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Separability versus Prototypicality in Handwritten
Word-image Retrieval

Jean-Paul van Oosten , Lambert Schomaker

Dept. of Arti cial Intelligence, University of Groningen, The Netherlands

Abstract

Hit lists are at the core of retrieval systems. The top ranks are important,
especially if user feedback is used to train the system. Analysis of hit lists
revealed counter-intuitive instances in the top ranks for good classi ers. In
this study, we propose that two functions need to be optimised: (a) In order
to reduce a massive set of instances to a likely subset among ten thousand or
more classes, separability is required. However, the results need to be intuitive
after ranking, re ecting (b) the prototypicality of instances. By optimising
these requirements sequentially, the number of distracting images is strongly
reduced, followed by nearest-centroid based instance ranking that retains an
intuitive (low-edit distance) ranking. We show that in handwritten word-image
retrieval, precision improvements of up to 35 percentage points can be achieved,
yielding up to 100% top hit precision and 99% top-7 precision in data sets with
84000 instances, while maintaining high recall performances. The method is
conveniently implemented in a massive scale, continuously trainable retrieval
engine, Monk.

Keywords: image retrieval, handwriting recognition, nearest centroid,
support-vector machines, separability, prototypicality, historical manuscripts,
big data, continuous machine learning

1. Introduction

In handwriting recognition, classi cation is often performed using statistical
methods [1, 2]. The class indexed i with the highest posterior probability given
the sample to be classi ed is chosen as the result of the classi er:

Hypothesisy, ~ argmaxP C;j X  where i 1; Nciasses 1)
1

However, when the goal is word search, rather than automatic text tran-
scription, the user is more interested in retrieval of word instances. Instead of
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Figure 1: First 25 instances in a hit list of the word ‘Zwolle’. Original test set
performance: Accuracy: 99.2%, precision: 97.6% and recall: 97.6%. Note the
faulty instances in the top ranks, upper row. In a realistic test condition with
12k distractors, actual precision is as low as 2.8%.

a single classi cation, the result is a sorted hit list H. Each instance indexed
j is ranked with respect to the prototype or class-model corresponding to the
search term:

where j

H S(}I’t P X;C 1; Nexamples @)

Retrieval is usually performed on a large collection of instances, and only
the top of the sorted list, representing the best ranking instances, is considered
as interesting. Under such a condition, a large number of classes and a massive
data collection can pose a problem, since for each query there is a large number
of distractors, i.e., concerning instances from all classes, other than the target
class.

This becomes apparent in retrieval engines for handwritten words in his-
torical collections [3]. In the Monk system, twenty books of 1000 pages each
contain millions of word zones or word candidates, and the lexicon is in the
order of tens of thousand word class models. From the tradition of handwriting-
recognition research, it seems reasonable to start with the classi cation prob-
lem (Eqg. 1), using good shape features and a powerful classi er, such as, e.g.,
hidden-Markov models [4, 5] or the support-vector machine [6, 7]. For a word-
mining task, such a classi er may be trained to discriminate a particular word
class, and a ranked word list may be constructed, e.g., using the signed SVM
discriminant value dsy \y for sorting. The basic assumption then is, that the
distance from the margin, i.e., from the instances in the distractor classes, will
be a good criterion for constructing a ranked hit list for a target class. However,
upon applying this approach, we observed an interesting phenomenon in the re-
sulting hit lists. As an example, Figure 1 shows the top-25 instances in a hit
list for the word ‘Zwolle’. The performance for the word classi er on the entire
training set was 100% accuracy, with a 97% accuracy on an independent test



set (k 7 folds, 1%). Following regular testing procedures for SVMs,
the training and the test sets were of similar size, each containing a quarter
of positive examples (typically 50) and three quarters of negative or distractor
examples. However, the resulting hit list contains a number of counter-intuitive
samples (e.g., speckle images) in the early ranks, followed by a strand of correct
classi cations which is followed by a transitional stage of occasional errors.

The impression that a problem exists is con rmed by a larger-scale analysis
of the results (Table 1), also using a realistic large set containing 12 108
distracting word instances in the test set. The results for accuracy and recall
on the realistic data set con rm the hopeful expectancies which were raised by
the regular training and test sets. However, the precision of the output drops
abysmally, to about 1% in the worst cases, notably for the classes with a limited
number of training examples (Table 1, lower right). It should also be noted that
a number of 12K distractors (1/1200) is much more realistic than a 1/4 rule
which is commonly accepted in academic testing.

