Chapter 1

Introduction

1.1 History of electron holography

Already in 1948 Gabor introduced electron holography as a technique [1, 2], nearly half a century before it became practical for routine application. The story behind the development of these ideas is told by Gabor himself in his 1971 Nobel lecture [3]. A detailed account of the first decade of development of holography is given in Ref. [4]. After the second world war Gabor became interested in the then emerging field of electron microscopy. However, at the time the aberrations inherently present in electron lenses [5] seemed to fundamentally limited the resolving power of the electron microscope such that atomic resolution was impossible. As it seemed impossible to improve the lens system Gabor proposed a different approach, in his own words [3]

Why not take a bad electron picture, but one which contains the whole information, and correct it by optical means? It was clear to me for some time that this could be done, if at all, only with coherent electron beams, with electron waves which have a definite phase. But an ordinary photograph loses the phase completely, it records only the intensities. No wonder we lose the phase, if there is nothing to compare it with! Let us see what happens if we add a standard to it, a “coherent background”.

Thus, Gabor proposed a method to record not only, as is usual, the intensity of the electron wave but also the phase. To this end a coherent background wave is added such that the electron beam interferes with this coherent background.
Because the interference pattern depends on the relative phase difference between the electron beam and the background the resulting interference pattern will contain information about both the phase and the amplitude of the electron wave. Gabor dubbed this interference pattern a Hologram after the Greek words holos (whole) and graphe (writing) to emphasize that the interference pattern contains all information present in the electron beam. It would still be affected by lens aberrations in the same way as a normal TEM image but because all information contained in the original wave is recorded it is possible to corrected for these aberrations later.

The original holographic setup proposed by Gabor is shown in Fig. 1.1, today this arrangement is referred to as inline point projection electron holography. A sample is placed a distance Δz from the focus point of an electron lens. The reason for this arrangement was to provide a coherent illumination of the object. If the object is sufficiently thin, a large fraction of the beam will be transmitted (unscattered) by the sample. These unscattered electrons provide a coherent background with which electrons that have interacted with the object can interfere.

Thus the electron beam transmitted through the specimen given by $\psi(\mathbf{r}) = \psi_r(\mathbf{r}) + \psi_o(\mathbf{r})$ can be split in two parts a reference beam $\psi_r(\mathbf{r}) = A_r(\mathbf{r}) e^{i\phi_r(\mathbf{r})}$ and an object beam $\psi_o(\mathbf{r}) = A_o(\mathbf{r}) e^{i\phi_o(\mathbf{r})}$. The intensity at the recording plane is then given by

$$I_{hol}(\mathbf{r}) = |\psi(\mathbf{r})|^2 = A_r^2 + A_o^2 + 2A_r A_o \cos(\phi_o - \phi_r). \tag{1.1}$$

It is clear from Eq. (1.1) that both the phase and the amplitude of the object beam are recorded. If the background is uniform and $A_o << A_r$ then we can simplify Eq. (1.1)

$$I_{hol}(\mathbf{r}) \approx 1 + 2A_o \cos(\phi_o - \phi_r), \tag{1.2}$$

where we have put $A_r = 1$. The hologram is reconstructed optically by illuminating the hologram with a beam that is identical to the original reference beam.

$$\psi_{rec}(\mathbf{r}) = e^{i\phi_r} I_{hol} = e^{i\phi_r} \left[1 + A_o e^{i(\phi_o - \phi_r)} + A_o e^{-i(\phi_o - \phi_r)} \right]. \tag{1.3}$$

The first two terms of Eq. (1.3) together are equal to the original wave. The third term of Eq. (1.3) is called the twin image and can seriously distort the resulting image. The twin image arises from the fact that in Eq. (1.1) both the
1.1. History of electron holography

original wave and its complex conjugate contribute equally. Later we will see that the twin image contains twice the amount of defocus and aberrations as the original wave. Therefore the twin image will form a diffuse background. The resulting wave is then led through a special lens that has specially crafted aberrations such that it cancels the aberrations introduced by the original lens used in the hologram recording. Because of the presence of the twin image it is not a practical scheme for resolution enhancement in this form. However, using more advanced inline techniques resolution enhancement using holography has been achieved. (See Sec. 1.2)

