cult to �nd correlations
as these are sometimes misinterpreted in parallel coordinate plots (Liet al. 2010). Scatter plot
matrices can be useful to see pairwise relationships of features, but being two dimensional in
nature three dimensional structures cannot be seen.

We are currently integrating our approach with a multi-touch display system. This will allow
scientists to discuss their results in a collaborative environment which supports both scienti�c
and information visualization. A user evaluation of the complete system will be carried out.
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Chapter 4

Visualizing High-Dimensional Structures
by Dimension Ordering and Filtering using
Subspace Analysis

Abstract

High-dimensional data visualization is receiving increasing interest because of the growing
abundance of high-dimensional datasets. To understand such datasets, visualization of the
structures present in the data, such as clusters, can be an invaluable tool. Structures may
be present in the full high-dimensional space, as well as in its subspaces. Two widely used
methods to visualize high-dimensional data are the scatter plot matrix (SPM) and the paral-
lel coordinate plot (PCP). SPM allows a quick overview of the structures present in pair-wise
combinations of dimensions. On the other hand, PCP has the potential to visualize not only
bi-dimensional structures but also higher dimensional ones. A problem with SPM is that it
suffers from crowding and clutter which makes interpretation hard. Approaches to reduce
clutter are available in the literature, based on changing the order of the dimensions. How-
ever, usually this reordering has a high computational complexity. For effective visualization
of high-dimensional structures, also PCP requires a proper ordering of the dimensions.

In this chapter, we propose methods for reordering dimensions in PCP in such a way
that high-dimensional structures (if present) become easier to perceive. We also present a
method for dimension reordering in SPM which yields results that are comparable to those
of existing approaches, but at a much lower computational cost. Our approach is based on
�nding relevant subspaces for clustering using a quality criterion and cluster information.
The quality computation and cluster detection are done in image space, using connected
morphological operators. We demonstrate the potential of our approach for synthetic and
astronomical datasets, and show that our method compares favorably with a number of
existing approaches.
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4.1 Introduction

High dimensionality is becoming a common feature of modern scienti�c datasets, such as as-
tronomical data, gene expression data, etc. However, it is far from straightforward to vi-
sualize high-dimensional structures in a meaningful and user-interpretable way. Traditionally,
low-dimensional representations of high-dimensional spaces, obtained by methods such as Prin-
cipal Component Analysis (PCA), Multi-Dimensional Scaling (MDS), etc., are used to perform
visualization in a Cartesian coordinate system. Other methods to visualize high-dimensional
data are the scatter plot matrix (SPM), the parallel coordinate plot (PCP) (Inselberg 2009), or
tours (Asimov 1985), to mention a few.

All of the above methods have shortcomings. The use of PCA, MDS etc., poses the problem
of interpretation of the visualization, because of the transformation of the original feature space
to a new coordinate system. Tours suffer from a similar problem. Pair-wise relationships among
dimensions can best be observed with SPM. However, if the number of dimensions is very high,
it suffers from crowding and may become dif�cult to interpret. PCP does have the potential
for visualization of high-dimensional structures in the original feature space, as it does not have
constraints on the number of dimensions that can be visualized at a time. However, to facilitate
the visibility of high-dimensional structures in PCP, it is necessary to obtain a proper ordering of
the coordinate axes. High data-dimensionality can make manual reordering unfeasible, hence an
automatic method is required.

In the literature, there exist several approaches for ordering and �ltering the dimensions of
multi-dimensional datasets (Albuquerqueet al.2010, Ankerstet al.1998, Guo 2003, Johansson
and Johansson 2009, Penget al.2004, Tatuet al.2009, Yanget al.2003). However, all of these
approaches obtain the ordering of the dimensions by considering pair-wise relationships between
the dimensions only. In this chapter, we propose methods that search forhigher-dimensional
structures to obtain the dimension ordering. In addition, the ordering of the dimensions obtained
also indicates the importance of the features in terms of clustering.

Subspace ranking (of full feature spaces) is the process of identifying relevant subspaces for
(later) clustering based on some quality criteria (Kriegelet al. 2009). The proposed method
in this chapterbuilds on the method presented in our earlier work Ferdosiet al. (2010), which
�nds relevant subspaces for clustering according to a quality criterion obtained using connected
morphological operators (see section 4.3). In addition, this method can give an indication of the
number of clusters present in each subspace without doing the clustering itself.

In this chapter, we use the quality criterion and the cluster indication capability of the method
in Ferdosiet al.(2010) to present three algorithms: two for �nding a suitable dimension ordering
for PCP, and one for SPM using only quality criteria:

1. Structure-based full (SBF) ordering for PCP.

2. Structure-based partial (SBP) ordering for PCP.

3. Structure-based simple (SBS) ordering for SPM.

For the SBF and SBP ordering our contribution is a better visualization of high-dimensional
structures; for SBS our main contribution is a signi�cant reduction of computation time.
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The SBF ordering tries to �nd the ordering ofall of the dimensions present in the dataset so
that high-dimensional structures become visible. The method starts by �nding the highest ranked
1D subspace. It continues to �nd the next dimensions in the sequence of reordered dimensions,
based on the number of clusters present in the corresponding subspace and its quality value, until
it has found a complete sequence for alld dimensions. In SBP, which is supplementary to the
SBF ordering, the process of �nding a dimension order is repeated for every dimension present
in the dataset. In contrast with SBF, it does not try to �nd the order of all the dimensions, but
extracts an ordering of subspaces of the full feature space. For SPM, the most important goal is
to reduce clutter in the plot to achieve better visualization of high-dimensional data. To improve
readability we can identify the cluster and noise dimensions, and then either remove the noise
dimensions from the plot or put them all together at one side of the plot. The SBS method uses the
capability of the method of Ferdosiet al. (2010) in identifying the cluster and noise dimensions
even from the 1D density plot. Next we apply an automatic or user-de�ned threshold to remove
some of the low-quality dimensions to make the SPM visualization better readable. In addition
to the automatic ordering we provide the option of user interaction for manual adjustment of the
ordering.

The remainder of this chapteris organized as follows. Related work is discussed in sec-
tion 4.2. Section 4.3 gives an outline of the working principle of our dimension-ordering meth-
ods. In section 4.4 we describe the chosen visualization approaches and indicate options for user
interaction. Experimental results are presented in section 4.5, including a discussion of limita-
tions and a comparison with four existing methods. Section 4.6 provides a summary along with
plans for future work.

4.2 Related work

Ankerst et al. (1998) proposed a method for arranging dimensions using pair-wise similarity
measures based on the Euclidean distance function. The arrangement of the dimensions is
obtained using ant colony optimization (Dorigo and Gambardella 1997), a global optimization
method which only considers the pair-wise relations of the dimensions. Thus, the order in which
dimensions with high-dimensional structure appear is a matter of chance. As will be shown
in the results section, the pair-wise method can reveal very simple structures, but fails when
the structures are more complex. By contrast, our method considers local relationships of the
dimensions. We not only use subspace quality but also clustering information when we add a
new dimension to the sequence.