It is clear that something is needed to improve on the performance. User ap-
preciation of hit lists is of paramount importance in live and continuously train-
able systems that rely on user annotation over the internet, such as Monk[3, 8].
Figure 2 shows how hit lists are used in the Monk system. Upon giving the rst
handful of (bootstrap) examples, a usable machine-learning system should be
able to produce an acceptable ranking such that newly found instances of the
same class can be easily labelled. The above, concrete observation thus gives
rise to a more fundamental question: How is it possible that accuracy is not a
good predictor of precision in a retrieval context?

In this study, we will 1) analyse the reason for unexpected, low precision in

Figure 2: Schematic overview of how users utilise the hit lists to label new word
images in a continuously learning retrieval engine (Monk). A hit list is presented
to the user, who produces a label for an unlabelled word. This label is stored
in the label store, which is then processed by the retrieval engine to produce a
new hit list. The interface facilitates the quick labelling of a large number of
instances that match the query word.



Table 1: Counter-intuitive, low precision results for good classi ers

Accuracy Recall Precision
Set | Nexamples | Mean | Mean | Mean |
Test 120+ 0.98 0.02 | 0.97 0.05 | 0.96 0.07
60-120 0.97 0.03 | 0.95 0.10 | 0.91 0.13
35-60 0.97 0.04 | 0.93 0.15 | 0.85 0.19
7-35 0.96 0.04 | 0.68 0.42 | 0.57 0.40
+12K Distractors | 120+ 0.99 0.01 | 0.97 0.05 | 0.26 0.26
60-120 0.98 0.02 | 0.95 0.10 | 0.06 0.12
35-60 0.97 0.02 | 0.93 0.15 | 0.03 0.06
7-35 0.97 0.04 | 0.68 0.42 | 0.01 0.05

presumably well-performing classi ers; 2) explore a number of methods to coun-
teract the precision drop and 3) present a convenient approach using nearest-
centroid matching, with results in a similar ballpark as the abovementioned
SVM approach, at the same time however, avoiding expensive training on the
tens of thousands of word classes.

2. Separability versus Prototypicality

Problem: The SVM is a discriminative classi er, optimised for classi cation
(Eq. 1). The class of an unknown sample X (Figure 3) is decided by determining
on which side of the decision boundary the sample falls. For retrieval purposes,
it appears reasonable to use the distance to the boundary, d X; , as a ranking
measure: the farther the instance is located from the boundary, the more certain
an SVM classi er is of the classi cation.

Unfortunately, this gives unexpected results, such as shown in Figure 1 for
the query word ‘Zwolle’. Instances that are ranked at the top (@speckles)
appear to be counter intuitive to a human user. It seems that there are two
problems: 1) the distance to the boundary is not an intuitive measure, and 2)
a fairly large number of distractors causes noise in a hit list, and consequently,
a lower precision. The implication is that enlarging the dataset increases the
probability that incorrect instances occur even before the rst correct hit. This
has a large impact on the user appreciation and is hard to explain. More in-
formally: Many hits do not appear similar to the user’s expected, canonical
prototype for the query.

Proposed explanation: In order to give a plausible explanation of this
phenomenon, we present a schematic, two-dimensional overview. The position
of an instance X in Figure 3 has a large distance d X; from the boundary
(which is desirable). However, the instance X is not very prototypical, being
located far from the known instances of the target class A. In other words, the
distance of the instance X to the prototype, or centroid of class A, d X; ), is
large.