![Figure 1.1: Inline point projection electron holography [2]. (a) Hologram formation. (b) Hologram reconstruction.](image)

The original experiments by Gabor [2] were done using an optical source because a sufficiently bright electron source was not available. Experimental work was continued at Associated Electrical Industries in Aldermaston (UK) by M.W. Haine, J. Dyson and T. Mulvey with Gabor working as a consultant, this time using an electron source. It was found that it was difficult to proceed with Gabors original point projection scheme, mostly due to the large magnification factors involved. However, it was realized that a defocused conventional TEM image also constitutes a hologram and that in fact the two techniques are nearly equivalent [6].

When a defocused image is taken in a conventional TEM the objective lens is focuses on a plane at some distance from the specimen, see Fig. 1.2. The wave front in this plane can also be regarded as a superposition of transmitted and scattered waves resulting in an interference pattern similar to that in point projection holography. Initial experiments were performed by Haine et al. [7] but with limited success, the main problem being that a sufficiently bright electron source was not available forcing them to use very long exposure times. This problem was solved nearly two decades later with the advent of the field
emission gun.

Towards the late 1950’ties interest in the technique faded partly because the electron microscope at that time had not progressed far enough and partly because of the twin image problem [4]. However, in the early 1960’ties Leith and Upatnieks [8] successfully implemented a new scheme using laser light called off-axis holography. This then led to a major revival of interest in holography albeit for a very different application then in Gabor’s original scheme. The main difference between off-axis and inline holography is that the reference beam is not transmitted through the specimen but is transmitted along side the specimen as is shown in Fig. 1.3(a). A beam of laser light is split into two parts, one half will serve as a reference wave which is assumed to be a plane wave $\psi_r(\mathbf{r}) = A_r(\mathbf{r})e^{ik_r\mathbf{r}}$. The other half of the beam is used to illuminate the specimen which then serves as object wave $\psi_o(\mathbf{r}) = A_o(\mathbf{r})e^{i(k_o\mathbf{r}+\phi_o(\mathbf{r}))}$. Both beams then combine at an angle from each other at the image plane and produce an interference pattern

$$I = |\psi_r + \psi_o|^2 = A_o^2 + A_r^2 + 2A_0A_r \cos(2k_\parallel \cdot \mathbf{r} - \phi(o)).$$

(1.4)

Where k_\parallel is the component of \mathbf{k} parallel to the photographic plate, equally we define k_\perp to be perpendicular to the photographic plate. The resulting hologram can then be reconstructed by the same setup but now with the object removed, as is shown in Fig. 1.3(b). This results in a reconstructed wave given by

$$\phi_rI = A_r e^{i k_\perp \cdot \mathbf{r}} \left\{ (A_o^2 + A_r^2) e^{i k_\parallel \cdot \mathbf{r}} + A_0A_r e^{i(3k_\parallel \cdot \mathbf{r} - \phi(o))} + A_0 A_r e^{-i(k_\parallel \cdot \mathbf{r} - \phi(o))} \right\}. \tag{1.5}$$

The third term in Eq. (1.5) is just the original object wave modified in amplitude. As we assume the reference wave to be uniform this modification in amplitude will not alter the visual appearance. In this case there is no twin image problem because the first two terms in Eq. (1.5) are spatially separated from the third.
To implement the off-axis scheme in electron holography an electron interferometer is needed. The first successful electron interferometer was built by Marton [9] in the early 1950’s using multiple single crystal films. Even though a number of successful experiments were performed (see e.g. Ref. [10]) there were some practical problems with this design. The interferometer relied on the alignment of multiple thin films which is difficult to achieve experimentally. An experimentally much simpler design was made by Möllenstedt and Düker during the same period [11]. The design is basically an electron version of Fresnel’s biprism [12], the electron biprism is now by far the most common electron interferometer. The story behind the development of the electron biprism is told by Möllenstedt himself in chapter 1 of Ref. [13].

