Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp.

Takano, Eriko; White, Janet; Thompson, Charles J.; Bibb, Mervyn J.

Published in:
Gene

DOI:
10.1016/0378-1119(95)00545-2

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1995

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Construction of thiostrepton-inducible, high-copy-number expression vectors for use in *Streptomyces* spp.

(tipA: flounder growth hormone; β-keto acyl synthase; redD; His$_6$ tag; *Streptomyces lividans; Streptomyces coelicolor*)

Eriko Takanoa, Janet Whitea, Charles J. Thompsonb and Mervyn J. Bibba

aJohn Innes Centre, Colney, Norwich NR4 7UH, UK; and bBiozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland

Received by K. F. Chater: 18 April 1995; Revised/Accepted: 7 June 1995; Received at publishers: 8 August 1995

SUMMARY

A high-copy-number plasmid expression vector (pIJ6021) was constructed that contains a thiostrepton-inducible promoter, P_{tipA}, from *Streptomyces lividans* 66. The promoter and ribosome-binding site of *tipA* lie immediately upstream from a multiple cloning site (MCS) which begins with a NdeI site (5'-CATATG) that includes the *tipA* translational start codon (ATG), allowing the synthesis of native proteins. Transcriptional terminators occur just upstream from P_{tipA} and immediately downstream from the MCS. To demonstrate the utility of pIJ6021, two streptomycete genes and a growth hormone-encoding gene from flounder (*Paralichthys olivaceus*) were cloned in the vector and expressed in *S. lividans* or *S. coelicolor* A3(2). A derivative of pIJ6021, pIJ4123, has a unique NdeI site positioned downstream from a nucleotide sequence that encodes a His$_6$ sequence and thrombin cleavage site. pIJ4123 can be used to produce His$_6$-tagged fusion proteins that can be readily purified by Ni$^{2+}$-affinity chromatography; if necessary, the His$_6$ tag can be removed by digestion with thrombin. The vectors contain a kanamycin-resistance-encoding gene for the selection of transformants.

INTRODUCTION

Attempts to over-produce native and heterologous proteins in streptomycetes have relied largely on the use of hcn vectors with strong, constitutively expressed prom- moters (for reviews, see Engels and Koller, 1992; Anné and Van Mellaert, 1993; Molnár, 1994). For proteins that may be deleterious to cell growth, or where there may be a need to control the expression of a cloned gene for experimental purposes, a regulatable system is desirable. Transcription of the chromosomal *tipA* gene of *Streptomyces lividans* 66 (John Innes Centre strain 1326) is apparently induced at least 200-fold by low levels of the antibiotic thiostrepton (Th; Murakami et al., 1989); when cloned on a mcn plasmid in *S. ambofaciens*, transcription from the *tipA* promoter (P_{tipA}) appeared to be induced at least 60-fold upon addition of Th (Kuhstoss and Rao, 1991). *tipA* was cloned and characterised (Murakami et al., 1989) and the regulation of P_{tipA} studied in detail (Holmes et al., 1993). P_{tipA} has been used to regulate gene expression in integrative vectors (Smokvina et al., 1990), and in mcn and hcn plasmids (Murakami et al., 1989; Kuhstoss and Rao, 1991; Holt et al., 1992). Here, we describe the construction of two hcn, P_{tipA}-based vectors (pIJ6021) was constructed that contains a thiostrepton-inducible promoter, P_{tipA}, from *Streptomyces lividans* 66. The promoter and ribosome-binding site of *tipA* lie immediately upstream from a multiple cloning site (MCS) which begins with a NdeI site (5'-CATATG) that includes the *tipA* translational start codon (ATG), allowing the synthesis of native proteins. Transcriptional terminators occur just upstream from P_{tipA} and immediately downstream from the MCS. To demonstrate the utility of pIJ6021, two streptomycete genes and a growth hormone-encoding gene from flounder (*Paralichthys olivaceus*) were cloned in the vector and expressed in *S. lividans* or *S. coelicolor* A3(2). A derivative of pIJ6021, pIJ4123, has a unique NdeI site positioned downstream from a nucleotide sequence that encodes a His$_6$ sequence and thrombin cleavage site. pIJ4123 can be used to produce His$_6$-tagged fusion proteins that can be readily purified by Ni$^{2+}$-affinity chromatography; if necessary, the His$_6$ tag can be removed by digestion with thrombin. The vectors contain a kanamycin-resistance-encoding gene for the selection of transformants.
vectors, pIJ6021 and pIJ4123. pIJ4123 can be used to produce His-tagged fusion proteins that can be readily purified by Ni\(^{2+}\)-affinity chromatography (Hoffmann and Roeder, 1991, and references therein). To demonstrate the utility of pIJ6021, two streptomycete genes and a growth hormone gene from the flatfish Paralichthys olivaceus (commonly known as flounder) were expressed in *S. lividans* or *S. coelicolor* A3(2).