Guo (2003) proposed a human-centered exploration environment for high-dimensional data.
Both computational and visual measures are used to obtain the dimension selection and ordering.
Maximum conditional entropy (MCE) is calculated in 2D data space as a measure of “goodness
of clustering”. The main difference with our method is that Guo considers only clustering in
the 2D subspaces, whereas we take higher-dimensional clusters into account while obtaining the
sequence of dimensions.

Penget al. (2004) de�ned a clutter-based measure to rearrange the dimensions in such a
way that a minimal number of outliers is present between two neighboring dimensions. For
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PCP, the proportion of outliers present in neighboring dimensions is used. The computational
complexity of creating the outlier matrix of all the pairwise dimensions isO(m2n2), wherem is
the number of data points andn is number of dimensions. The optimal dimension ordering is
obtained using exhaustive search inO(n� n!) time. For SPM, two different measures are used.
For the high-cardinality dimensions the Pearson correlation coef�cient is used to obtain a clutter
measure. The correlation matrix is obtained inO(m� n2) time. Then all the dimensions of similar
correlation (above some threshold value) are searched inO(n3) time, and the optimal ordering
is obtained inO(n2 � n!) time by exhaustive search. The low-cardinality dimensions are sorted in
descending order according to their cardinality value. In contrast to our approach this method is
based on outliers instead of clusters. Therefore it can reduce the clutter but cannot ensure that
the dimensions withd-dimensional clusters will be close to each other in the visualization.

To reduce the complexity of �nding optimal arrangements and improve interactivity, Yang
et al. (2003) devised hierarchical dimension clustering using a similarity measure and a PCA-
based importance measure. Similar dimensions are joined together to form a dimension cluster.
To handle large datasets they also extract data clusters using a bottom-up data clustering method.
Only the data points in the clusters with extent much smaller than the minimum similarity value
are used. However, the use of selected global clusters can restrict the �nding of clusters which
are hidden in subspaces. In contrast to this, our method searches for structures in subspaces, and
dimensions are grouped together depending on their clustering structure and ordered according
to their quality.

Tatuet al. (2009) presented a method to rank scatter plots and parallel coordinate plots. For
scatter plots they used rotating variance, class density, and histogram density measures. For
parallel coordinates, Hough space, similarity, and overlap measures were used. To obtain the
best PCP, the pair-wise quality of the dimensions using Hough features is calculated �rst. Then,
an algorithm to solve the Traveling Salesman Problem, such as theA� -search algorithm, is used
to obtain the optimal order. This method uses global optimization as in Ankerst's method, thus
it neglects the local features. In addition, Hough-space quality computation may fail with very
large datasets with a large amount of overlap.

Johansson and Johansson (2009) presented a dimension reduction system using a user de-
�ned quality matrix for correlation, outlier detection, and clustering. Pearson's correlation coef-
�cient is used as a quality metric for correlation. For outlier detection a density and grid based
approach is used. For computing quality, the Ma�a clustering algorithm is applied (Goil and
Choudhary 1999). In clustering-based dimension reduction interesting dimensions are selected
based on cluster coverage. They also proposed dimension ordering of the reduced dimensions.
The dimensions are ordered starting from the highest ranked cluster. Dimensions in that cluster
are placed next to each other, removing any dimensions that do not belong to the reduced set of
dimensions. This can result in a set of dimensions that contains some big clusters and can miss
signi�cant clusters with less coverage. Therefore, it would be more informative if the clusters
with the associated dimensions were visualized with consecutive plots. By contrast, our method
does not perform clustering. Instead, we use the quality of the subspaces and an indication of
the number of clusters present in a subspace to obtain the ordering. In addition, our method
targets subspaces with high-dimensional clustering instead of reducing the dimensionality of the
dataset.
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Albuquerqueet al. (2009) proposed a parallel coordinate matrix (PCM) similar to a scat-
ter plot matrix, a class-based scatter plot matrix and quality-aware dimension ordering for the
proposed plots. In PCM each row represents the relationship of a dimensionj with all other di-
mensions, and each cell contains the relationship ofj with two other dimensions. First the quality
is computed for all 2D visualizations which are ranked according to quality value. Then two 2D
visualizations are combined that share the main dimension of that row. Also the dimensions are
ranked according to quality value. In quality-aware dimension ordering the quality of(n� 1)
2D visualizations of each dimension is used to compute the quality of every dimension. Then
the dimensions are ordered according to quality values. Our proposed method bears similarity
to Albuquerque's method in terms of using quality values for dimension ordering. However,
our parallel coordinate plot can visualize relationships (in terms of clustering) among more than
three dimensions, whereas the PCM in Albuquerqueet al. (2009) can only show relationships
among not more than three dimensions. Albuquerque's quality-aware dimension ordering has
some similarity with our SBS ordering for scatter plot matrices. However, their method requires
the computation ofn2 2D / 3D visualizations, whereas we obtain the SPM ordering using onlyn
1D density plots.

4.3 Dimension reordering

4.3.1 Overview of the method

Let us denote byDATAa set ofN data points (rows) withd dimensions (columns), i.e.,DATA�
Rd. Let A = {A1; :::;Ad} be the set of all attributesAi of DATA. There may exist a natural
grouping among these attributes that contains high-dimensional structures such as clusters. The
goal is to make groupings so that such clusters are visible in PCP and SPM visualizations.

We present three approaches for dimension reordering, two for PCP and one for SPM, using
the concept of subspace clustering and ranking. A subspace ofDATA is a setS with S � A.
Following the approach of Ferdosiet al. (2010), we rank the subspaces according to certain
quality criteria. The quality of a subspace depends on the structures present. Emphasis is given to
multimodality of the density distribution of the subspaces, where each density mode is indicative
of a cluster. In addition, signi�cance and separability of each mode contribute to the quality
value. The search for the density modes and determination of signi�cance and separability is
performed in grey-level image space. Therefore, a transformation of parametric space to image
space is required. This transformation is obtained by grid-based density estimation. Thus, modes
in the distribution are transformed into high-intensity peaks (local maxima) in the density image.

To search for modes (local maxima) in the density image we use connected morphological
operators, implemented using the Max-tree data structure (Salembieret al.1998). Each node of
the Max-tree with a certain grey level contains all the connected components at that level. The
root of the tree contains the connected components with lowest intensity and the leaves contain
those with highest intensity. Therefore, counting the number of leaves gives us the number of
clusters. The signi�cance and separability of modes is determined using the concept ofrelative
dynamics. In image analysis the concept of “dynamics” is used as a measure of contrast. It can
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be used to rank the local maxima of an image (Bertrand 2007). Signi�cant and well-separated
modes will have a higher relative dynamics than overlapping clusters. For a detailed description
of dynamics see section 3.3.4 of chapter 3.

To derive a quality criterion for subspaces we use the number of modes (i.e., leaves in the
Max-tree) and their relative dynamics as follows. The quality of a subspaceS of the space of
attributes, denoted byQuality(S), is de�ned as:

Quality(S) =
�

N� 1
L å NL

i= 1RD(i) if NL > 1
0 otherwise

(4.1)

whereNL is the number of leaves in the Max-tree andRD(i) is the relative dynamics of local
maximumi. The sum of the dynamics of all local maxima is normalized by the total number of
local maxima; so the value ofQualityranges from 0 to 1. A subspace that contains modes/clusters
with high dynamics will have a higher value ofQuality than a subspace with clusters of lower
dynamics.