In Fig. 1.4(a) we show Fresnel’s biprism. The biprism effectively splits the original wave originating from the point S into two separate beams. These appear
to originate from the virtual sources S_1 and S_2. It is then straightforward
to derive an expression for the interference pattern. We put the origin of the
coordinate system at S and the observation plane at $y = a$. Then the phase
difference between the two waves at a point (x, a) is given by the difference in
path length
$$
\Delta \phi = \sqrt{(c-x)^2 + a^2} - \sqrt{(c+x)^2 + a^2},
$$
(1.6)
where c is the distance between the virtual sources and the true source S. Doing a series expansion to first order of Eq. (1.6) then gives
$$
\Delta \phi \approx \frac{2cx}{c^2 + a^2},
$$
(1.7)
which leads to an evenly spaced interference fringe with a fringe spacing given
by $\Delta x = \pi (c^2 + a^2)/(2c)$. In Fig. 1.4(b) we show a schematic picture of an electron biprism. The biprism consist of a thin filament carrying a voltage which is
embedded between two grounded metallic plates. In the original experiment by
Düker and Möllenstedt a 2μm metalized quartz filament was used. A general
treatment of the interference pattern generated from the scattering of electrons
by an electron biprism is very complicated [14]. However, a good approximation
for the interference pattern caused by electrons scattered close to the filament
is easily derived. The potential due to the biprism is approximately equal to
that of a screened capacitor of internal radius r and external radius R [11, 15],
where r is equal to the filament radius and R is of the same order of magnitude
as the distance between the filament and the grounded plates.

$$
V(x, y) = \begin{cases}
U_b \ln(x^2 + y^2)/(2R^2 \ln(r/R)) & r < \sqrt{x^2 + y^2} < R \\
0 & R < \sqrt{x^2 + y^2}
\end{cases}
$$
(1.8)
where U_b is the biprism voltage which is assumed to be positive. Using a weak
field approximation and assuming small angles the deflection β of an electron
by the biprism potential is given by

$$
\beta = \frac{e}{m_e v_0} \int_{-\infty}^{\infty} dy \frac{\partial V(x, y)}{\partial x} = \frac{2eU_b}{m_e v_0 R^2 \ln(r/R)} \arctan \left(\frac{\sqrt{R^2 - x_i^2}}{x_i} \right),
$$
(1.9)
where x_i is the x-coordinate of the point where the electron enters the cylin-
drical capacitor potential of Eq. 1.9. If we consider only electrons close to the
filament we have $x_i \ll R$. Typically x_i will be in the order of a few μm and R is
the order of mm. Therefore we can approximate Eq. (1.9)

$$
\beta \approx \frac{eU_b \pi}{m_e v_0 R^2 \ln(r/R)} \text{sign}(x_i),
$$
(1.10)
thus the magnitude of β is approximately constant close to the filament.

The first off-axis holograms was made by Möllenstedt and Wahl in 1968 [16] who recorded a hologram of a small tungsten wire. The hologram quality was greatly increased by Tonomura et. al in 1979 who used a field-emission electron beam that dramatically increased the number of fringes in a hologram [17].

1.2 Inline electron holography

In many practical cases in transmission electron microscopy we can approximate the exit wave from the sample by a fully coherent wave. This is valid provided that the sample is sufficiently thin and that the illumination system of the microscope is sufficiently well aligned. We can then describe the electron optics by Abbe’s imaging theory [12], which is shown schematically in Fig. 1.5. The wave front at the back focal plane is given by $T(k)\Phi(k)$ where $\Phi(k) = \mathcal{F}(\psi(r))$ is the Fourier transform of original wave and the transfer function $T(k)$ of the lens is given by

$$T(k) = e^{i\chi(k)}. \tag{1.11}$$

Experimentally the most important factors in $\chi(k)$ are the defocus $\chi_d(k)$ and the spherical aberration $\chi_s(k)$,

$$\chi(k) \approx \chi_d(k) + \chi_s(k) = \pi \Delta z \lambda k^2 + \pi C_s \lambda^3 k^4/2, \tag{1.12}$$

where λ is the wavelength of the electrons, Δz is the amount of defocus, and C_s the spherical aberration constant of the lens. The image intensity at the image plane is then given by $I = \left|\psi(x) \otimes t(x)\right|^2$. The effect of $t(x)$ is that it spreads out the original wave on the image plane and therefore distorting the original image.