EXPERIMENTAL AND DISCUSSION

(a) Construction of pIJ6021

A 115-bp synthetic *p*tipA fragment (corresponding to nt 4–119 of the published *tipA* sequence; Holmes et al., 1993) was made that contained a *NdeI* site (5’-CATATG) overlapping the *tipA* translational start codon (ATG). This fragment was inserted into a derivative of the hcn plasmid pIJ487 (50–100 copies per chromosome; T. Kieser, personal communication; Ward et al., 1986) to give pIJ6021 (Fig. 1). pIJ6021 contains a MCS to facilitate fragment insertion. The *t*~G~ transcriptional terminator of *oop* RNA from phage λ (Hayes and Szybalski, 1973; Zukowski and Miller, 1986) occurs upstream from *p*tipA to prevent transcriptional read-through from the vector and to maximise the induction ratio upon addition of Th. A transcriptional terminator from phage fd (*tfd*; Gentz et al., 1981; Ward et al., 1986) is located downstream from the MCS to prevent potentially deleterious transcription of vector sequences from *p*tipA. A Km\(^{R}\) gene (*kan*) from *Micromonospora echinospora* (C. Nojiri, personal communication) allows selection of transformants, and the Th\(^{R}\) gene (*tsr*) from *S. azureus* provides resistance to Th upon induction of *p*tipA with the antibiotic. To assess the utility of pIJ6021, three functionally diverse genes were inserted in the vector, and their expression levels assessed before and after induction of *p*tipA with Th.

(b) Application of pIJ6021

The *tcmK* gene of *S. glaucescens* GLA.0 encodes a 45-kDa β-keto acyl synthase that plays an early role in the synthesis of the polyketide antibiotic tetacenomycin C (ORF1 of Bibb et al., 1989; Gramajo et al., 1991). A 1.7-kb *NdeI-tcmK-HindIII* fragment, with the *NdeI* site overlapping the start codon of *tcmK*, was inserted between the *NdeI* and *HindIII* sites of pIJ6021 to give pIJ6024. Coomassie blue staining following SDS-PAGE revealed a protein of approx. 50 kDa (TcmK migrates more slowly then expected upon SDS-PAGE; Gramajo et al., 1991) in induced *S. lividans* 1326[pIJ6024] that was not apparent in uninduced cultures (Fig. 2A, upper panel). Western analysis using Ab raised to a synthetic oligopeptide corresponding to an internal segment of TcmK (Gramajo et al., 1991) confirmed that the 50-kDa protein was TcmK (Fig. 2A, lower panel), and also revealed lower amounts of the protein in uninduced *S. lividans* 1326[pIJ6024]; a corresponding band was not detected in *S. lividans* 1326[pIJ6021] grown with and without Th (Fig. 2A, lower panel).