Up to dimension three the creation of the density image, Max-tree construction and computa-
tion of the quality index is done in the original feature space. For subspaces of dimension higher
than three we apply PCA and use the �rst three principal components for creating the density
image and subspace ranking. The main reason is that for higher dimensions the current Max-tree
implementation becomes prohibitive in terms of computing time and memory use.

In Ferdosiet al.(2010) we reported that the use of PCA has an effect on identifying the num-
ber of clusters, but not on identifying the important subspaces. For example, if a subspace has
four clusters, say two very distinct and two overlapping clusters, then our method is able to �nd
three of the four clusters in the space of the �rst three principal components of the original sub-
space. However, the use of PCA does not restrict us in �nding subspaces with high-dimensional
structures, so the dimension is not limited to 4/5 or 6 (see the results section). For example,
consider a dataset with seven dimensions:a;b;c;d;e; f ;g, wherea;c, and f contain clusters and
the others contain noise. The 4D subspaceac f bwill always have a much higher quality than the
4D subspacebdeg, even if we only use the �rst three principal components, because, whatever
method we use, noise as input will generate noise as output. However, if we compare subspace
acegandac f b the result will depend on many factors, such as the number and quality of the
clusters, their separation etc.

4.3.2 Structure-based Full Ordering (SBF) for PCP

The process of subspace creation for reordering ad-dimensional dataset is depicted in Figure 4.1.
In step 1 we compute the quality of all 1D subspaces and rank them according to quality value.
The highest ranking subspace (A3 in Figure 4.1) is chosen to appear �rst in the reordered se-
quence of dimensions. In step 2 we compute the quality of 2D subspaces, but only of those
which include the highest ranking subspace from step 1 as one of the dimensions. The highest
ranking 2D subspace thus found de�nes the second dimension in the reordered sequence. For
example, in Figure 4.1 the highest ranking 2D subspace isA3A5, so the second dimension in
the reordering will beA5. Next we consider subspaces of dimension three and higher. Now an
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Figure 4.1. Structure-based Ordering for PCP.

additional constraint is applied which takes precedence over the quality values, as follows. If
the sequence obtained so far has a numberp of k-dimensional clusters, then the highest ranking
(k+ 1)-dimensional subspace withp clusters will contribute the next dimension to the ordering.
If there is no subspace that containsp clusters, then the(k+ 1)-highest ranking subspace will
contribute the next dimension. For example, in Figure 4.1 the chosen subspaceA3A5 in 2D has
4 clusters, whereas the highest ranking 3D subspaceA3A5A4 has 2 clusters and there are other
3D subspaces with 4 clusters, of whichA3A5A1 is the highest ranking one; thereforeA3A5A1
will be chosen to contribute the next dimensionA1 to the order. In this way we obtain a dimen-
sion reordering which provides a good view of the dataset that emphasizes the high-dimensional
structures, if present.

4.3.3 Structure-based Partial Ordering (SBP) for PCP

It may happen that one feature (dimension) contributes to different clusters involving different
combinations of features. Therefore, it is possible to obtain multiple partial orderings of the
dimensions which are basically the subspaces of thed-dimensional space. The process of �nding
a partial dimension reordering is similar to the fulld-dimensional reordering, except that the
sequence creation process stops when no subspaces containq = p clusters. Then it restarts the
same process to �nd another partial ordering with the next dimension in the 1D ranking. It repeats
the process until all of the 1D subspaces are used as seed to produce partial orderings. Partial
ordering is also helpful for datasets with a very large number of dimensions, since visualizing all
the dimensions simultaneously will make the screen crowded and unreadable.

In this chapterwe obtain the SBP ordering using the 1D ranking. It can �nd the ordering ofn
subspaces wheren is the number of dimensions in the dataset. However, it is possible to extend
the algorithm to �nd more interesting subspaces by starting the SBP from other rankings than
the 1D ones. The starting dimension can be automated or the user can choose any dimension to
start with.
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4.3.4 Structure-based Simple Ordering (SBS) for SPM

SBS is very simple and it is based on the quality computation of the 1D density images. How-
ever, a useful property of the approach in Ferdosiet al. (2010) is its capability of identifying
noise dimensions and cluster dimensions even in 1D. This property can be explained with the
monotonicity lemma stated in Agrawalet al. (1998): “If a collection of pointsS is a cluster in
a k-dimensional space, thenS is also part of a cluster in any(k � 1)-dimensional projections of
this space.” So, although SBS is very simple it can �nd the informative dimensions with very
low computational cost compared to other methods. In addition to separating cluster dimensions
from noise dimensions, dimension �ltering can be applied in this ordering depending on the qual-
ity values in order to visualize only the most important relations. In our approach an automatic
threshold for �ltering is set to the average quality of the 1D subspaces. The user also has the free-
dom to change the threshold. This �ltering is most helpful for SPM of very high-dimensional
datasets.

4.4 Visualization

We implemented both SPM and PCP on the GPU, reusing and adapting the implementation from
Blaaset al.(2008) developed for PCP. In our implementation the plots can now be created with a
varying number of dimensions, with different orderings, and with more extensive interaction. For
PCP we use a histogram-based approach, as described in section 4.4.1. The GPU implementation
of SPM is particularly helpful, considering the fact that SPM needs to visualize a lot more than
PCP. Even for a large number of dimensions the SPM computation is now quite fast.

4.4.1 Histogram-based Parallel Coordinate Plot

PCP in its original form prohibits the visualization of structures (such as clusters) if the number of
data points in the dataset is very large (> 1000 data points). It may be possible to �nd structures
with the help of brushing; however, discovering structures in such a way is very tedious and
dif�cult.

Blaaset al. (2008) proposed an extension of PCP for very large datasets, using quantization
and compression. They rendered the PCP on the GPU using the joint histogram of each pair of
dimensions (Novotny and Hauser 2006). Instead of drawing a line for each data point, histogram
bins are used to draw the primitives. Then, additive blending is applied to combine all primitives.
A logarithmic intensity scale provides good contrast between low- and high-intensity (density)
regions. This method produces a smooth and continuous PCP and thus structures become better
visible, even if the dataset is very large. However, in this approach the original ordering of
dimensions of the dataset is used. Without reordering, it is hard to perceive high-dimensional
structures, even in this PCP.

User Interaction. Even though automated dimension reordering can assist the user to analyze
high-dimensional data and identify structures and grouping, it is always helpful if the user can
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change the ordering. We provide the following interaction techniques in our implementation
of the reordering methods. In SBF, the user can change the ordering by drag and drop of the
dimensions. For SBP, the PCP with automatic ordering does not contain all the dimensions
because SBP produces a partial ordering. The remaining dimensions are not part of the plot,
but are visible to the user. If the user wants to swap dimensions within the group or add a new
dimension to the group, this can be done by drag and drop.