As was discussed in section 1.1, in ordinary TEM inline holography is achieved by focusing on a plane just behind the sample, to wit an out of focus image. The wave front in this plane can be regarded as a superposition of transmitted and scattered waves, the interference pattern between these waves then constitute the hologram. We assume that the effect of the sample on the incoming wave is small so that the wave in the image plane is given by $\psi(r) = 1 - c(r)$, where we have taken the incoming wave to be unity. The image intensity then becomes [13, p.42]

$$I(r) = \left|(1 - c(r)) \otimes t(r)\right|^2 = 1 - c(r) \otimes t(r) - c^*(r) \otimes t^*(r) + \ldots \tag{1.13}$$
where we ignored second order terms in $\epsilon(r)$, furthermore we have used that

$$1 \times t(r) = \mathcal{F}^{-1}(\delta(k)T(k)) = \mathcal{F}^{-1}(\delta(k)e^{i\chi(k)}) = 1.$$ \hspace{1cm} (1.14)

To reconstruct Eq. 1.13 we take the Fourier transform

$$\mathcal{F} (\tilde{I}(r)) = \delta(k) - E(k)T(k) - E^*(-k)T^*(-k) + \ldots$$ \hspace{1cm} (1.15)

and multiply this by $T^*(k)$, which after an inverse Fourier transform gives

$$\tilde{I}(r) = 1 - \epsilon(r) - \epsilon^*(r) \otimes t^*_2(r) + \ldots = \psi(r) - \epsilon^*(r) \otimes t^*_2(r) + \ldots,$$ \hspace{1cm} (1.16)

where $t_2 = \mathcal{F}^{-1}(T^*_2(k))$. From Eq. (1.16) it is clear that we recover the original wave function $\psi(r)$ but that also in this case a twin image is present. Moreover t_2 contains twice the amount of defocus and lens aberrations as can be easily seen from Eq. 1.11. Therefore the twin image forms a diffuse background. Note also that for this scheme the transfer function $T(k)$ of the objective lens has to be known.

Figure 1.5: *Abbe theory of imaging*: The wave front in the back focal plane is given by the Fourier transform of the incoming wave. Here $T(k)$ is the transfer function of the electron lens. So that the resulting image intensity $I(r)$ is given by $I(r) = |\psi(r) \otimes t(r)|^2$.

Several methods have been proposed to remove the effect of the twin image. A method which works particularly well for small nano-particles is Fraunhofer holography. Conventional holograms are taken in the Fresnel (near-field) region and can therefore be regarded as a Fresnel diffraction pattern. However, it was shown by Thompson [18, 19] that if the hologram is recorded in the far-field of the object then the twin image is essentially removed from reconstructed image. For a particle of size d the far-field condition is met if the distance z between the image plane and the sample is [12]

$$|z| \gg d^2/\lambda,$$ \hspace{1cm} (1.17)
where λ is the wavelength of the illuminating wave. The first realization of this scheme using an electron source was done by Tonomura et al. [20] who imaged 10 nm gold particles. The experimental arrangement is shown in Fig. 1.6. As an example we consider the case of 200 keV electrons ($\lambda = 2.5 \times 10^{-3}$ nm), for 10 nm particles the far field condition Eq. 1.17 is then met if $|z| \gg 40 \mu$m. This large value of z means that this method is difficult to apply in an unmodified conventional TEM. It would require extremely large amounts of defocus. However, positive results have been obtained using far-out-of-focus STEM [21].

Another approach to remove the twin image is to use one of the many focus variation methods. In these methods a (large) number of images at different focus settings is made. This focus series is then reconstructed using a numerical algorithm. Most notably the work by Kirkland et al. [22, 23] and that of van Dyck and Op de Beek with various collaborators [24, 25].