Mature FGH is a 20-kDa protein derived from the primary translation product by removal of a 17-aa signal peptide that is normally required for secretion (Watahiki et al., 1989). The PCR (Erlich, 1989) was used to place a *NdeI* site at the beginning of the coding region of the mature FGH and a *BamHI* site just beyond the 3’ end of the coding region. At the same time, codons 2 and 4 of the truncated *fgh* were changed so that the first 12 codons corresponded to synonymous codons that are used most frequently in streptomycete genes (Wright and Bibb, 1992) (expression of high-G+C streptomycete genes in *Escherichia coli* was enhanced by changing the first few N-terminal codons to the synonyms most frequently used in highly expressed *E. coli* genes; Gramajo et al., 1991; Angell et al., 1992). The 550-bp *NdeI-fgh-BamHI* fragment was inserted in pIJ6021 that had been cleaved with *NdeI+BamHI* to give pIJ6018. Coomassie blue staining following SDS-PAGE failed to reveal a protein of the expected size that was present only in induced cultures of *S. lividans* 1326[pIJ6018] (Fig. 2B, upper panel; the identity of the 27-kDa protein apparent only in these extracts is not known). However, Western analysis using Ab raised to FGH identified a protein of approx. 20 kDa that co-migrated with FGH and that was absent from uninduced cultures of *S. lividans* 1326[pIJ6018], and from extracts of *S. lividans* 1326[pIJ6021] grown with and without Th (Fig. 2B, lower panel).

redD is the putative pathway-specific activator gene for the undecylprodigiosin biosynthetic pathway of *S. coelicolor* (Narva and Feitelson, 1990; Takano et al., 1992). pIJ6021 was cleaved with *NdeI*, 5′ extensions were filled in with PolIk, and the DNA was cut with *BamHI*. The vector fragment was ligated with a 1.44-kb blunt-*redD-BamHI* fragment to give pIJ4123 (Fig. 1), in which the ATG start codon of an N-terminally extended *redD* ORF was positioned just downstream from the *tipA* RBS. Coomassie blue-staining following SDS-PAGE of the soluble fraction and pellet obtained after sonication of *S. coelicolor* JF1[pIJ4123] that had been induced with Th, and of total protein extracts of the same culture, revealed a protein of approx. 32 kDa that was absent from extracts of uninduced cultures (Fig. 2C, upper panel). Western analysis using Ab raised to RedD (J.W., unpublished results) confirmed that the 32-kDa protein was RedD (Fig. 2C, lower panel); no such signal was detected in extracts of *S. coelicolor* JF1[pIJ4123] grown without Th. A significant proportion of the RedD protein made in induced cultures appeared to be insoluble (Fig. 2C, upper panel, lanes S and P).
Fig. 1. Restriction maps of plasmids plJ6021 and plJ4123. Open circles indicate unique cloning sites present in the MCS; closed circles indicate that additional unmarked sites occur in the vectors; redD of plJ4123 contains unmarked ClaI and PvuII sites (one of each). The filled arrowhead indicates the direction of transcription from p,pA. The tipA RBS and ATG start codon are underlined, and the open arrowhead indicates the site of cleavage by thrombin. The vectors were constructed using standard cloning procedures (Hopwood et al., 1985; Sambrook et al., 1989). Details of their constructions are available from the authors on request.

(c) plJ4123 as a vector for the production of His₆-tagged proteins

The RedD protein produced from plJ4123 has an N-terminal extension derived from the 65-bp NcoI-NdeI segment of pET15b (Novagen, Madison, WI, USA). The presence of a His₆ tag within this extension greatly aided the subsequent purification of the RedD fusion protein by Ni²⁺-affinity chromatography (J.W., unpublished results). To take advantage of this facility, plJ4123 can be cleaved with NdeI, or NdeI plus either BamHI or EcoRI, to generate a linearised replicon containing p,pA upstream from the sequence encoding the His₆ tag, which terminates at the unique NdeI site. A gene of interest with a NdeI site positioned to allow the production of a His-tagged fusion protein can then be inserted into the replicon, and the fusion protein readily purified by Ni²⁺-affinity chromatography. Transformants of S. lividans or S. coelicolor containing uncut or religated vector produce enough RedD even in the absence of Th induction to yield intensely red colonies, providing a facile visual screen for recombinant clones.

