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2.1 Introduction

This chapter describes the stimulus, algorithms and resulting features that are used in
the spatio-temporal analysis of the properties of eye movements. The main algorithm
described in this chapter is partially based on the Eye-Movement Cross-correlogram
method originally introduced by Mulligan and colleagues1,2. It constitutes an exten-
sion of it to the clinical domain. The spatio-temporal properties of eye movements
are a collection of features extracted from the continuous gaze tracking of a stimulus.
The stimulus trajectory is designed to keep the observers engaged, minimize learning
effect, and induce saccadic movements of different magnitude. All these characteristics
are desirable in a test that aims to detect clinically relevant oculomotor abnormalities.

Some of the derived spatio-temporal features of eye movements are more sensitive
to physical changes in the stimuli (e.g. speed, contrast) while others are more sensi-
tive to the state of the observer (e.g. underlying clinical condition). Taken together
they quantify the performance of an observer’s visual system in a dynamic context.
Noticeably, they do not correlate with static functional measures such as visual acuity
and contrast sensitivity. The stimuli, algorithms and resulting features described in
this chapter will be applied to analyze the data used in the experiments described in
Chapters 3, 4, 5 and 6.

2.2 Algorithm Pipeline

2.2.1 Schematic Overview

This section shows an overview of the process necessary to evaluate the spatio-
temporal properties of eye movement. Figure 2.1 summarizes the steps necessary for
the data acquisition, while Figure 2.2 summarizes the feature extraction process.

2.3 Data Acquisition

2.3.1 Hardware

The work presented in this thesis has been conducted using two models of eye-trackers.
The work in Chapters 3, 4, 5 and 7 used a remote desktop-mounted eye-tracker ‘Eyelink
100’ (SR Research, Ottawa, Ontario, Canada). The work in chapter 6 used a monitor-
integrated eye-tracker, the ‘Tobii Pro T60XL’ (Tobii, Stockholm, Sweden). Unless
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Figure 2.1: Schematic representation of the data acquisition process.

stated otherwise, the ‘Eyelink’ data is acquired at a sampling rate of 1 KHz, always
downsampled to match the refresh rate of the monitor used (either 120 Hz or 240 Hz).
The data from ‘Tobii’ is acquired at 60 Hz, which already matched the refresh rate of
the integrated monitor.

2.3.2 Stimulus

Stimulus The visual stimulus comprises a Gaussian blob of luminance moving on a
uniform gray background (� 140 cd/m2) (Figure 2.3). Its full-width-at-half-maximum
is 0.83 degrees of visual �eld, roughly corresponding to the size III of a Goldman
perimeter’s stimulus, a commonly used perimetric device.

The blob can be displayed at a range of contrast levels: at maximum contrast (50%
difference from background) it has a peak luminance of �385 cd/m2, while when
presented at minimum contrast (5% from background), it has a peak luminance of
�160 cd/m2.
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Figure 2.2: Schematic representation of the feature extraction process.

2.3.3 Properties of the stimulus trajectory

The stimulus trajectory consists of a constrained, random path. The two constraints
are:

� the stimulus trajectory must stay within the boundaries of the screen;

� the stimulus trajectory cannot contain periodic autocorrelations.

The stimulus trajectory is constructed by generating an array of velocity values where,
at each time-point, the velocity values for the horizontal and vertical components
are drawn from a Gaussian distribution. This distribution is always zero-centered,
and its standard deviation can be adjusted to modulate the �nal velocity of the
stimulus (for a practical example see Chapter 5). Typical values used in this thesis
are sx =� 64 deg/sec for the horizontal component and sy =� 32 deg/sec for the
vertical component. These values have been chosen empirically, to �t the screen’s
aspect ratio and to produce a stimulus suf�ciently hard to follow for healthy observers
while challenging, yet not impossible to follow, for visually impaired observers.
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Figure 2.3: Example of a Gaussian luminance blob used as a moving stimulus.