1.3 Off-axis electron holography

In off-axis electron holography, a specimen is chosen such that it does not completely fill the image plane (for example a small magnetic element or the edge of an extended film). Thus only part of the electron beam passes through the specimen. An electrostatic biprism, a thin (< 1\mu)m metallic wire or quartz fiber coated with gold or platinum, is used to recombine the specimen beam and the reference beam so that they interfere and form a hologram. The latter is usually digitized and digital image-processing techniques can be applied to reconstruct the image of the magnetic domain structure.

Figure 1.6: Setup for Fraunhofer holography [20], (a) Hologram formation, sample is illuminated by a near parallel beam of electrons. The diffraction pattern at a distance z behind the sample is then imaged. Where z is chosen so that the far-field condition is met. (b) Image reconstruction using laser light.
Fig. 1.7: Typical off-axis configuration used in electron holography.

Fig. 1.7 shows a ray diagram of the electron beams in holographic mode. The reference beam is assumed to be a plane wave

$$\psi_r(r) = e^{i2\pi q \cdot r}. \quad (1.18)$$

As a result of the interaction the object beam with the sample, the wave emerging from the object is given by

$$\psi_o(r) = A_o(r)e^{i\phi_o(r)}, \quad (1.19)$$

where $A_o(r)$ and $\phi_o(r)$ are the amplitude and phase, respectively. After passing the biprism, the two beams interfere at the image plane

$$I(r) = |\psi_r + \psi_o|^2 = 1 + A_o(r)^2 + 2A_o(r)\cos(2\pi q \cdot r - \phi_o(r)), \quad (1.20)$$

forming the hologram. Clearly, the recorded image $I(r)$ contains information about both the phase and the amplitude of the object beam. The image can be reconstructed from the hologram by taking the Fourier transform of Eq. (1.20)

$$\mathcal{F}(I(r)) = \delta(k) + \mathcal{F}(A_o(r)^2) + \delta(k + q) * \mathcal{F}(A_o(r)e^{i\phi_o(r)}) + \delta(k - q) * \mathcal{F}(A_o(r)e^{-i\phi_o(r)}), \quad (1.21)$$

where the Fourier transform $\mathcal{F}(g(r))$ is defined by

$$\mathcal{F}(g(r)) = \frac{1}{(2\pi)^3} \int g(r)e^{ik \cdot r}. \quad (1.22)$$

The four terms of Eq. (1.21) can be interpreted as follows: The first term is the contribution of electrons that propagate through the system without being affected by the sample. The second term yields the intensity, that is, the image obtained by conventional electron microscopy. The third term is the object wave centered around $k = -q$. The last term is the complex conjugate of the object wave centered around $k = q$.

1.3. Off-axis electron holography

Figure 1.8: Step-by-step procedure to reconstruct the phase from an electron hologram of nanocrystalline Fe$_{94}$N$_5$Zr$_1$ [26]. (a): hologram; (b): power spectrum with two side bands; (c): one side band becomes centered; (d): inverse Fourier transform and phase map $\phi_o(x,y) = \arctan(\mathcal{I}/\mathcal{R})$ where \mathcal{R} and \mathcal{I} are the real and imaginary part of the inverse FFT, respectively.

The phase and amplitude can be numerical reconstructed following the following procedure, illustrated in Fig. 1.8. First the fast Fourier transformation (FFT) of the holographic image is taken. In frequency domain two sidebands can be detected. If one of the two side bands of the FFT is cut out and centered and the inverse FFT of this centered sideband is taken the phase and amplitude can be calculated using the formulas: $\phi_o(\mathbf{r}) = \arctan(\mathcal{I}/\mathcal{R})$ and
$A_o(\mathbf{r}) = (R^2 + I^2)^{1/2}$, where R and I are the real and imaginary part of the inverse Fourier transform, respectively [27].

