A derepression system based on the Bacillus subtilis sporulation pathway offers dynamic control of heterologous gene expression
Nijland, Reindert; Veening, Jan-Willem; Kuipers, Oscar P.

Published in:
Applied and environmental microbiology

DOI:
10.1128/AEM.02266-06

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
A Derepression System Based on the \textit{Bacillus subtilis} Sporulation Pathway Offers Dynamic Control of Heterologous Gene Expression†

Reindert Nijland,† Jan-Willem Veening,† and Oscar P. Kuipers*

Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands

Received 26 September 2006/Accepted 30 January 2007

By rewiring the sporulation gene-regulatory network of \textit{Bacillus subtilis}, we generated a novel expression system relying on derepression. The gene of interest is placed under the control of the \textit{abrB} promoter, which is active only when \textit{Spo0A} is absent, and \textit{Spo0A} is controlled via an IPTG (isopropyl-\textit{p}-thiogalactopyranoside)-inducible promoter.

We designed a novel system to express and secrete (heterologous) proteins in \textit{Bacillus subtilis}. Instead of using an inducer to activate protein production, we used a derepression system. This allows growth of the host to high cell densities in the presence of the inducer. Upon removal of the inducer, high expression levels are obtained. To generate such a system, we made use of the well-studied sporulation phosphorelay of \textit{B. subtilis}.

Controlled derepression of \textit{abrB} by relief of \textit{Spo0A}. As an adaptive ability in response to starvation, \textit{B. subtilis} is able to form highly resistant endospores (13). The process of sporulation is governed by a multicomponent phosphorelay (11). Multiple environmental and physiological signals are fed into this system, and under appropriate conditions this leads to phosphorylation of \textit{Spo0A} (\textit{Spo0A}→P), the key sporulation transcription factor (1). A major role of \textit{Spo0A}→P is to repress \textit{abrB} expression (9, 10).

In the absence of \textit{Spo0A}→P, \textit{abrB} gene expression is constitutively high (12). To test whether we could use this feature of the sporulation pathway to construct a derepression system to express heterologous proteins in \textit{B. subtilis}, we cloned the gene encoding green fluorescent protein (GFP) behind the \textit{abrB} promoter (Fig. 1). In the resulting strain (17), cells highly express GFP during exponential growth, and fluorescence is reduced upon entry into the stationary growth phase (data not shown). Iteron et al. have shown that the \textit{abrB} promoter is repressed by artificial induction of \textit{Spo0A-Sad67} (herein called \textit{Spo0A}→P), a constitutively active variant of \textit{Spo0A} (3). Knowing this, we introduced the IPTG (isopropyl-\textit{p}-thiogalactopyranoside)-inducible \textit{Spo0A}→P construct into our \textit{P}_{\textit{abrb}}\textit{gfp} strain, named \textit{A-gfp}. All bacterial strains and plasmids used in this study are listed in Table 1. Bacteria were grown and transformed using standard techniques.

Flow cytometric measurement of GFP fluorescence. Cells were grown overnight in TY medium (16) containing 100 \textmu M IPTG and diluted 30-fold to an optical density at 600 nm (OD\textsubscript{600}) of 0.05. At an OD\textsubscript{600} of ∼1.0, cells were diluted 10-fold in minimal medium, and a 1-ml suspension (without glass beads) was treated with a Mini-Bead-Beater-8 (Biospec Products) for 1 min at maximal speed to separate cell chains into individual cells. Two hours later (end of log phase), another sample was measured. GFP fluorescence was measured using a Coulter Epics XL-MCL flow cytometer (Beckman Coulter). The average fluorescence of 20,000 cells was determined using WinMDI 2.8 (http://facs.scripps.edu/software.html) and plotted against IPTG concentrations (Fig. 2). As shown in Fig. 2, GFP expression under the control of \textit{P}_{\textit{abrB}} is high without inducer but is strongly reduced upon increases in levels of \textit{Spo0A}→P. When the native \textit{spo0A} gene is deleted, GFP expression is further increased. The maximum concentration of GFP in this strain was quantified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) relative to bovine serum albumin standards. Dry-matter concentrations of biomass were calculated using a predetermined correlation factor of 0.33 g (dry weight) of cells per OD\textsubscript{600} unit (19). The concentration of GFP with an average fluorescence per cell of 550 arbitrary units was 16.7 mg GFP/g (dry weight). Interestingly, under inducing conditions (in the presence of \textit{Spo0A}→P), \textit{P}_{\textit{abrB}} is more tightly repressed in the \textit{spo0A} (\textit{Δspo0A}) mutant. In the wild-type strain, the \textit{abrB} promoter is still leaky and shows optimal derepression of \textit{abrB} when \textit{Spo0A}→P is induced with 50 \textmu M IPTG.