4.5 Experimental results

We compare the performance of our SBF method with the similarity clustering method of Ankerst
et al. (1998), the clutter-based method of Penget al. (2004), the Hough space method by Tatuet
al. (2009), and the hierarchical dimension clustering method by Yanget al. (2003). The method
of Ankerstet al. was implemented by us following the algorithm described in their paper. For
the method of Penget al. and Yanget al., we used the implementation integrated in Xmdv-
Tool (http://davis.wpi.edu/xmdv/downloadxmdv.html ). For the method of Tatuet al.
we supplied our datasets to the authors and they provided us with the results obtained with their
system. The SBP performance was evaluated by studying its capability to �nd subspaces with
high-dimensional clusters. The performance of the SBS ordering and SPM �ltering methods are
compared with the clutter-based method for SPM of Penget al. (2004), as integrated in Xmdv-
Tool.

4.5.1 Datasets

Synthetic datasets

We created several synthetic datasets with varying numbers of clusters of varying dimensionality
with different noise levels. Clusters were created as multimodal Gaussian distributions with
different mean and variance. Depending on the value of the variance, the density of the clusters
varies. Impulse noise was inserted uniformly, where the number of noise points varied between
0� 10% of the number of points in the clusters. Along with subspaces containing clusters, the
datasets also contain dimensions with uniformly distributed random noise, to test if the methods
can separate noise dimensions from cluster dimensions. The detailed description of two of the
synthetic datasets used is as follows:

u Synthetic Dataset 1: 12D dataset. Six of the dimensions contain two clusters without
any noise, three of the dimensions contain four clusters with some impulse noise, and the
remaining dimensions contain uniform random noise.

u Synthetic Dataset 2: 15D dataset. Five of the dimensions contains four clusters with noise,
four of the dimensions contains three clusters with noise, and the remaining dimensions
contain uniform random noise.

http://davis.wpi.edu/xmdv/downloadxmdv.html
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Table 4.1. Attributes of millMillennium Dataset
velX, velY, velZ x, y, z-component velocity
rvir Virial radius of the subhalo the galaxy is/was the center of
vvir Virial velocity of the subhalo the galaxy is/was the center of
vmax Maximum rotational velocity of the subhalo of which this galaxy

is the center, or the last value for satellite galaxies
CentralMvir Virial mass of background (FOF) halo containing this galaxy
xrayLum X-Ray luminosity
diskRadius Disk radius
mag_rDust Absolute rest frame R magnitude (Vega), dust extinction included
BV_dust, VR_dust, RI_-
dust, IK_dust

Colors, dust extinction included

massWeightedAge The age of this galaxy, weighted by mass of their components
Source:http://gavo.mpa-garching.mpg.de/Millennium/Help?page=databases/millimil/delucia2006a

Astronomical dataset: milliMillennium Galaxy Sample

The Millennium Simulation is one of the largest simulations ever made to study the develop-
ment of the universe (Springelet al. 2005), involving nearly 2� 1010 particles. It was created
to make predictions about the large-scale structure of the universe and compare these against
observational data and astrophysical theories. We use the much smaller “milliMillennium” sim-
ulation, which sampled only� 2� 107 particles, and its associated L-Galaxies data (De Lucia and
Blaizot 2007, German Astrophysical Virtual Observatory 2005). The actual dataset that we used
is a subset of “milliMillennium” and contains 28,998 points and 15 attributes (see Table 4.1).

4.5.2 Performance of the Methods

SBF method

Synthetic Dataset 1. In the top of Figure 4.2, synthetic dataset 1 is visualized with the original
ordering. Even though the presence of structures can be observed in this view, it is hard to
understand the high-dimensional structures present. Second from the top is PCP with the clutter-
based dimension ordering of Penget al. In this view, the dimensions of the 6D subspace with two
clusters appear in two groups (dim3, dim1, dim5) and (dim10, dim8, dim12), separated by one
dimension (dim7) from the 3D subspace with four clusters present in the dataset. On the other
hand, the other two dimensions of this 3D subspace are mixed up with noise dimensions. A
possible explanation is the variation in noise level of different dimensions, since Peng's method
needs to set a global parameter to de�ne the outliers (points that are not in clusters). Third
from the top the ordering by Ankerst's method is presented. It did put the dimensions of the 6D
subspace with two clusters together, but the dimensions of the 3D subspace with four clusters
got mixed with the noise dimensions. This method gives emphasis only to the (distance-based)
similarity of the dimensions. Therefore, it was able to �nd the dimensions of the 6D subspace
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which are very similar, but not the dimensions of the 3D subspace with four clusters that contain
more complex structures and are not very similar in terms of distance. It is also possible to
obtain multiple reordered sequences from the ant colony optimization method. We looked into
many such sequences, but none of these put the dimensions of the 3D subspace with four clusters
together.

Figure 4.2. Synthetic dataset 1 (see section 4.5.1). From top to bottom: (�rst) original order-
ing: rendered with the PCP version of Blaaset al.; structures are visible but high-dimensional
structures are hard to identify; (second) the clutter based method of Penget al. is unable to
put the proper dimensions together to visualize the 6D subspace with two clusters and the 3D
subspace with four clusters present in the dataset; (third) Ankerst's method: the two clusters in
the 6D subspace are visualized properly but the more complex four clusters in the 3D subspace
are missed; (fourth) ordering with our SBF method: dimensions are ordered in such a way that
clusters in both the 6D and 3D subspaces are visible.

In the bottom of Figure 4.2, the reordering obtained from our SBF algorithm is presented. We
see that the method did �nd the dimensions of the 6D subspace with two clusters, and the clusters
are well separated from each other. Next in the sequence the method put the dimensions of the 3D
subspace with four clusters with some impulse noise. Finally, all the dimensions with uniform
random noise were put together. However, it can also happen that the noise dimensions end up
between the other two groups, as we use the �rst three principal components for dimensions
higher than three. Added noise dimensions will not change the quality of a subspace because
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Figure 4.3. The method of Tatuet al. (Left) Synthetic dataset 1. The �rst 4 dimensions,
with the worst (top) and best (bottom) ranked visualization. In the best ranked visualization,
the �rst two dimensions (dim5 and dim10) belong to the 6D subspace with two clusters and
the others (dim4 and dim9) are two of the dimensions of the 3D subspace with four clusters.
(Right) millMillennium dataset. The �rst four dimensions, with the worst (top) and best (bot-
tom) ranked visualization. No structures can be observed in the best ranked view. (Image
courtesy: Tatuet al. .)

of the noise reduction capability of PCA. Anyhow, the method can separate the dimensions with
clusters from those with noise.

In Figure 4.3 (left), the �rst four dimensions of the worst (top) and best (bottom) ranked
visualization obtained by Tatuet al. can be seen for synthetic dataset 1. In the best ranked
visualization, the �rst two dimensions (dim5 and dim10) belong to the 6D subspace with two
clusters, and the others (dim4 and dim9) belong to the 3D subspace with four clusters. Therefore,
it is possible to derive from this view that the two clusters of the 6D subspace present in the
dataset will not be visible in their entirety in the best view with this method.