The final result of the procedure, sketched above, is a image of the amplitude $A_o(\mathbf{r})$ and phase $\phi_o(\mathbf{r})$. Evidently, the main question is how these images relate to the electrical and/or magnetic properties of the sample. If neither the magnetic flux B or the crystal potential V vary with depth and neglecting magnetic and electric fields outside the sample, the phase $\phi(x,y)$ in the image plane is given by an electric contribution $\phi_e(x,y)$ and a magnetic contribution $\phi_m(x,y)$. However, in reality this relation is more complicated and it is the main theme of this thesis to unravel the relation between the magnetic/electric structure in the material and the electron hologram that is being observed.

1.4 Electron interference

As explained earlier, electron holography exploits the wave-like character of the electron beam. On the other hand, an electron beam consists of individual electrons. This raises the question of what happens if we consider the situation in which the intensity of the electron beam is reduced up to the point that at any time there is only one electron traveling from the source to the detector. This situation is not at all imaginary because, as we discuss in this section, such experiments have been carried out and touch one of the most intricate aspects of our current picture of the microscopic world.

The double slit experiment with electrons is no doubt one of the most fundamental experiments in physics. In his lectures on physics Richard Feynman used the double slit experiment to introduce the subject of quantum mechanics. He motivated this choice as follows [28]:

> We choose to examine a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics. In reality, it contains the only mystery.

In Fig. 1.9 a schematic picture is given of the arrangement considered by Feynman. A beam of electrons is emitted from a source towards an aperture containing two slits A and B. If only one of the slits is open then an intensity distribution forms which has its maximum directly behind the slit and then declines as you move away from it. However, when both slits are open instead of a
superposition of two of these distributions an interference pattern arises. Thus in this experiment wave-like interference between the electrons are found even though electrons are observed as particles.

In his lecture Feynman warns that in reality this experiment cannot be performed in this form because of the small dimensions of the experimental arrangement. However, already in 1961 essentially this experiment was performed by Claus Jönsson [29] in Tübingen. In this experiment copper apertures were created containing up to five slits, each slit having a width of 0.3\,\mu m and a spacing of 1\,\mu m. Interference patterns were then observed using a 50 kV electron beam, in good agreement with theory.

The double slit experiment is also achieved with an electron biprism [11] which is described in detail in section 1. Schematically this situation is shown in Fig. 1.10. A simple explanation for the interference pattern in the double slit experiment could be that it is due to some direct interaction between electrons after they diffract from the grating. However, in 1987 Tonomura et al. [30] performed a biprism interference experiment where with extremely high probability only one electron is present in the column at any given time. Moreover the build-up of the interference pattern is recorded event by event.

In Fig. 1.11 the buildup of the interference pattern at different stages is shown. It is clear that only after a large amount of events have been recorded a clear interference pattern emerges. In Fig. 1.12 an intensity profile of Fig. 1.11(d) is

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure19.png}
\caption{Double slit experiment with electrons. \textit{I(II) The intensity distribution when only slit A(B) is open. III The intensity distribution with both slits open.}}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure10.png}
\caption{Electron biprism, the electro static potential of the biprism divides the wave front at both sides of the filament resulting in an interference pattern.}
\end{figure}
shown, the fringe spacing is $0.7 \mu m$. It is clear that the pattern is not a simple cosine as would be suggested by Eq. 1.20. However, this pattern is only expected if the image plane is sufficiently far from the biprism [14].

Summarizing: Experiments clearly show that the interference pattern, which is often considered as “the” evidence of the wave character of particles, is the cumulative result of observing many electrons. Qualitatively, the observed diffraction pattern is in agreement with what one expects on the basis of wave theory but, in spite of the apparent simplicity of the experimental setup, there is no quantitative agreement with theory. In view of the fundamental problem alluded to earlier, we believe that this mismatch requires an explanation, a topic that we gladly leave for future research.

Figure 1.11: Event by event buildup of an interference pattern using an electron biprism. The images were generated from the data of the experiment by Tonomura et al. [30].
Figure 1.12: Intensity profile of the interference pattern of Fig. 1.11(d)