Purification and Properties of a Prokaryote Type Glutamine Synthetase from the Bialaphos Producer Streptomyces hygroscopicus SF1293
Kumada, Yoichi; Takano, Eriko; Nagaoka, Kozo

Published in:
Journal of Fermentation and Bioengineering

DOI:
10.1016/0922-338X(90)90032-R

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1990

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Purification and Properties of a Prokaryote Type Glutamine Synthetase from the Bialaphos Producer *Streptomyces hygroscopicus* SF1293

YOICHI KUMADA,* ERIKO TAKANO, AND KOZO NAGAOKA

Pharmaceutical Research Center, Meiji Seika Kaisha Ltd., Morookacho, Kohoku-ku, Yokohama 222, Japan

Received 6 November 1989/Accepted 25 April 1990

A prokaryote type glutamine synthetase (GS) was purified from a bialaphos (BA)-producing organism, *Streptomyces hygroscopicus* SF1293 (SF1293). The GS (GS I) consisted of a 55,000 dalton subunit, and its N-terminal amino acid sequence was similar to that of *S. coelicolor* GS. GS I was highly sensitive to GS inhibitor phosphinothricin (PPT). An increase of GS activity was observed accompanied by BA accumulation.

GS (EC 6.3.1.2) catalysing the conversion of 1-glutamic acid to 1-glutamine in the presence of ammonia and ATP is essential for the biosynthesis of glutamine. SF1293 produces a herbicide BA (1, 2) and its structural component PPT is a strong GS inhibitor (3). Though SF1293 has a PPT detoxicating enzyme PAT (PPT acetyltransferase (4, 5) which acetylates the amino group of PPT, the organism is always exposed to PPT during BA production.

Considering the above, we have been interested in the change of GS activity during BA production. We also find the properties of SF1293 GS of interest because we have obtained the result that SF1293 has a gene (gin II) encoding a GS which resembles a eukaryote type enzyme GS II (6) with respect to its molecular weight and amino acid sequence.

The BA producer, SF1293, was obtained from the Meiji Seika Culture Collection. The cultivation conditions for BA production were as follows. The strain was precultured in 10ml of SI medium (5, 7) at 28°C for 1 d, and 1 ml of the seed culture was transferred to 30 ml of the production medium (5, 7). The temperature and agitation speed were 30°C and 220 rpm (rotary shaker), respectively.

Preparation of cell-free extracts was carried out as follows. Forty-grams of wet mycelium (100ml culture broth) was suspended in 65 ml of cold Buffer I (20 mM Imidazole, 1 mM MnC12, pH 7.5), and disrupted by sonication on ice. The cell debris was removed by centrifugation (17,000 × g, for 15 min, at 4°C), and the supernatant was dialyzed against the cold Buffer I.

Formation of γ-glutamylhydroxamate from glutamate, hydroxylamine and ATP was assayed at 37°C, pH 7.55 to estimate GS activity, as described by Bender et al. (8). One unit of the enzyme was defined as the amount producing 1 μmol of γ-glutamylhydroxamate per min.

Preparation of cell-free extracts was carried out as follows. Forty-grams of wet mycelium (100ml culture broth) was suspended in 65 ml of cold Buffer I (20 mM Imidazole, 1 mM MnCl2, pH 7.5), and disrupted by sonication on ice. The cell debris was removed by centrifugation (17,000 × g, for 15 min, at 4°C), and the supernatant was dialyzed against the cold Buffer I.

Preparation of cell-free extracts was carried out as follows. Forty-grams of wet mycelium (100ml culture broth) was suspended in 65 ml of cold Buffer I (20 mM Imidazole, 1 mM MnCl2, pH 7.5), and disrupted by sonication on ice. The cell debris was removed by centrifugation (17,000 × g, for 15 min, at 4°C), and the supernatant was dialyzed against the cold Buffer I.

Formation of γ-glutamylhydroxamate from glutamate, hydroxylamine and ATP was assayed at 37°C, pH 7.55 to estimate GS activity, as described by Bender et al. (8). One unit of the enzyme was defined as the amount producing 1 μmol of γ-glutamylhydroxamate per min.

Quantitative analysis of BA in culture was carried out according to the method of Seto et al. (9) with the following modifications. Samples were denatured in boiling water for 5 min in the presence of 1% SDS and 10% 2-mercaptoethanol before loading onto a 12% polyacrylamide gel. SDS-PAGE Standard Low (Bio-Rad) was used as protein size markers.

Purification of GS (I) was carried out by the method of Paress and Streicher (11) with modifications. Blue-Sepharose CL-6B (Pharmacia) was added into the cell-free extracts (12 units/mg protein) prepared from 500 ml of culture broth. The suspension was packed in a glass column after stirring overnight at 4°C. The column was washed with Buffer II (Buffer I + 1 M NaCl). GS (I) was adsorbed to Blue-Sepharose CL-6B under this condition. GS (I) was eluted with Buffer I containing 5 mM-ADP. Twenty ml of the active fractions (210 unit/mg protein; 17.5 fold, yield 10%) were collected. The enzyme solution was charged to a reverse phase HPLC column. A gradient of 0 to 100% CH3CN was used to elute GS. Five ml of GS (I)-rich fraction was collected. Two mg of GS (I) was obtained. The purity of GS (I) was analysed by SDS gel electrophoresis, as shown in Fig. 1. Over 95% purity was obtained.