Dimension hierarchy ordering by Yang's method produced similar results as Ankerst's method.
In the left of Figure 4.4 the dimension clustering by Yang's method can be seen for the synthetic
dataset 1. The method did put the dimensions of the 6D subspace, which has two very clear clus-
ters, in one `dimension cluster'. However, it failed to group the dimensions of the 3D subspace
with four clusters in one `dimension cluster'.

millMillennium Dataset. Bimodality of galaxies is a very well-known phenomenon in astron-
omy (Bell et al. 2004), corresponding to the separation of galaxies in red and blue groups. Red
galaxies are elliptical and compact galaxies with mostly old stars, and blue galaxies are spiral
and extended galaxies with mostly young stars.

Figure 4.5 shows that the bimodality of galaxies can best be observed in the ordering ob-
tained by the SBF method (bottom of Figure 4.5), especially from the dimensions “CentralMvir”
to “BV_Dust”. The dense cluster basically represents the red galaxies that can be identi�ed
from their high values in color dimensions (such as VR_dust). This phenomenon can also be



Visualizing High-Dimensional Structures using Subspace Analysis 85

Figure 4.4. Dimension hierarchy obtained with Yang's method and visualized with Inter-
Ring (Yanget al. 2002). Left: for synthetic dataset 1, the dimensions (dim 3-1-5-8-10-12)
of the 6D subspace with two clusters without any noise are in one cluster; however, two of
the dimensions (dim4 and dim7) of the 3D subspace with four clusters present in the dataset
do not form any `dimension cluster', and another dimension (dim9) of this 3D subspace forms
a `dimension cluster' with two noise dimensions. Right: millMillennium dataset; similarly to
Ankerst's method, thex;y;z-components of velocity and colors form `dimension clusters'.

Figure 4.5. millMillennium dataset. Top: original ordering. Second from top: ordering by
Peng's clutter-based method. Third from top: reordering by Ankerst's method. Bottom: SBF
reordering. Bimodality of the galaxies is better visible in the SBF ordering.
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observed in the ordering by Peng's method (second from top in Figure 4.5) but not as promi-
nent as in the SBF ordering. Ankerst's method put all similar dimensions such as velocities
(`velx', `vely',`velz'), or colors (`BV_dust', `VR_dust', `RI_dust', `IK_dust') together (third
from top in Figure 4.5). However, most of the time domain experts know beforehand thatx;y;
andz-components of velocity, or colors in different bands, will be similar. A relation like galaxy
bimodality is more interesting to them than the obvious relations. Results by the method of
Tatuet al. for the millMillennium dataset are shown in Figure 4.3 (right): the �rst 4 dimensions,
with (top) the worst [lcentralMvir (6), mag_rDust (9), massWeightedAge (14), BV_dust(10)]
and (bottom) the best [velZ (2),velX (0), ldiskRadius(8), lrvir(3)] ranked visualization. Surpris-
ingly, two of the well-known attributes, i.e., magnitude (mag_rDust) and color (BV_dust), that
can show bimodality of galaxies, are in the worst ranked view. On the other hand, in the best
ranked view no visible structures can be observed.

The performance of Yang's method, shown in Figure 4.4 (right), is also similar for this
dataset. This method also put similar dimensions such as velocities or colors in `dimension
clusters'. As remarked above, such straightforward groupings are less useful than the interesting
relations these dimensions might have with other dimensions.

4.5.3 SBP method

Synthetic Dataset 2. The SBP method found a 9D subspace with three clusters (top of Fig-
ure 4.6). Five of the dimensions are actual cluster dimensions and the remaining ones are noise
dimensions. Also a 10D subspace was found with four clusters (bottom of Figure 4.6). Four of
the dimensions are actual cluster dimensions and the remaining ones are noise. This addition of
noise dimensions to the sequence is due to the use of PCA (see section 4.3).

Astronomical Dataset. In Figure 4.7 two of the subspaces of the millMillennium dataset can
be observed. The �rst subspace (top of Figure 4.7) is 5D and at least two clusters can be identi�ed
visually. If we observe the axis “VR_dust”, which is the �rst dimension of this ordering, galaxies
with high value represent the red galaxy group. A similar bimodality can be observed even more
clearly in the 3D subspace (bottom of Figure 4.7).

4.5.4 SBS method

In Figure 4.8, we show SPM visualizations of synthetic dataset 2. In the original ordering the
noise dimensions are so dominant that it is very hard to perceive any clustering. The ordering
obtained by the SBS method is comparable to that by the method of Penget al.. However, Peng's
method ordered the dimensions in such a way that cluster dimensions appear in certain groups
among the noise dimensions. On the other hand, our method separated cluster dimensions and
noise dimensions in two distinct groups, making it possible to �lter out the noise dimensions
using some threshold value.

Another difference of our approach with Peng's method is that the latter obtains the reorder-
ing at a very high computational cost (see section 4.2). On the other hand, our method computes
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Figure 4.6. Synthetic dataset 2 (see section 4.5.1). Two of the subspaces revealed by the SBP
reordering method. Top: three clusters in a 5D subspace can be observed. Bottom: four clusters
in a 4D subspace are visible.

Figure 4.7. millMillennium dataset. Two of the subspaces revealed by SBP reordering. Top:
two clusters in a 5D subspace (VR_dust, lCentralMvir, BV_dust, lvvir, ldiskRadius) can be
observed. Bottom: two clusters in a 3D subspace (lrvir, lCentralMvir, VR_dust) are visible.
For better visualization, clusters of red galaxies are colored in orange by manual selection.
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Figure 4.8. SPM visualization of synthetic dataset 2. Left: original ordering. Middle: ordering
by the clutter-based method of Penget al.; some grouping of cluster and noise dimensions can
be observed. Right: ordering by the SBS method after �ltering; only cluster dimensions are
visualized since all the noise dimensions are �ltered out by the method.

the density image inO(N) time whereN is the number of data points. The computational cost
of the Max-tree creation is linear in both the number of pixels and in the connectivity. For the
SBS method we only compute the Max-tree for 1D images, therefore the complexity of Max-tree
computation isO(I ) whereI is the number of pixels in the 1D image (we choseI = 512). For
example, to �nd the reordering for SPM of a dataset with 744 data points with 11 dimensions
Peng's method took 3 : 13 min with exhaustive search and 7 sec with random swapping. In
comparison, our method took 0:23 sec to perform the ordering and �ltering for the Millennium
galaxy sample dataset with 28998 data points and 15 dimensions.

4.5.5 Comparison between PCP and SPM

An interesting observation is that pair-wise structural relationships are better visible in scatter
plot matrices than in parallel coordinate plots. An example is shown in Figure 4.9, where three
dense clusters are clearly visible in SPM, whereas in PCP these clusters are not so clear.

On the other hand, high-dimensional structures seem to be more intuitively visible in PCP
than in SPM. We compare the reordering by the SBF method with SPM vs. PCP in Figure 4.10.
Here two groups of dimensions, one with three clusters in a 5D subspace and one with four
clusters in a 3D subspace, are almost immediately noticeable with PCP, whereas with SPM it
may require some in-depth analysis.

