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Research on risky and intertemporal decision-making often focuses on descriptive
models of choice. This class of models sometimes lack a psychological process account
of how different cognitive processes give rise to choice behavior. Here, we attempt to
decompose these processes using sequential accumulator modeling (i.e., the linear
ballistic accumulator model). Participants were presented with pairs of gambles that
either involve different levels of probability or delay (Experiment 1) or a combination
of these dimensions (both probability and delay; Experiment 2). Response times were
recorded as a measure of preferential strength. We then combined choice data and response
times, and utilized variants of the linear ballistic accumulator to explore different assump-
tions about how preferences are formed. Specifically, we show that a model that allows for
the subjective evaluation of a fixed now/certain option to change as a function of the
delayed/risky option with which it is paired provides the best account of the combined
choice and response time (RT) data. The work highlights the advantages of using cognitive
process models in risky and intertemporal choice, and points toward a common framework
for understanding how people evaluate time and probability.
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You have just won the lottery and the prize is
$10,000. Do you use your money now, or do
you put it in a bank account, for 1 year, and then
take out $11,500? This choice is an example of

an intertemporal choice, it involves tradeoffs
between sooner–smaller (SS) and larger–later
(LL) options. Consider a second dilemma. You
can either choose to keep the prize money in a
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savings account for a certain (probability of 1)
return of $1,500 or you can take a trip to the
casino and put the $10,000 on your lucky num-
ber 17 on the roulette table. This is an example
of a risky choice; it involves tradeoffs between
certain and risky but more valuable options.
Most studies of intertemporal and risky choice
have employed context-free monetary choice
dyads between SS and LL options on the one
hand, for example, a choice between $10 now or
$15 in 2 months (e.g., Chapman & Weber,
2006; Loewenstein & Prelec, 1992), and be-
tween certain and risky options on the other
hand, for example, a choice between $30 for
sure or $40 with 80% chance or nothing other-
wise (e.g., Kahneman & Tversky, 1979).

Two hallmarks of traditional research on in-
tertemporal and risky choice are (i) examination
of the two types of choice in isolation and (ii)
evaluation of preferences in terms of their co-
herence (or lack thereof) with normative eco-
nomic principles. This large body of work has
revealed key insights into the types of factors
that affect risky or intertemporal choice, but
“the interaction between risk and delay is com-
plex and not easily understood” (B. J. Weber &
Chapman, 2005, p. 104).

In the domain of intertemporal choice, the
dominant approach is to examine whether
choices across time adhere to discounted utility
theory (DUT; Samuelson, 1937). DUT implies
that decision makers maximize a weighted sum
of utilities with exponentially declining dis-
count weights. In the domain of risky choice,
research has focused on expected utility theory
(EUT). EUT views decision makers as maxi-
mizing a weighted sum of utilities with their
probabilities of occurrence (e.g., Epper, Fehr-
Duda, & Bruhin, 2011; Prelec & Loewenstein,
1991).

DUT and EUT are normative models of
choice; they provide principles according to
which rational decision makers should behave
(Newell, Lagnado, & Shanks, 2015). However,
extensive research has documented several vio-
lations of these principles (e.g., Allais, 1953;
Thaler, 1981). The standard approach to ac-
count for these violations is to modify the the-
ories but to retain their core constituents. Thus
for intertemporal choice, hyperbolic functions
that allow decreasing discount rates rather than
constant (i.e., exponential) rates are used to
capture observed choice “anomalies” (e.g.,

Green & Myerson, 2004). For risky choice,
allowing a nonlinear probability weighting
function provides explanations of commonly
observed behavioral effects and preference re-
versals (e.g., Kahneman & Tversky, 1979;
Tversky & Kahneman, 1992).

These modified models are descriptive: they
provide a description not of how decision mak-
ers should behave but how they appear to be-
have when confronted with such choices (at
least at the aggregate level, cf. Epper et al.,
2011). Such models (e.g., cumulative prospect
theory [CPT] for risky choice and hyperbolic
discounting [HD] for intertemporal choice) are
utility-based models: A utility (or subjective
value) is calculated for each option, and the
option with the highest utility is chosen. How-
ever, what these models lack is a psychological
process account of why choices are better fit by
hyperbolic than exponential functions, or by
nonlinear than linear weighting functions (cf.
Stewart, Chater, & Brown, 2006). In other
words, these models do not explain how the
utility of each option is estimated and the psy-
chological processes that are involved. Answer-
ing this “how” question requires the develop-
ment of cognitive process models which specify
the components and relations between the
(thought) processes engaged when making such
choices (e.g., Appelt, Hardisty, & Weber, 2011;
Brandstätter, Gigerenzer, & Hertwig, 2006;
Shafir, Simonson, & Tversky, 1993; Vlaev,
Chater, Stewart, & Brown, 2011; E. U. Weber
et al., 2007).