(d) Concluding remarks

PlJ6021 has proved effective in expressing three functionally diverse genes in S. lividans or S. coelicolor: a eukaryotic growth hormone (fgh), a putative transcriptional activator (redD) and a membrane-associated β-keto acyl synthase (tcmK). It has also been used to express the whiB (E. Vigenboom, personal communication) and actII-ORF4 (F. Malpartida, personal communication) genes of S. coelicolor in S. lividans. While the level of fgh expression was too low for detection by Coomassie blue staining, TcmK and RedD appeared to be made at levels of a few percent of total cell protein. Unlike TcmK, FGH and RedD were not detected by Western analysis prior to induction of p,pA with Th. The inability to detect basal levels of fgh and redD expression might reflect the rapid
was induced after 12 h by addition of Th to a final concentration of 5 μg/ml. After a further 12 h of incubation, the cells were harvested by centrifugation.

et al., 1985) or

and samples of the soluble fraction and pellet boiled with equal volumes of 2 × loading buffer. Samples were fractionated by 0.1% SDS/12-14% (w/v) glycerol/5% (v/v) 2-mercaptoethanol/0.1% (w/v) bromophenol blue). For analysis of

purification and confirmation of the required construct by restriction analysis, derivatives were grown in 10 ml of YEME (Hopwood et al., 1985) containing 5 μg Km/ml in Universal (40 ml capacity) containers containing small stainless steel springs at 300 rpm at 30°C; transcription from Plpa

purging and confirmation of the required construct by restriction analysis, derivatives were grown in 10 ml of YEME (Hopwood et al., 1985) containing 5 μg Km/ml in Universal (40 ml capacity) containers containing small stainless steel springs at 300 rpm at 30°C; transcription from Ptlpa

expression, mycelium was also disrupted by sonication,

expression, samples of the mycelium were boiled in loading buffer (62.5 mM Tris-HCl pH 6.8/2% (w/v) SDS/10% (v/v) glycerol/0.1% (v/v) bromophenol blue). For analysis of redD expression, mycelium was also disrupted by sonication, and samples of the soluble fraction and pellet boiled with equal volumes of 2 x loading buffer. Samples were fractionated by 0.1% SDS/12-14% (w/v) PAGE and protein bands visualised with Coomassie blue stain. Duplicate sets of samples were run on identical gels, transferred to nitrocellulose filters, and probed with 1:1000 dilutions of Ab raised in rabbits against FGH or a synthetic oligopeptide corresponding to TcmK (Gramajo et al., 1991), or with a 1:1000 dilution of Ab raised in a rat against RedD (J.W., unpublished data), as described by Burnette (1991). A goat anti-rabbit immunoglobulin G-alkaline phosphatase conjugate (Bethesda Research Laboratories) was used as the second Ab. The top panels show the Coomassie-blue-stained gels, and the lower panels show the results of the Western analyses. The nature of the cross-reacting proteins of approx. 50 kDa observed in the lower panels of B and C is not known.