4.5.6 Limitations

The use of PCA for dimensions higher than three is currently one of the limitations of our method.
As already discussed in section 4.3, PCA does not restrict us in �nding subspaces with high-
dimensional structures (> 6), but it imposes limitations for �nding the proper number of subspace
clusters present. Another limitation concerns the SBP method: with the current implementation
we can only obtainn subspaces wheren is the number of dimensions.
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Figure 4.9. milliMillennium dataset: dimensions lxrayLum vs. lvvir. Left: visualized with
PCP. Right: visualized with SPM. The presence of three dense clusters is apparent in SPM but
less obvious in PCP.

Figure 4.10. SBF reordering of synthetic dataset 2. Top: for PCP. Bottom: for SPM. Two
groups of dimensions, one with three clusters in a 5D subspace and one with four clusters in a
3D subspace, are better visible in PCP than in SPM.
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4.6 Summary and future work

We have presented methods for dimension ordering and �ltering for the parallel coordinate plot
(PCP) and the scatter plot matrix (SPM), based on structures present in subspaces of the full
feature space. For PCP we obtained two orderings: one providing a reordering for all the
dimensions; the second one producing groups of dimensions which are subsets of the full feature
space. We also presented a simple ordering and �ltering scheme for dimension ordering in SPM.

Evaluation on synthetic and astronomical datasets con�rmed that the methods are able to
�nd a proper order of dimensions that facilitates the perception of high-dimensional structures.
We observed that high-dimensional structures can be more easily perceived in PCP, whereas
pair-wise structures are better visible in SPM. We showed that our method compares favorably
with a number of existing approaches. Future work will include other high-dimensional data
visualization techniques in our structure-based subspace analysis approach.
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Chapter 5

Towards the Design of a Visual Analytics
Tool for Astronomical Data on Large,
Touch-Sensitive Displays

Abstract

Astronomical datasets are not only large in size and dimension but also complex in nature.
To facilitate the analysis of astronomical data there exist several tools in the astronomical
community. Although they provide a large range of visualization facilities, none of them pro-
vide any guidance for exploring high-dimensional datasets that have a large search space.
The large size of the search space prohibits manual exploration and needs automation to
some degree. Full automation is not desirable when the task is to �nd new or unknown
phenomena. The use of visual analytics, where automation is coupled with user validation
through interaction, can be useful. In this chapter, we take the �rst steps in designing a
visual analytics tool for analyzing astronomical datasets on wall displays that integrates
methods proposed in Chapter 3 with multi-touch interactions that provide 7DOF for spatial
navigation. We derive several requirements for supporting visual analytics which in part are
derived from extensive discussions with astronomers. We implement a prototype that ful�lls
the derived requirements and outline a plan for further re�nement through user evaluation.

5.1 Introduction

Astronomical datasets such as catalogue data of astronomical objects (e.g., stars, galaxies) can
consist of tens of terabytes of complex data. In near future, the size of the datasets will reach
in the peta-byte range. To retrieve information from such information-rich datasets, automated
data analysis tools may be required. However, a full automation may not suf�cient when the task
is to �nd new and unknown phenomena. Applying a visual analytics approach where computer
automation is coupled with the power of the human brain in identifying structures, trends, or
outliers (here, Chapter 1 of the book by Keimet al. (2010) can be useful). Visual analytics can
make automatic analysis processes more transparent to the users because it supports visualization
of the intermediate results. It also helps in better understanding of the obtained information as
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it allows users to interact with the system and observe the effect of change in parameters on the
end result. Therefore, using visual analytics approaches for analyzing astronomical data can be
useful as well.

In Chapter 3, we presented a visual analytics approach to recover relevant subspaces for
clustering. There, we visualized intermediate density images to facilitate the setting of smoothing
parameters, and the end results were shown in an interface with a tree visualization of the ranked
subspaces. The interface also integrated three other visualization tools (MTdemo, TOPCAT, and
GGobi) to ease the further exploration of the result. However, using three separate interfaces
for further analysis is time-consuming and can compromise consistency. For example, MTdemo
visualizes 3D density images, TOPCAT provides 1D/2D/3D scatter plots, and GGobi has several
information visualization techniques such as 1D/2D scatter plots, parallel coordinate plots, tours
etc., with linked views. Among them, the performance of GGobi is not satisfactory if the dataset
is large (> 50;000 data points). Interaction with the plots becomes very slow and structure
identi�cation in parallel coordinate plots becomes hard to achieve due to over-plotting of data.

To overcome these dif�culties, it will be useful to integrate the required facilities and visual-
ization techniques used in the system as proposed in Chapter 3 into a single interface. However,
more screen space may be needed to design such an interface. An interface that provides differ-
ent types of visualization and that facilitates the analysis of different types of data with different
dimensionality may not be very useful in the case of regular desktops, because this may result
in too much information in too small a space. Overcrowding of windows and clutter in plots
can make the analysis dif�cult as well. Large touch-sensitive displays can be suitable for this
purpose because of the large screen space they offer.

Large displays generally exist in two different orientations: horizontal (tabletops displays)
and vertical (wall displays). Both types of display have advantages and disadvantages. Tabletops
are well known for supporting co-located collaboration, e.g., Forlines and Shen (2005), Isenberg
et al.(2010), Voidaet al.(2009), Isenberget al.(2009a), since they expedite different mechanics
of collaboration such as monitoring, coordination of action, non-verbal communication such as
eye contact and gesturing (Mandryket al. 2002). For wall displays there is a lack of studies
how such collaboration may work one such study can be found in Isenberget al.2009b, but they
have the advantage that they provide a familiar display perspective to the user, with the same
orientation as the common desktop displays.

Figure 5.1. System demonstration on a 52”
dual-touch wall display.

In this chapter, we discuss several design
issues of a visual analytics tool that facilitates
analysis of astronomical data on a large wall
display with touch-sensitive interactions and
we present a prototype of such a tool (see Fig-
ure 5.1). The technique presented in Chap-
ter 3 is used to support visual analytics of the
datasets. For the touch interactions we use
the technique presented by Yuet al. (2010)
that provides 7 DOF (Degrees Of Freedom)
for spatial navigation in 3D space.

The remainder of the chapter is organized
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as follows. In Section 5.2 we discuss related work. A brief description of the necessary back-
ground is provided in Section 5.3. Requirements of the tool and a description of the proposed
interface are presented in Section 5.4. We conclude the chapter in Section 5.5 along with plans
for future work.

5.2 Related Work

The proposed tool is designed to work with astronomical data that possesses features from visual
analytics, scienti�c visualization, and information visualization. Therefore, we discuss related
work in four different groups: the �rst group concerns several existing astronomical tools, the
second group some existing information visualization tools, the third group concerns some do-
main speci�c tools that integrate scienti�c and information visualization, and in the fourth group
we discuss some visual analytics tools that use large touch displays. We discuss their strengths
and shortcomings and try to indicate how the proposed tool can improve upon them.