The support-vector machine training mechanism has an emphasis on
separability: the ability to categorise and separate class instances from non-



Figure 3: Separability vs. Prototypicality: For an unknown instance X, a large
distance d X; from a margin  does not imply a short distance, d X; a
from the prototype a

class instances. This ability is usually achieved by evaluating the computed
signed distance of an unknown sample to the decision boundary d X;  which
indicates on which side the instance X falls. However, by focusing on separa-
tion, an important aspect of pattern recognition is neglected: The phenomenon
of prototypicality which concerns the similarity of an instance to the canonical
class prototype, for instance, measured as the distance to the centroid or pro-
totype of the class d X; A . Quantitatively, prototypicality can be de ned as
pdX; a andisalso the underlying rationale for Bayesian classi ers, exploit-
ing the high density of feature values around the mode of their distribution,
as opposed to the SVM. It is important to realise that the prototypicality of
instances directly a ects the ease with which new training examples can be
elicited from users in a continuously learning retrieval system. The degree of
prototypicality of the hit list directly a ects the gain factor in the feedback loop
of the label harvesting system that is presented in Figure 2.

For a search and annotation tool of handwritten historical documents, sep-
arability and prototypicality need to be optimised simultaneously. It can be



Figure 4: Schematic overview of the re-ranking process. The rst stage (S1)
shows that a word is classi ed rst, and gathered together with other instances
that have been classi ed the same. These instances are then ranked (S2), ac-
cording to their prototypicality, to produce a ranked hit list.

argued that similar requirements play a role in general content-based image re-
trieval, too [9, 10]. However, most classi er methods optimise for one property,
not both. The solution proposed in this study, is to combine classi ers in a two-
stage process. The classi er that optimises separability is used in the rst stage
to divide the instances and produce the most likely class C for an unlabelled
instance. The goal is to reduce the number of distractors for the second stage.
More speci cally, the set of distractors of an instance classi ed as C will be a
considerable reduction of the set of all instances.

All instances labelled as C are then gathered for the second stage, where
all instances are re-ranked or re-sorted with a secondary feature or method,
one that optimises the ability to rank instances according to prototypicality.
This ensures that if an instance is classi ed as class C in the rst stage, but is
an atypical result (such as the rst few results in Figure 1, i.e., the speckles),
the instance will end up at a later position in the hit list than other, more
prototypical examples. Similar problems will occur if reject criteria need to be
de ned while using the SVM [11], or when there are very few negative examples
to train from | for example, in a machine diagnostics problem[12]. For a
schematic overview of the entire re-ranking process, see Figure 4.

The results from the SVM experiment in the introduction suggest that a
larger number of distractors has a negative e ect on retrieval precision. It
should be noted that the experiments in this study are conducted in a labora-
tory setting, using only human labelled instances. In a real-world setting, the
problem of distractors will even be worse: the problem space is then heavily
populated with non-word images and other noise. For example, in Monk, over
all collections there are 22 10° classes, with over 124 10° word images, in-
cluding rejectable candidates and noise. These numbers indicate the massive
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Figure 5: Probability of nding the rst correct hit in ranks 0 to r for raw and
ranked SVM output (Nfoigs 7). The bars give the standard deviation, which
are only clearly visible on the SVM, sorted by dsym results. Note the strong
improvement due to secondary ranking for all ranks but especially for the top
hit accuracy at r 0. Feature 2 outperforms Feature 1 signi cantly. The circle
is used as a reference point in the text.

size of the current experimental test bed. Instead of pre-cleaning the data, we
assume a rigorous, machine-learning approach where as much of the problems
are solved by the base classi er and not by the use of overly speci ¢ hand-coded
preprocessing heuristics. That means that problematic patterns have to be la-
belled as well. In Monk, there are several classes that are indicated by a label
starting with @, and can indicate whether this is, e.g., a table-line, speckles or
other noise.

3. Methods

Figure 5 shows the probability of nding the rst correct hit in the ranks 0
to r of the hit lists generated in the preliminary study from the introduction.
It is apparent that the probability of nding the rst correct hit in the rst

ve ranks is roughly 45% (indicated by the circle in Figure 5), when using the
SVM discriminant value for initial (tier 1) ranking. By reordering the images
using a di erent feature, the performance can be improved, such that the rst
correct hit is found in the rst ve ranks 80% of the time (Figure 5, upper left).