Secretion of \textit{Clostridium perfringens} \textit{β}-toxoid. To examine whether the system also enables the controlled expression of a secreted heterologous protein, we placed the gene encoding the \textit{C. perfringens} \textit{β}-toxin (\textit{cpb}) behind the \textit{abrB} promoter and combined this construct with the strain carrying the \textit{spo0A} mutation (\textit{Δspo0A}) and the inducible \textit{Spo0A}→P.

The full coding sequence for \textit{β}-toxin (\textit{cpb}) was amplified by PCR with plasmid pXB10 as a template. \textit{C. perfringens} \textit{β}-toxin is a secreted protein with a Sec-type signal sequence and is an important component in animal vaccines against \textit{C. perfringens} types B and C (7).

To visualize \textit{β}-toxin secretion, total medium proteins were 10× concentrated by trichloroacetic acid precipitation and sep-
Fig. 1. Sporulation-based derepression system. A simplified schematic representation of the regulatory network used in this study is shown. Perpendicular symbols and arrows represent negative and positive actions, respectively. 0A+ represents PspoΔspoA-aad67, High levels of IPTG induce Spo0A+, which represses PabrB. AbrB and the protein of interest are not produced, and there is no repression of the extracellular proteases. If IPTG is absent, Spo0A+ is not produced and PabrB is active, yielding high levels of AbrB and the protein of interest, while AbrB concomitantly represses the extracellular proteases.

Separated by SDS-PAGE as described previously (14). β-Toxin was detected using Western blotting as described previously (7). As shown in Fig. 3A, at high IPTG induction levels, no β-toxin could be detected. Upon derepression from Spo0A+, β-toxin accumulated in the growth medium. These results show the versatility of the derepression system and demonstrate that (heterologous) gene expression can be accurately controlled.

To examine whether the described derepression system can be activated in cultures with a high cellular density, which is required when producing toxic products, we grew strains A-β (PabrB-cpb) and A-β/0A+ΔΩA (PabrB-cpb PspoΔspoA+ Δspad67) to dense cultures in TY medium containing 250 μM IPTG (full repression). Next, cells were spun down, washed once, and resuspended in fresh TY medium without IPTG. Medium fractions were collected at timely intervals and assayed for β-toxin secretion. As shown in Fig. 3B, within 20 min after resuspension, PabrB was derepressed in A-β/0A+ΔΩA and β-toxin could be detected in the growth medium. β-Toxin continued to accumulate in the medium up to 2 h after derepression in this dense culture, and we were able to recover β-toxin until 5.5 h after suspension. In the presence of a functional spo0A gene, however, secreted protein could not be observed after 3.5 h.