Fig. 2. Expression of native and foreign genes in plJ6021. SM, size markers; U, uninduced; I, induced; TP, total protein; S, soluble fraction obtained after sonication; P, pellet obtained after sonication; FGH, 0.1 μg of purified FGH. (A) Expression of tcmK in plJ6021. The 1.7-kb NdeI-HindIII fragment of plJ2232 that contains tcmK (Gramajo et al., 1991) was ligated with the 6-kb NdeI-XhoI and 1.8-kb XhoI-HindIII fragments of plJ6021 to give plJ6024 (the adjacent locations of the NdeI and HindIII sites of plJ6021 appeared to prevent digestion by both enzymes, precluding simple insertion of the tcmK fragment in NdeI+ HindIII-digested plJ6021). (B) Expression of fgh in plJ6021. 20 pmol of the 5' primer 5'-CATGGATCCCATATGCAGCCGATCACCGAGAACCAGCGCCTGTTGTCC and of the 3' primer 5'-CATGGATCCGGTACTTCTTG-GCGGGACAGG, and 10 ng of a pBluescript KS(+) (Stratagene, La Jolla, CA, USA) derivative containing fgh were subjected to 35 cycles of the PCR (95°C for 30 s, 52°C for 30 s and 72°C for 1 min) in the presence of 10 mM Tris.HCl pH 8.3/2.5 mM MgCl2/50 mM KCl/5% (v/v) glycerol/0.1% (v/v) gelatin/200 μM of each dNTP/2.5 units of Taq polymerase (Boehringer-Mannheim). The amplified fragment was gel-purified, cleaved with BamHI, and inserted in the BamHI site of plJ2925 (Janssen and Bibb, 1993) to give plJ6107; the sequence of the modified fgh was confirmed by double-strand sequencing using the Promega TaqTrack Sequencing System. plJ6107 was digested with NdeI + BamHI, the 550-bp fragment containing the modified fgh gel-purified and inserted in NdeI + BamHI-digested plJ6021 to give plJ6018. (C) Expression of redD in plJ6021. Synthetic oligodeoxynucleotides, extending from the start codon of redD to a CiaI site located 27 nt into the redD coding sequence (Takano et al., 1992), were used to create a NdeI site overlapping the redD start codon. A 1.38-kb NdeI-redD-BamHI fragment was inserted in NdeI- and BamHI-cleaved plE15b (Novagen) to give plJ4116, which has a unique Ncol site located 59-bp upstream from the NdeI site. plJ4116 was digested with Ncol, 5' extensions filled in with Pollk, and the DNA cut with BamHI to release a 1.44-kb blunt-NdeI-redD-BamHI fragment. plJ6021 was cleaved with NdeI, 5' extensions filled in with Pollk, the DNA cut with BamHI and ligated with the 1.44-kb fragment containing redD to give plJ4123. S. lividans 1326 (Hopwood et al., 1985) or S. coelicolor strain JF1 (argA1, guaA1, redD42, actlI-177, SCP1+, SCP2+; Feitelson and Hopwood, 1983) derivatives containing plJ6021, plJ6018, plJ6024 or plJ4123 were selected by flooding transformation plates with 1 ml of water containing 2 mg Km. After single colony
degradation of their fusion transcripts or protein products, or differences in the avidity of their cognate Ab. Although Western analysis failed to detect RedD in extracts of uninduced S. coelicolor A3(2) JF1 [pIJ4123], the cultures produced large quantities of undecylprodigiosin, indicating that some RedD protein was made. Thus, genes cloned in these vectors appear to be expressed at basal levels even in the absence of Th induction. This may reflect transcription initiating at \(p_{\text{PA}} \) or elsewhere in the vector that is not completely terminated at \(t_a \).

Induction of \(p_{\text{PA}} \) requires \(tipA \) both in vitro (Holmes et al., 1993) and in vivo (T. Katoh and C.J.T., unpublished data). While \(tipA \) homologues apparently occur in many Streptomyces species, including the S. lividans and S. coelicolor strains used here, they are not present in all (E.T., unpublished data). Thus, to use these vectors in strains that lack \(tipA \), the gene must be provided either by insertion in pIJ6021 or pIJ4123, or by introduction on a separate vector.

ACKNOWLEDGEMENTS

We thank Nippon Oil Company Ltd. for \(fgh \), FGH and Ab to FGH, and for providing financial support to E.T., C. Nojiri for the \(kan \) gene from M. echinospora, and Mark Buttner, Keith Chater, David Hopwood and Gilles van Wezel for their comments on the manuscript. This work was supported in part by a grant-in-aid from the European Union.

REFERENCES

Janssen, G.R. and Bibb, M.J.: Derivatives of pUC18 that have \(BglII \) sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene 124 (1993) 133–134.