A detailed discussion of existing astronomical tools can be found in Chapter 1. In this section,
we summarize their strengths and shortcomings. Most of the existing astronomical tools are
designed to address different astronomical data analysis and visualization needs. TOPCAT is a
powerful tool for working with large tables but lacks data visualization options. Aladin is useful
for image-related operations but not well suited for data analysis purposes. VisIVO and VisIt
offer several options for visualization, but they do not provide any guidance to the user to initiate
the analysis process, especially when the number of search spaces is very large due to high
data dimensionality. These tools can be useful when the user knows where to look for certain
information. However, in such cases a huge amount of information hidden in other subspaces
may remain unnoticed. Information visualization tools such as GGobi and XmdvTool provide
extensive information visualization facilities. They also provide on-demand visualization and
are suited for relatively low-dimensional datasets where manual exploration of information is
still possible. Unlike these tools, in our proposed tool we provide a ranking of subspaces for
clustering, so that users can start the analysis based on the best views of the dataset. It also allows
users to change parameters interactively and observe the respective changes in the ranking of the
subspaces.

There is a large number of domain-speci�c systems that integrate 2D/3D scienti�c visu-
alization with information visualization, such as systems for DTI (Diffusion Tensor Imaging)
�ber exploration (Chenet al. 2009, Jianuet al. 2009), or geographic information systems,
such as GRASS (Neteler and Mitasova 2002), SAGA (Böhneret al. 2006), etc. There exist
some visual analytics systems that also use large displays (Schrecket al. 2007, Tekušová and
Kohlhammer 2008). Among these, Schrecket al. (2007) presented a system for analyzing large
�nancial time series data using trajectory-based visualization. Another visual analytics tool for
exploring and analyzing complex corporate shareholder networks is proposed by Tekušová and
Kohlhammer (2008). Both of these tools use the IGD-HEyeWall of the Fraunhofer-Institut für
Graphische Datenverarbeitung (IGD) in Darmstadt, Germany. These domain-speci�c systems
meet the need for analyzing data from the speci�c domains mentioned, but are not suitable for
use in other domains such as astronomy, since astronomy also has domain-speci�c requirements
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that need to be addressed.
Therefore, our contribution is the design and implementation of a visual analytics tool for

analyzing large (in size and dimension) astronomical datasets in a large touch-sensitive display.
Unlike other existing tools our approach

u considers the domain-speci�c needs of astronomical data such as spatial and non-spatial
visualization of astronomical objects, exploration of time series data, large scale and pre-
cise interaction with the astronomical objects etc.,

u allows users to �nd relevant subspaces for clustering high-dimensional data, and

u allows users to interact with the system to control the automatic subspace searching process
to achieve the desired result.

5.3 Background

The proposed tool uses the subspace ranking for clustering technique to support visual analytics
of large datasets. For interaction with the plots we use the frame-based interaction proposed by
Yu et al. (2010). In this section, a brief discussion of the used approaches and the implications
of these methods for our design decisions will be presented.

5.3.1 Subspace Ranking for Clustering

For the datasets with high dimensionality, the number of search spaces can increase very rapidly
as a function of the number of dimensions. In ad-dimensional dataset the number ofk-dimensional
subspaces is

� d
k

�
, 1 � k � d, so the number of all possible subspaces iså d

k= 1

� d
k

�
= 2d � 1. For

example, a 3D dataset comprises 7 subspaces whereas a 10D dataset already contains 1,023 sub-
spaces to search for information. Therefore, it requires automation to some extent to retrieve
informative dimensions from this huge search space that prohibits manual search. However, full
automation is not well suited for exploratory tasks. By �nding the right balance between data
mining approaches such as clustering on the one side and interactive visualization on the other
we can enable users to explore such large numbers of subspaces more effectively.

The algorithm to obtain a ranking of the subspaces for clustering is based on a quality crite-
rion. The quality of a subspace depends on the structure present in the data. Emphasis is given to
multimodality of the density distribution of the subspaces, where each density mode is indicative
of a cluster. In addition, the signi�cance and separability of each mode contribute to the quality
value. The search for the density modes and determination of signi�cance and separability is
performed in grey-level image space. Therefore, a transformation of parametric space to image
space is required. This transformation can be obtained by grid-based density estimation. Thus,
modes in the distribution are transformed into high-intensity peaks (local maxima) in the den-
sity image. Then we use connected morphological operators implemented via the Max-tree data
structure to obtain the number of modes (counting the number of leaves in the Max-tree) and
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their relative dynamics (see Section 3.3.4). Using this information we compute the quality of
each subspace and rank the subspaces according to quality.

However, the choice of a proper smoothing parameter for creating the density image plays
a vital role in the subspace searching process. If the smoothing parameter (window size of the
kernel density estimator) is too large then an over-smoothed density image will be obtained and
thus only large clusters can be identi�ed. On the other hand, a too small smoothing parameter
will result in an under-smoothed image where each data point is identi�ed as a cluster. However,
identifying over- or under-smoothed images automatically is not a trivial task for a computer,
while human experts can easily identify such properties by observing the images. The choice
of the smoothing parameter is also task-dependent. Depending on the task at hand the user
may need to adjust the smoothing parameter in different ways. In Chapter 3 we provided an
automatic choice for the smoothing parameter and then visualized the resulting density image
for user validation. After observing the visualized image the user can then change the parameter
setting, if necessary.

Therefore, to facilitate the interactive and iterative approach of parameter selection the in-
teractive data exploration tool should provide a widget for changing parameter values and a
dedicated visualization window. However, there should be two such interfaces: one for 2D
subspaces, and another one for 3D subspaces or for the �rst three principal components of the
subspaces with dimensionality higher than three. In addition, the tool should provide a way
to navigate the ranked subspaces individually and also in groups to provide an overview of the
result.

5.3.2 Touch Interactions with 7 DOF

Visualization and interaction go hand in hand. Visualization without useful interaction tech-
niques is of little use. In our system, to explore the ranked subspaces for further analysis we
used the FI3D frame-based interaction system proposed by Yuet al. (2010). This interaction
system allows the manipulation of 3D space as a unit with 7 DOF (translation in x-, y-, and
z-direction, orientation with respect to the 3D coordinate system, and uniform zoom) using only
a single touch. In addition, the frame interaction widget also provides 2-touch interactions for
RST (combined z-rotation, scaling, and x-/y-translation), and for constrained x-/y-/z-rotation. In
Figure 5.2 the frame-based interactions are depicted. The four corners of the frame are dedicated
to zoom in/out operations. Rotation around z-axis can be initiated by touching any side of the
frame with an initial movement parallel to the frame. Rotation around the x-/y-axis is initiated
by touching the frame with an initial movement perpendicular to the frame. Touching the cen-
ter of the display area initiates x/y- translation. For the z-translation (moving the camera closer
to/away from the dataset) two extra frame elements at the top and bottom of the frame are used.
Touching any of these regions can initiate z-translation. All of these interaction regions serve to
specify the interactions in spring-loaded mode fashion (Buxton 1986).