This is hopeful, but this is not enough and the hit list still contains counter
intuitive results in the top ranks. There are other ways of improving the tier-
1 performance. For example, multiclass SVMs, using decision trees [13], could
improve the classi cation accuracy before ranking, which seems to be bene cial,
but it has the downside of requiring a large number of training instances for
each of the more than 10* classes. Approaches like Gaussian mixture models
(GMMs) or hidden Markov models (HMMs) can also improve the classi cation
accuracy, but also require a large number of training examples. Bene ts such as
multi-peak distributions can be achieved with more simple techniques, such as
(k-means) clustering. The Monk system is a continuous, ‘24/7’ training system:
Labels are continuously added or changed, and it would be too time consuming
and require human monitoring to train and retrain SVM classi ers when the
system is updated. Nearest-centroid classi ers, on the contrary, can be easily
updated with new knowledge by just adding a new feature vector to the set of
training samples and averaging the samples to get the centroid. Rather than
constituting a simplistic old-fashioned method, nearest-neighbour approaches
are at the core of important advances in computational linguistics [14] and
image retrieval [15, 16]. The principle of central tendency leads to an intrinsic
settling of centroid models as more examples are added. In case of multimodal
distributions, occurring for example when there are multiple writing styles per
class, clustering can be used to represent the class variants, e.g., by the k-means
algorithm. Considering these multiple arguments, in this study, we will use a
nearest-centroid classi er for the classi cation stage, instead of SVMs.

The choice of word-based image retrieval instead of character-based ap-
proaches is based, rstly, on the observation that in some historical document
collections contractions and loops are used to suggest characters in order to
speed up writing (see the marked images in Figure 6). This makes creating a
mapping between letter identity and character shape non-trivial. Secondly, due
to the large variety of scripts and languages, most character-based approaches
would need to be ne-tuned for each script and language, leading to long projects
to process new collections (\each book its PhD project™). Our goal is to collect
huge numbers of labelled word images rst over several collections and histori-
cal periods in order to develop character-based classi ers at a later stage, when
necessary.

As discussed in the introduction, classi cation is performed by nding the
class with the highest probability given the data. Since nearest neighbour clas-
si ers are distance-based, the class with the highest probability is the class with
the smallest distance to the instance:

argmaxP C; X  argmind C; X 3)
i i

Similarly, retrieval is performed by ranking all instances based on their distance
to a class-model. Two features were experimentally chosen from a set of features
to be used in the experiments. The exact implementation of both features is
outside the scope of this article; di erent feature methods could be used instead
without changing the actual re-ranking process. The rst feature is based on the



Figure 6: This variety of styles and shapes in a realistic collection illustrates that
‘optical character recognition’ of handwriting, by some form of sliding window
over a word, is only applicable to a small subset. Many patterns are abbre-
viations, linguistic contractions or su er from deformed, ‘suggested’ characters
(marked with asterisks). In the absence of character models, the total-word
image on the contrary provides a rich and redundant pattern in all cases, and
can be labelled easily by volunteers.

biologically inspired features introduced in [3], and the second is a more simple
feature consisting of the normalised and scaled image. The dimensionality of
the former feature is 4358, while the scaled image has a size of 100 50, yielding
a comparable dimensionality of 5000. In both feature types, the feature vector
consists of probability values, adding up to one.

Two methods of retrieval will be compared: 1) direct retrieval: ranking,
in a single step, all instances from the test set with the distance of the image
to the centroid of the target class, and 2) the two stage re-ranking method as
described in the previous section: do recognition on all instances rst, then for
each class C rank its candidates. The re-ranking method can be done in four
ways using the two features: recognition with either feature and ranking with
either feature. All four combinations are used to study the e ect of using a
di erent, secondary feature in the re-rank phase.

There are a number of measures to be used for comparing recognition and



retrieval: (a) For recognition, we de ne top-1 recognition accuracy as: The
probability that the nearest-centroid is of the correct class. For retrieval, the
standard measures (b) precision and (c) recall will be considered, as well as (d)
the average edit distance in the top-7 of each hit list.

Accuracy (a) is de ned as the percentage correctly classi ed instances:

Accuracy Neorrect (4)
Ntotal
With Neorrect IS the total number of correctly classi ed instances (in the top-
1), and Notar is the total number of instances. We are interested in accuracy
because it can show which feature is a good choice for the rst stage: features
and methods with a high accuracy are well suited for classi cation.
Precision (b) is de ned as the proportion of correctly retrieved instances of
class C ina xed hit list H, with target size n, and can be computed with

. - Ncorrect
Precision in top-n min n: H (5)
where Neorrect 1S the number of instances with the correct label in the top-n
and H is the number of items in the hit list'. The minimum of n and H is
used because the hit list can be smaller than the target size of n items.
The recall measure (c) is de ned as the proportion of instances of class C
that can be found in the hit list; formally, it can be de ned as

N R
Recall for class ¢~ —°tained (6)

Ntargets

where Noptained i the number of instances retrieved with class C, and Nargets
is the total number of instances with class C in the given test set. The reported
precision and recall are accumulated over all classes as proportions.