The velocity vector is low-pass �ltered (cut-off = 10 Hz) by convolution with a
Gaussian kernel such that excessive jitter is minimized. Subsequently, via temporal

integration, velocities are transformed into positions of the stimulus �!s (t) =

"
sx

sy

#

In

order to induce the observer to also perform saccadic movements in addition to the
smooth pursuit, we created trajectories with random stimulus displacements. This is
achieved by randomly juxtaposing epochs of 2 seconds each (Figure 2.4) taken from
the original 6 trajectories. During a typical assessment, each observer is presented with
6 different trajectories of 20 seconds each per pursuit modality, one being with and
the other without saccadic insertion, subsequently referred to as smooth and saccadic
pursuit conditions, respectively.

2.4 Data analysis

2.4.1 Pre-processing of eye-tracking data

The data acquired consists of time series of eye gaze positions�!p (t) =

"
px

py

#

expressed

in visual �eld coordinates. Blinks and other artifacts are removed as follows: blink
periods are identi�ed by spikes in the vertical gaze velocity (�rst derivative of py > 300
deg/sec) followed by a plateau (�rst derivative of py = 0) or missing data. This speci�c
artifact is caused by how video-based eye-trackers compute gaze position: when the
eyelid is closing due to blinking, it partially covers the pupil, which is erroneously
interpreted as a rapid shifting upwards (Figure 2.5-A). The closed eye is then recorded
as missing data or as the last valid position recorded. Each blink period found is
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Figure 2.4: Examples of stimulus trajectory for smooth and saccadic pursuit.

dilated by 5 samples on both sides. If the total data loss (due to blinks or otherwise)
exceeds 25% of the trial duration, the entire trial is removed from further analysis.
Lastly, the data in the blink-period is imputed by �tting an auto-regressive model25

using 10 samples preceding and following each of the above-de�ned blank periods
(Figure 2.5-B). After all blinks are removed and missing data are �lled, a Butterworth
low-pass �lter (half-power frequency = 0.5 Hz) applied to �!p (t) is used to remove any
instrument noise from the recorded gaze positions. An example of time-series pre-
and post-processed with this �blink-�ltering algorithm� is shown in Figure 2.5-C.
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Figure 2.5: Blink-�ltering algorithm
A. Schematic representation of the eye-tracker gaze misinterpretation. When the eyelid partially occludes
the pupil during a blink, the eye-tracker erroneously interprets the shortened pupil as being vertically
displaced. B. Detail of a blink artifact. The red lines show the temporal window within which the data
is removed, while the green lines show the temporal windows from which the data is pooled in order
to interpolate the missing part. C. Example of a time-series before and after applying the blink-�ltering
algorithm.
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2.4.2 Spatio-temporal features extraction

This section describes how temporal, spatial and spatio-temporal features are extracted
from the data. The parameters that re�ect primarily the temporal aspects of the
oculomotor behavior, such as response delay and velocity oscillations, are referred to
as �temporal� features. The parameters that re�ect the spatial aspects of the observer’s
performance, like accuracy, are referred as �spatial� features. The �spatio-temporal�
category contains the remaining parameters (here called observation noise variance and
cosine dissimilarity) that are affected by both temporal delays and spatial inaccuracies.

Temporal features

The post-processed time-series of gaze positions �!p (t) and stimulus positions �!s (t)
are transformed into their respective velocities �!vp (t) and �!vs (t) by taking their �rst-
order temporal derivative. A normalized time-shifted cross-correlation is applied
between�!vp (t) and�!vs (t), separately for the horizontal and vertical components (Figure
2.6-A shows an example of �!vp (t) and �!vs (t), horizontal component). The time-shift
ranges from -1 to +1 sec with a step size of 1 inter-frame interval, which depends
on the apparatus in use. Each of the 6 data-acquisitions of 20 seconds leads to two
cross-correlograms, one for the horizontal component and one for the vertical. The 6
resulting cross-correlograms of each component are then averaged and the resulting
averaged cross-correlogram (CCG, see Figure 2.6-B) is �tted with a Gaussian model,
which returns the following parameters: amplitude, mean (m), standard deviation (s) and
variance explained (R2). These parameters constitute the group of temporal features,
a detailed description will follow in Section 2.5 �Properties of the spatio-temporal
features�).