Integration of this interaction technique into our tool will enable both large-scale and precise
interactions not only with the spatial 3D data but also with the non-spatial subspace plots and
scatterplot diagrams. The FI3D interaction technique in its basic form requires just one touch-
point. However, the technique can be easily extended to multiple touches.
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Figure 5.2. FI3D touch interaction with 7DOF according to Yuet al.(2010)
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Figure 5.3. Interface of proposed tool. Top: Buttons for individual exploration of spaces.
Middle: (left) window for a (time dependent) 3D spatial plot; (middle) window for a 2D scatter
plot / density plot; (right) 3D scatter plot / density plot. Bottom: parallel coordinate plot for
parametric space.
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5.4 Design Issues and the Prototype

In Section 5.3.1 we already mentioned some of the requirements that the proposed tool should
ful�ll to enable visual analytics of the data. Those requirements basically concern the parametric
space of the dataset. However, in astronomy, spatial positions of astronomical objects play an
important role in the analysis process. Astronomers are used to associate �ndings in parametric
space with those in the spatial domain. Some astronomical data such as cosmological simulation
data usually involve time-dependent spatial and non-spatial parameters. From discussions with
the astronomers who work with the time-dependent datasets, we learned that tracing of selected
particles in time is also of much interest in the analysis of such datasets. Therefore, the proposed
tool should provide a dedicated interface for the spatial plots which is linked with the parametric
space and which enables the exploration of time-dependent data.

The visualization requirements stated in Section 5.3.1 concern only 2D and 3D visualization,
where subspaces of dimension higher than three are visualized after a transformation using prin-
cipal component analysis. However, such transformations can cause a reduction of information
as well. Therefore, visualizing these subspaces without any transformation in their original di-
mensionality can add value to the analysis. Thus, the tool should support high-dimensional data
visualization as well.

In astronomical data analysis, such as the study of large scale structure of the universe, the
interactions that allow both large scale and precise interactions with the data will be invaluable.
Such interactions can be useful for other type of datasets as well.

To summarize the requirements stated above, the system should

R1: support simultaneous interactive exploration of spatial and non-spatial data,
R2: support visualization of time-dependent data,
R3: be able to trace selected particles in time,
R4: support visualization of data in 2D / 3D and higher than three dimensions,
R5: support visual analytics to �nd and explore large parametric spaces for �nding trends /

clusters,
R6: allow the user to control the �ndings by setting (smoothing) parameters,
R7: support linked views, and
R8: allow both large-scale and precise interactions.

The visual analytics of the data should be provided for all of the dimensions. This is a bottom-
up process, ranging from one-dimensional subspaces to(d � 1)-dimensional subspaces, where
d is the dimensionality of the dataset. However, it should be possible to obtain a ranking of a
subspaces of any user-de�ned dimension. Also, the user may want to know the ranking of the
subspaces that correspond to a user-de�ned feature and dimensionality. Therefore, the require-
mentR4can be divided into two sub-requirements:

R5a: support ranking of alld-dimensional subspaces and
R5b: support ranking of the subspaces of any user-de�ned dimension and/or with a user-chosen

feature.
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Our tool intends to support visual analytics to �nd subspaces for clustering. However, usual
scatter plot visualization is not suf�cient to observe the clustering of the subspaces. Visualization
of density images with color mapping can help in identifying structures. That leads us to another
requirement of the system:

R9: provide visualization that emphasis the structures present in space.

The size and dimensionality of astronomical data can vary and can be very large, thus the tool
should

R10: be scalable in terms of size and dimensionality of the dataset.

Figure 5.4. Top: Multi-purpose buttons. Bottom: Window for 2D subspace exploration with
ranked subspaces on top.

We developed a prototype for a 52 inch LCD screen with full HD resolution (1920 ×1080
pixels, 115.4 cm × 64.5 cm). The display is equipped with a DViT overlay (Smart Technologies
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Inc. 2003) from Smart Technologies, capable of recognizing two independent inputs. To ful�ll
requirementR1, we added four widgets: one for 3D spatial space and three for parametric space.
Among the three widgets for parametric space, one is for 2D data, another is for 3D data, where
both widgets offer visualization of data as scatter plot or density plot. The third widget is for the
subspaces with dimensionality higher than three, visualized as a parallel coordinate plot, in this
way ful�lling requirementR4.

To support time-dependent data navigation (R2) we added buttons at the bottom of the spatial
window. Pressing on the right button increases the time step continuously and pressing on the left
button decreases the time step. The middle button can be used to stop at any speci�c time step for
analysis. Depending on the time step currently displayed in the spatial space, the corresponding
parametric space visualization is updated as well.

RequirementR5ais achieved with a button on the top right of the interface (see Figure 5.4)
and the user can initiated-dimensional subspace ranking by clicking on this button. This process
uses the 2D and 3D windows to visualize the subspaces for user validation of the smoothing
parameter. To allow the user to set the proper smoothing parameter (R6) we designed a touch-
controllable slider next to the 2D and 3D windows. The user can observe the immediate change in
the density image on the corresponding window whenever she changes the parameter by moving
the slider. In order to navigate the ranked subspaces the user can click the buttons on the bottom
of the corresponding window.

To achieve requirementR5bwe also use buttons, putting them in the top of the interface. By
clicking on these buttons the user can initiate subspace ranking in any of the chosen dimensions.
In this view, the user can also obtain an overview of the ranked subspaces (see Figure 5.4) and
can observe the changes in the ranking with the change in smoothing parameter.

To emphasize the structures present in the data (R8) we use a color mapping of the 2D density
plot initiated by the user's demand. For the 3D case a color mapping is not useful as it hides
the structures inside the volume, thus an X-ray rendering of the 3D density will be suf�cient.
To emphasize structures present in the data using parallel coordinate plots, we render it using
histogram-based color coding.

The scalability issue (R9) has been addressed in the visual analytics part of the tool using
image-based subspace searching (for a detailed description, see Chapter 3).

5.5 Summary and Conclusion

In this chapter, we have considered several design issues of a visual analytics tool for astronom-
ical data and presented a sketch of a prototype. The main purpose of designing such a tool is to
facilitate exploration and analysis of datasets with a large number of dimensions when the task
is to �nd new or unknown phenomena. In addition, we provided an interaction approach that en-
ables both large-scale and precise interactions with 7DOF. We designed the tool to be used with
large touch-sensitive displays that provide more space for the visualization and analysis process.
All these features make the tool different from other existing astronomical tools. The design
decisions were made so that the tool will ful�ll the requirements we derived to facilitate visual
analytics of high-dimensional data. Many of these design decisions evolved from discussions
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with astronomers.
Most of the design decisions to satisfy the desired requirements are already considered and

implemented to some extent. However, the tool needs to go through user evaluation to validate
the design decisions and re�ne them according to feedback from the users. Thus, future work
will involve performing repeated user evaluations to re�ne all the design decisions. We also need
to address the scalability issue regarding the visualization. Currently, for large datasets (e.g.,
with 3 million data points) we are able to visualize only 10% of the data (chosen randomly). The
proposed tool also has the potential to be used in co-located collaborative environment. We will
also consider this possibility in the future.
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