The concept of prototypicality cannot be seen in isolation from the applica-
tion context. More speci cally, users of a retrieval engine for historical hand-
written words will have an evaluation of the quality of a hit list. In other words,
P X;j C must re ect an underlying measure of similarity. In information re-
trieval, relevance feedback is used to estimate user appreciation[17]. Relevance
feedback is outside the scope of this study, but to estimate the user appreciation,
we use average edit distance as the fourth performance measure. The assump-
tion is that if the text distance (in ‘ASCII") between the query and the actual
label of an instance is small, the hit list will be intuitive, meaning that it re ects
the users measure of similarity well. The speci ¢ edit distance implemented in
this study is the Levenshtein distance[18].

The data set is drawn from the historical document collection from the
Dutch Queen’s O ce (see also [3]), or \Kabinet der Koningin" (KdK). The

1According to the Wikipedia article on precision and recall (http://en.wikipedia.org/
wiki/Precision_and_recall, last accessed 23 January 2013), this is also called \precision at
n" or \P@n"
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Table 2: Top-1 accuracy (Nfoigs  7)

Feature Nexamples
7-35 35-60 60-120 120+
Mean | Mean | Mean | Mean |
fl 0.62 .02 0.93 .01 0.92 .01 0.94 .00
f2 0.62 .01 0.86 .01 0.87 .01 0.93 .00

complete data set has over 13 10° classes. However, in order to do a 7-fold
cross-validation experiment, only the 1404 classes with seven or more human
labelled word instances will be considered. These classes will be divided into
four categories, based on the number of instances: 7 up to 35 instances, 35 up to
60 instances, 60 up to 120 instances and 120 or more instances, similar to what
has been done in [3]. This division is useful to compare performances when there
are few labelled instances, a lot of labelled instances or in between. In total,
there are more than 84 102 instances used. The experiments are performed
on a cluster of eight Linux machines with 54 cores in total, connected to a 1.6
petabyte storage, of which the Monk system will use roughly 0.5 petabyte.

For each line strip, a number of word candidates are selected, based on
the number and size of connected components. This means that the line is
usually oversegmented, which leads to overlap between images. To avoid that
multiple image renderings belonging to the same word instance end up in both
the training and test set, the fold sets are compiled from exclusive page sets:
fold page number mod Nfogs , Nfolgs 7. This has the additional, realistic
bene t that trained words, which are written in a consistent style within one
page, but inconsistently over the entire collection will not end up in the test
set of a fold. Each fold holds 84288 instances, of which the test set will hold
1 7" 12041 instances on average.

4. Results

We look at two types of comparisons: between re-rank methods (choice of
features) and between average re-rank performance and direct retrieval (i.e.,
without re-ranking). Table 2 shows the top-1 recognition accuracy, averaged
over all seven folds for both features. Feature 1 (f1) outperforms the second
feature (f2), especially in the categories of 35-60 and 60-120 examples. Fur-
thermore, the table shows that to accurately classify an instance, the nearest-
centroid classi er needs around 35 training instances. Since feature 1 performs
better than feature 2, it seems to be the best candidate for the classi cation
step, as is con rmed below.

Figures 7a, 7b and 7c compare the average of the re-rank methods to the
direct retrieval methods. The bars on the averages show the minimum and max-
imum value of the re-rank methods. These results show the gain in performance
when using the re-ranking methods instead of direct retrieval. As was expected,
reducing the number of distractors has a positive impact on performance.

11



(a) Precision performance in top-1

(b) Recall performance

(c) Average edit distance in top-7

Figure 7: Precision and recall performances (at N 1700 and 0:01, con -
denceis 3%) and average edit distance of re-rank vs. direct retrieval. The bars
on the re-rank lines show the minimum and maximum performances of di erent
feature con gurations. All measures are averages over 7 folds.