Spatial features

The array of eye-stimulus positional deviations
�!
d (t) =

"
dx

dy

#

is computed for each

time-point t of �!p (t) and �!s (t) as dx = px � sx and dy = py � sy (Figure 2.7-A shows
an example of �!p (t) and �!s (t), horizontal component). The resulting 6 arrays

�!
d 1:6(t)

are then concatenated (N.B.: not averaged) and a probability density distribution
(PDD) is drawn from the resulting concatenated array (Figure 2.7-B). A Gaussian
model is �tted to the PDD and, analogously to the temporal features, the parameters
obtained are amplitude, mean (m), standard deviation (s) and variance explained (R2). These
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Figure 2.6: Temporal features extraction
A. Example of ocular horizontal velocity in response to the tracking target. B. Example of CCG resulting
from the average of the 6 individual cross-correlograms obtained after each tracking trial. Black line shows
the average CCG, red line shows the �tted Gaussian model, the remaining colored lines show the individual
cross-correlograms.

parameters constitute the group of spatial features, a detailed description will follow
in Section 2.5 �Properties of the spatio-temporal features�).

Figure 2.7: Spatial features extraction
A. Example of ocular horizontal position in response to the tracking target. The deviations between stimulus
and eye position are aggregated for all trials. B. Example of PDD resulting from the histogram of the
aggregated positional deviations. Red line shows the �tted Gaussian model.

Spatio-temporal features

Observation noise variance: to compute this parameter, continuous tracking behavior is
modeled by dynamic linear systems, with their solutions being provided by state-space
models such as the Kalman �lter26.
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An example of these linear systems, as reported by Huk and colleagues27, is
described by Equations 2.1 and 2.2:

xt = Ftxt�1 + wt; wt � N(0, Qt) (2.1)

yt = Htxt�1 + vt; vt � N(0, Rt) (2.2)

where xt is the stimulus parameter tracked by the observer at time t (e.g., the
coordinates of a moving target), Ft is the process transition matrix, wt is the process
noise, yt is the noisy internal response (e.g., a pursuit eye movement), Ht is the
observation model that maps the true state space to the observation space, and vt is
the internal noise. Assuming that both the process noise (related to the stimulus) and
the internal noise (related to the observer) are Gaussian, the Kalman �lter provides
the estimators described by Equations 2.3 and 2.4:

�xtjt�1 = Ft �xt�1 (2.3)

�xt = �xtjt�1 + Kt(yt � Ht �xtjt�1) (2.4)

where �xt is estimate of xt; �xtjt�1 is the estimate of xt given all the information up
to but not including the current time step, t; and Kt is the Kalman gain, which is
calculated from estimates of the covariance (i.e., an estimate of the level of uncertainty
in the system). What a Kalman �lter typically does is to provide an estimate of the
current unknown state of a system knowing some of its structural properties, like
system and observer noises (wt and vt, respectively) and state-transition matrices (Ft

and Ht, respectively).

In our context, however, the �unknown state of the system� is not unknown at all:
it is the recorded position of the gaze in response to the motion of the target at a given
time. Therefore, starting from the gaze position in response to the moving target, it is
possible to estimate the observation noise variance, which re�ects the overall noisiness
of the observer.

To do so, we reversed the Kalman �lter application as described by Bonnen and
colleagues26, while also assuming that the observation model that maps the true state
space to the observation space Ht is equal to 1 (i.e. assuming that the oculomotor
system is a simple linear system without nonlinear dynamics).
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When the observation noise variance is low relative to the target displacement
variance (i.e., target visibility is high), the difference between the previous position
estimate and the current noisy observation is likely to be due to changes in the position
of the target. That is, the observation is likely to provide reliable information about
the target position. As a result, the previous estimate will be given little weight
compared to the current observation. Tracking performance will be fast and have a
short lag. On the other hand, if the observation noise variance is high relative to the
target displacement variance (i.e., target visibility is low), then the difference between
the previous position estimate and the current noisy observation is likely driven by
observation noise. In this scenario, little weight will be given to the current observation
while greater weight will be placed on the previous estimate. Tracking performance
will be slow and have a long lag26.