Table 1. Bacterial strains and plasmids

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant properties</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli MC1061</td>
<td>F- derD139 Δ(ara-leu)7696 Δ lacX74 galU galk hsdR2 mcrA mcrB1 rpsL</td>
<td>18</td>
</tr>
<tr>
<td>B. subtilis 168</td>
<td>tprC2</td>
<td>4</td>
</tr>
<tr>
<td>SWV215</td>
<td>spoA4::Km</td>
<td>20</td>
</tr>
<tr>
<td>0A+ (sad67::Tc)</td>
<td>amyE::PspoΔspoA-sad67 Tc'</td>
<td>16</td>
</tr>
<tr>
<td>A-β-gfp (AbrB-GFP)</td>
<td>amyE::PspoΔspoA-sad67 Pcpb' Cm'</td>
<td>17</td>
</tr>
<tr>
<td>0A'/?A-gfp</td>
<td>amyE::PspoΔspoA-sad67 Pspac' Cm' Tc'</td>
<td>This study</td>
</tr>
<tr>
<td>ΔΩA/A-gfp</td>
<td>spoA4::Km Pspac' Cm' Km'</td>
<td>This study</td>
</tr>
<tr>
<td>ΔΩA/AΔΩA/A-gfp</td>
<td>spoA4::Km Pspac' Cm' Km'</td>
<td>This study</td>
</tr>
<tr>
<td>A-β</td>
<td>Pspac' Cm'</td>
<td>This study</td>
</tr>
<tr>
<td>0A'/?A-β</td>
<td>amyE::PspoΔspoA-sad67 Pcpb' Cm' Tc'</td>
<td>This study</td>
</tr>
<tr>
<td>ΔΩA/A-β</td>
<td>spoA4::Km Pspac' Cm' Km'</td>
<td>This study</td>
</tr>
<tr>
<td>0A'/ΔΩA/A-β</td>
<td>amyE::PspoΔspoA-sad67 Pspac' Cm' Km'</td>
<td>This study</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pSG1151</td>
<td>bla cat gfp</td>
<td>5</td>
</tr>
<tr>
<td>pXB10</td>
<td>pUB110 containing β-toxin coding region</td>
<td>15</td>
</tr>
<tr>
<td>pPspoΔspoA-cpb</td>
<td>bla cat PspoΔspoA-cpb</td>
<td>This study</td>
</tr>
</tbody>
</table>

Fig. 2. Controlled activation of Pspad67::gfp via derepression. Expression of Spo0A+ was induced with various concentrations of IPTG. Pspad67 expression was measured during mid-exponential growth (A) and late exponential growth (B) using Pspad67::gfp fusion. Expression of Pspad67::gfp in the presence and absence of endogenous spo0A was measured (strains 0A'/?A-gfp and 0A'/ΔΩA/A-gfp). The units for GFP fluorescence are arbitrary units (AU) and are identical in panels A and B.

Fig. 3. Expressed β-toxin is related to extracellular proteolytic activity. Our results show that secreted β-toxin is more actively degraded in the presence of a functional spo0A gene. Many of the known extracellular proteases are under either the direct or indirect control of Spo0A (6). To examine whether the increased degradation of β-toxin is related to increased extracellular proteolytic activity, we assayed the growth medium for proteolytic activity. Total protease activity was measured using the Roche resorufluorescent universal protease substrate as described by the manufacturer. Direct optical readout of the OD574 was plotted. As depicted in Fig. 3C, only a minor proteolytic activity was measured in the Δspo0A strain. In the presence of spo0A, strong protease activity was observed.
starting after 150 min of resuspension in fresh medium, when cells enter stationary growth phase (data not shown).

Induction and deletion of spo0A. The use of sporulation-deficient mutants (such as the \(\Delta \) spo0A strain) is common practice for large-scale high-density fermentation processes, mainly because it prevents the formation of spores, which are hard to remove from the growth system (8). Strain stability is not an issue for these mutants, since sporulation is purely an adaptive phenotype and not essential. The addition of IPTG in the case of our Spo0A+ strain led to induction of Spo0A, and therefore undesirable sporulation could occur more rapidly. However, we did not observe sporulation under our culture conditions. The process of sporulation is tightly controlled, and when only spo0A is induced during logarithmic growth, not all essential components for sporulation are expressed, preventing premature sporulation of the culture (2).

Concluding remarks. In this paper we show how a naturally occurring gene-regulatory network can be adapted to serve as a tailored expression system. An additional benefit of using this endogenous pathway is that the system is based on self-cloning via homologous recombination, keeping the introduced foreign DNA to a minimum. Furthermore, upon activation of the abrB promoter, extracellular proteolytic activity is reduced.

R.N. was supported by Intervet International B.V. (Boxmeer, The Netherlands). J.-W.V. was supported by grant ABC-5587 from The Netherlands Organization of Scientific Research Technology Foundation (NWO-STW).

REFERENCES
2. Fujita, M., and R. Losick. 2005. Evidence that entry into sporulation in \(B. \) subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes Dev. 19:2236–2244.