12



Figure 8: Probability of nding the rst correct hit in ranks 0 to r for the re-
rank method using feature 1 for classi cation and feature 2 for ranking, and the
direct methods (Noigs 7). The bars giving the standard deviations, are barely
visible due to the large numbers of test instances in each fold ( 1700). The
lines for both direct ranking methods are very close together and therefore not
distinguishable from each other. The results show a considerable improvement
in comparison to the raw, non-reranked results (Figure 5), especially for non-
ranked SVM: The error at rank 0 is reduced from 29% to 4%, here.

Analogous to Figure 5, Figure 8 shows the probability of nding the rst
hit in ranks 0 to r for the re-rank method using feature 1 as the classi cation
feature and feature 2 as the re-rank feature. The re-ranked method shows a
considerable improvement from the direct ranking and the ranked SVM output
(the best performance as reported in Figure 5). The probability of nding the

rst hit in the rst four ranks even approaches 100%.

Table 3 and 4 show the precision (in the top-1) and recall gures. In general,
these results show that re-ranking with a di erent feature can boost perfor-
mance. The precision in top-7 for the re-rank methods is even higher than the
precision in top-1 for the direct method, especially in the 7-35 category. Using
feature 1 as a classi cation feature and feature 2 for ranking works best for this
data collection, even getting a top-1 precision of 1.0 (i.e., 100%) with a standard
deviation of 0 in the 120+ category.

Overall, the results show that all methods perform roughly the same when
there are enough labelled samples (i.e., in the 120+ category).

13



Table 3: Precision results (Nfoigs 7, 0:03)

Method Nexamples
7-35 [ 35-60 | 60-120 | 120+
Precision in top-1
Direct, rank with 2 0.42 0.89 0.93 0.97
Direct, rank with f1 0.46 0.92 0.94 0.97
Re-rank, classify with f2, rank with f2 | 0.76 0.97 0.98 0.99
Re-rank, classify with f2, rank with f1 | 0.76 0.97 0.98 0.99
Re-rank, classify with f1, rank with f1 | 0.79 0.98 0.97 0.99
Re-rank, classify with f1, rank with f2 | 0.82 | 0.99 0.99 1.00
Precision in top-7
Direct, rank with 2 0.14 0.52 0.71 0.90
Direct, rank with f1 0.15 0.57 0.75 0.91
Re-rank, classify with f2, rank with f2 | 0.64 0.87 0.91 0.97
Re-rank, classify with f2, rank with f1 | 0.68 0.91 0.94 0.98
Re-rank, classify with f1, rank with f1 | 0.69 0.93 0.94 0.97
Re-rank, classify with f1, rank with f2 | 0.69 0.93 0.95 0.99

Table 4: Recall results (Nfoigs 7, 0:03)

Method Nexamples
7-35 | 35-60 | 60-120 | 120+
Direct, rank with f2 0.35 0.70 0.71 0.74
Direct, rank with f1 0.39 0.77 0.77 0.75

Re-rank, classify with f2, rank with f2 | 0.63 0.84 0.84 0.88
Re-rank, classify with f2, rank with f1 | 0.63 0.84 0.85 0.89
Re-rank, classify with f1, rank with f1 | 0.67 0.90 0.89 0.90
Re-rank, classify with f1, rank with f2 | 0.69 | 0.91 0.90 0.91

5. Conclusions

In the design of a large scale retrieval engine for historical handwritten
manuscripts it was observed that classi er accuracy is not a good predictor of
retrieval precision. Very low precision performances occurred on good classi ers
when using a realistic number of distractors. In retrospect, the choice of using
the signed distance dsypm from the margin for ranking was evidently subopti-
mal, but it elucidated two separate functions to be performed: 1) data reduction
by optimal separation and 2) ranking instances in terms of their prototypicality
with respect to their class.