Dissimilarity: is a measure of dissimilarity between the vectors gaze position �!p (t)
and stimulus positions �!s (t). In the context of comparing tracking coordinates, the
cosine similarity of two positional vectors is bounded between 0 and 1, therefore the
dissimilarity (CD) is computed as the inverse of cosine similarity shown in Equation
2.5.

CD = 1� ån
i
�!p (t)i

�!s (t)iq
ån

i
�!p (t)2

i

q
ån

i
�!s (t)2

i

(2.5)

It has the useful property of being unaffected by the length of the vectors. Since it
is computationally inexpensive, it is a useful feature to evaluate the performance of
an observer in real-time. In healthy observers, it usually correlates strongly with the
Observation noise variance.
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2.5 Properties of the spatio-temporal features

Table 2.1 provides details about each spatio-temporal feature.

Feature name Description Values range

F1: CCG amplitude
Maximum correlation between stimulus

[-1 1]and eye velocities
Higher values �! better performance

F2: CCG mean Lag between stimulus and eye (ms) [0 ¥]Lower values �! better performance

F3: CCG standard deviation
Temporal uncertainty: window of temporal integration

[0 ¥]that the observer needs in order to track the stimulus (ms)
Lower values �! better performance

F4: CCG variance explained Consistency of the tracking performance across trials [0 1]Higher values �! better performance

F5: PDD amplitude Most frequent positional deviation [0 1]Higher values �! better performance

F6: PDD mean Spatial bias (deg) [0 ¥]Lower values �! better performance

F7: PDD standard deviation
Positional uncertainty: spread of the

[0 ¥]positional deviations (deg)
Lower values �! better performance

F8: PDD variance explained Normality of the positional deviation distribution [0 1]Higher values �! better performance

F9: Observation noise variance
Perceptual noise estimated by measuring the variance

[0 ¥]of the observational noise with a Kalman �lter26

Lower values �! better performance

F10: Dissimilarity Inverse of cosine similarity between gaze [0 1]and stimulus vectors of positions.
Lower values �! better performance

Table 2.1: Name and details of the spatio-temporal features used to quantify the observer’s tracking
performance.

Together, all these features constitute a feature-space. An overview of the corre-
lations normally present in the feature-space is shown in Figure 2.8. This example is
built using the data from healthy controls acquired for the experiments described in
Chapter 6. In a healthy population, certain features highly correlate (or anti-correlate)
amongst each other or between their respective horizontal and vertical counterparts.
Usually, highly correlated features within a dataset are not particularly useful (as
they provide redundant information). However, the presence or absence of expected
correlations in a group of observers could provide valuable insights. A noticeable
example is feature F4 (variance explained of the gaussian �t to the CCG). By itself, this
feature is very uninformative in the healthy population: during smooth pursuit it does
not correlate with any other feature (see Figure 2.8-A, left, lines 4 and 14) as it often
shows a ceiling-effect (see Figure 2.8-B, panel F4, all values are above 0.90). . However,
the introduction of saccadic displacements removes the ceiling-effect in the vertical
component (see Figure 2.8-C, panel F4, y axis) and increases correlations with other
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features (Figure 2.8-A, right, line 14). This peculiar behavior makes this feature an
excellent anomaly detector when testing different populations (see Chapters 3 and 6).

On the other hand, features such as F2 show very consistent correlations between its
respective axes components and other features, thus being more suitable for measuring
performances also in a within-subject context (see Chapter 5). Overall, all spatio-
temporal features contributes in creating a unique �oculomotor �ngerprint� of an
observer performing the test, which in turn can be used as a powerful, yet simple,
screening tool (see Chapter 6).
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Figure 2.8: Spatio-temporal features correlations
A. Correlation matrices between all spatio-temporal features. B. Correlations (or lack thereof) between
horizontal and vertical components of each spatio-temporal feature obtained during smooth pursuit tracking.
C. Same as B, but obtained during saccadic pursuit tracking.
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