SDS-polyacrylamide gel electrophoresis was carried out according to the method of Laemmli (10) with the following modifications. Samples were denatured in boiling water for 5 min in the presence of 1% SDS and 10% 2-mercaptoethanol before loading onto a 12% polyacrylamide gel. SDS-PAGE Standard Low (Bio-Rad) was used as protein size markers.

Purification of GS (I) was carried out by the method of Paress and Streicher (11) with modifications. Blue-Sepharose CL-6B (Pharmacia) was added into the cell-free extracts (12 units/mg protein) prepared from 500 ml of culture broth. The suspension was packed in a glass column after stirring overnight at 4°C. The column was washed with Buffer II (Buffer I + 1 M NaCl). GS (I) was adsorbed to Blue-Sepharose CL-6B under this condition. GS (I) was eluted with Buffer I containing 5 mM-ADP. Twenty ml of the active fractions (210 unit/mg protein; 17.5 fold, yield 10%) were collected. The enzyme solution was charged to a reverse phase HPLC column. A gradient of 0 to 100% CH3CN was used to elute GS. Five ml of GS (I)-rich fraction was collected. Two mg of GS (I) was obtained. The purity of GS (I) was analysed by SDS gel electrophoresis, as shown in Fig. 1. Over 95% purity was obtained.

SDS-polyacrylamide gel electrophoresis was carried out according to the method of Laemmli (10) with the following modifications. Samples were denatured in boiling water for 5 min in the presence of 1% SDS and 10% 2-mercaptoethanol before loading onto a 12% polyacrylamide gel. SDS-PAGE Standard Low (Bio-Rad) was used as protein size markers.

Purification of GS (I) was carried out by the method of Paress and Streicher (11) with modifications. Blue-Sepharose CL-6B (Pharmacia) was added into the cell-free extracts (12 units/mg protein) prepared from 500 ml of culture broth. The suspension was packed in a glass column after stirring overnight at 4°C. The column was washed with Buffer II (Buffer I + 1 M NaCl). GS (I) was adsorbed to Blue-Sepharose CL-6B under this condition. GS (I) was eluted with Buffer I containing 5 mM-ADP. Twenty ml of the active fractions (210 unit/mg protein; 17.5 fold, yield 10%) were collected. The enzyme solution was charged to a reverse phase HPLC column. A gradient of 0 to 100% CH3CN was used to elute GS. Five ml of GS (I)-rich fraction was collected. Two mg of GS (I) was obtained. The purity of GS (I) was analysed by SDS gel electrophoresis, as shown in Fig. 1. Over 95% purity was obtained.

FIG. 1. SDS gel electrophoresis of GS I. The purity of GS I in each step of the purification was monitored by SDS gel electrophoresis. Lane 1, After the 2nd step (reverse-phase chromatography). Lane 2, After the 1st step (Blue-Sepharose CL-6B). Lane 3, Before purification (Cell-free extract). Lane 4, Standard proteins low (Bio-Rad).
judging from the data of the subunit molecular weight and S. hygroscopicus increase of GS activity in the cell-free extracts of SF1293.

Table 1 shows N-terminal amino acid sequences of GS (I) free extract, respectively.

![Graph showing change of GS activity during BA production. Symbols: (●) and (×) show the GS activity (unit/mg protein) and BA production (% of the maximum concentration in the medium) in the cell-free extract, respectively.](image)

SDS gel electrophoresis (Fig. 1) indicates that GS (I) consists of a 55 kilo dalton subunit as S. coelicolor GS (12). Table 1 shows N-terminal amino acid sequences of GS (I) and S. coelicolor GS. Both were the same except for the 7th and the 8th amino acids. GS (I) was sensitive to GS inhibitor PPT, i.e. 50% inhibition concentration of PPT was under 5 μM (data not shown). As shown in Fig. 2, the increase of GS activity in the cellfree extracts of SF1293 was accompanied by BA accumulation.

GS I may be a prokaryote type GS as S. coelicolor GS, judging from the data of the subunit molecular weight and its N-terminal amino acid sequence. This shows that S. hygroscopicus contains genes encoding at least two distinct GS isoforms, i.e. one is a prokaryote type GS I and another is a eukaryote type GS II.

Increase of GS activity during cultivation has not been observed in the case of E. coli (13) and Streptomyces cattleya (14). Though GS I was very sensitive to PPT, overproduction of GS I may play a role in a self resistance mechanism to PPT or BA. In fact, it has already been reported that high GS activity offered the host organism resistance to BA or PPT (15, 16).

Though GS II was overproduced in the transformants of S. lividans and SF1293 harboring gln II plasmid (6), we could not purify GS II from SF1293. The expression of GS II in SF1293 is not yet clear.

We thank Dr. Susan Fisher for providing us with unpublished information, and Dr. Osamu Makabe in our laboratory for critical reading of this manuscript.

REFERENCES