The re-ranking method has two main advantages: the focus on both sepa-
rability and prototypicality increases the probability that the top of a hit list is
more similar to the user’s expectation than otherwise. Secondly, the reduction
of distractors lowers the number of noisy instances in a hit list and is advanta-
geous in terms of processing demands. As the results presented in the previous
section show, reducing the number of distractors in a retrieval experiment im-
proves precision and decreases average edit distance in the hit list, which we
assume will increase the user appreciation of hit lists. We think that a simulta-
neous solution of separability and prototypicality will su er from a performance
reduction that is typical of Pareto curves in multi-objective optimisation, but
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this is a matter of future research. To investigate whether we can optimise both
separability and prototypicality in the SVM paradigm, we performed some pre-
liminary tests. These tests show that weighing the discriminant value dsy wm
with the distance to the centroid of positive examples e ¢ X does not have
positive e ects on precision. Future research will look into other multi-objective
approaches involving both separability and prototypicality.

It appeared to be bene cial for retrieval performance to use di erent features
in the separate stages. While the processing order is xed | separation rst,
ranking second | the selection of optimal features and machine learning algo-
rithms will depend on the material. In the KdK data set, precision bene ted the
most by using a strong, robust feature for recognition rst, and a secondary fea-
ture with a strong image-based component that works well on collections where
words are written fairly consistently. On data sets where the writing varies a
lot within a class, other features or classi er methods may prove to be more
advantageous, including (k-means) clustering to capture the di erent writing
styles. A system like Monk will have several tool libraries and approaches for
diverse material. The optimality of the parameters for a complete processing
pipeline depends on the ink deposition process, writing style and physical mate-
rial. Improving the recognition accuracy using linguistic models and contextual
information is di cult due to the nature of the material. While linguistic mod-
els o er improved transcription performances for contemporary texts, previous
e orts of using contextual information[19, 20] proved not to be robust enough
for use in our system because there are no useful corpora available for the doc-
ument collections we deal with. This is due to the abundance of abbreviations,
contractions and named entities that are not found in corpora of contempo-
rary text. Furthermore, in certain document collections, several languages are
used, sometimes even in the same paragraph. Corpora for transcription systems
for contemporary texts usually contain millions of words gathered from various
sources[21, 22], which we can not provide for the bootstrapping of handwriting
recognition for the document collections in Monk.

When a class has enough instances (i.e., the 120+ category), choice of feature
does not seem to have much e ect on retrieval performance. On the other hand,
reducing the number of distractors by a two-step approach is still bene cial. In
the bootstrapping phase of a retrieval system (i.e., the category of 7-35 training
examples), the choice of feature does have a big impact. Even small accuracy
performance increases have large consequences in this stage, helping the user
to label new instances with little e ort (since Monk presents hit lists in its
web-based labelling interface).

The methods presented in this paper can use all kinds of classi ers. Cur-
rently, nearest-centroid classi ers are used due to the nature of ‘24/7’ learning,
where new labels are being added frequently. It would be cumbersome to re-
train classi ers such as SVMs every time a new label was added. The SVM
has one bene t in the bootstrap phase: its recognition accuracy is better than
the performance of a nearest neighbour classi er. However, the 7-35 category
in this experiment has the most classes by far, which would be very incon-
venient for the training of tens of thousands multi-class SVMs. This touches

15



on the fundamental di erence between SVMs and Bayesian classi ers. While
Bayesian classi ers, including nearest centroid classi cation, will incorporate
the retention of the degree of prototypicality in the \1 out of N" choice itself
(i,e., pd X; ), atree of SVMs capitalizes on separability, only.

The Monk project has a large number of collections with di erent script
types: 15t (mixed languages, frequent use of word contractions) and late 19t
century texts (cursive with a lot of abbreviations and variation), Qumran scrolls
(isolated characters), captain’s logs (cursive) and even Thai[23] and Bangla[24]
texts. The di erent shapes and writing styles have di erent requirements of the
features; For each script, features will be selected to optimise both separability
and prototypicality.

Summarising, we found that the assumption that a good recognizer will also
be good at ranking is not intrinsically tenable. Two requirements need to be
ful lled. First, a method (feature and classi er) is selected based on its ability
to separate class instances from non-class instances. Subsequently, a method
(feature and classi er) is selected on the basis of its ability to rank instances
according to prototypicality, such that the nal ranking is similar to the users
expectation. This stepwise approach yielded very substantial improvements in
precision, substantial improvements in recall as well as a substantial reduction
of the edit distance, a measure of word-match intuitiveness. Finally, the insight
that separation and ranking of instances both need to be optimised may have a
broad applicability beyond handwriting recognition.
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