In the field of speeded multialternative
forced-choice decision-making, such cognitive
process models have been in use for almost four
decades (e.g., Ratcliff, 1978; Brown & Heath-
cote, 2008). The cognitive models of choice in
the field of response time (RT) research are
called sequential accumulator models. Among
others, these models have been successfully ap-
plied to experiments on perceptual discrimina-
tion, letter identification, lexical decision, cate-
gorization, recognition memory, and signal
detection (e.g., Ratcliff, 1978; Ratcliff, Gomez,
& McKoon, 2004; Ratcliff, Thapar, & McKoon,
2006, 2010; van Ravenzwaaij, Dutilh, &
Wagenmakers, 2012; van Ravenzwaaij, van der
Maas, & Wagenmakers, 2011; Wagenmakers,
Ratcliff, Gomez, & McKoon, 2008). Evidence
accumulation models such as decision field the-
ory (Busemeyer & Townsend, 1993) and the
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leaky competing accumulator (Usher & Mc-
Clelland, 2001) have been applied in the do-
main of risky choice, and the domain of inter-
temporal choice (see Dai & Busemeyer, 2014;
Rodriguez, Turner, & McClure, 2014).

One of the advantages of such a modeling
approach is that it allows researchers to decom-
pose observed RTs and choice proportions into
latent psychological processes such as speed of
cognitive processing, response caution, and
nondecision time. More traditional analyses
make no attempt to explain the observed data by
means of a psychologically plausible process
model.

One key difference between intertemporal
and risky choice on the one hand and traditional
RT research on the other is that in the former
field, decisions are rarely timed (but see, e.g.,
Dai & Busemeyer, 2014; Rodriguez et al.,
2014). RTs could potentially teach us a lot
about people’s preferences. For instance, con-
sider on the one hand the choice between re-
ceiving $100 now or $10,000 in 2 months and
on the other hand the choice between receiving
$100 now or $150 in 2 months. In both in-
stances, you might prefer the LL option. As a
result, your choice preference will look the
same. However, the first choice was most likely
a much easier one to make than the second one.
Your strength of preference in the first choice in
favor of the LL option was likely much larger.
This strength of preference would likely be re-
flected in a lower RT compared to the RT as-
sociated with your decision for the second
choice.

Another difference between intertemporal
and risky choice and traditional RT research is
that the response options are about preference
and as such, there are no correct answers. This
presents a difference on the conceptual level,
but on the model level, there are no obstacles as
evident by some recent applications of sequen-
tial accumulator models to preference data (see,
e.g., Dai & Busemeyer, 2014; Hawkins et al.,
2014; Rodriguez et al., 2014; Trueblood,
Brown, & Heathcote, 2014).

In this article, we present data from two ex-
periments that contained both intertemporal and
risky choices. In Experiment 1 participants had
to make a choice between a SS (“now”) and a
LL option for the intertemporal choice trials,
and a choice between a certain–smaller and a
risky–larger option for the risky choice trials. In

Experiment 2 the intertemporal and risky com-
ponents were combined within trials: Partici-
pants had to make a choice between a certain–
now–smaller and a risky–later–larger option. In
both experiments the now/certain options re-
mained constant across choice trials: $100 with
certainty, right now. We pressed our partici-
pants to make their responses as quickly as
possible while still being able to show their true
preferences. We then applied a cognitive pro-
cess model to the data.

One of the main objectives of the present
analysis is to uncover the potential for a shared
component that drives decision-making in both
intertemporal and risky choices. Previous re-
search has identified several parallels and sim-
ilarities between probability and delay. For ex-
ample, Chapman and Weber (2006) examined
whether two well-documented biases in risky
and intertemporal choice (the common ratio ef-
fect, and the common difference effect, respec-
tively) can be accounted for by the same under-
lying mechanism. Other studies have found
evidence for psychological equivalence be-
tween probability and delay, suggesting that
probability can be translated or treated as delay
(e.g., Rachlin, Raineri, & Cross, 1991; Yi, de la
Piedad, & Bickel, 2006), and vice versa, that
delay can be treated as uncertainty (e.g.,
Baucells & Heukamp, 2010; Keren & Ro-
elofsma, 1995). In addition, recent theoretical
and modeling attempts have assumed similar
functional forms for delay discounting (i.e., de-
crease of a reward value with increases in delay)
and probability discounting (i.e., decrease of a
reward value with decreases in probability). For
instance, Vanderveldt, Green, and Myerson
(2015) observed that a hyperboloid function of
delay and probability discounting can describe
discounting patterns in both domains. While
their model provides an excellent fit to the
choice data, it is a descriptive “as-if” model, in
the sense that it does not account for the under-
lying thought processes that drive preferential
choice. With our cognitive process model and
the simultaneous examination of choices and
RTs (i.e., strength of preference), we take the
idea of parallelism in delay and probability dis-
counting one step further by exploring the po-
tential for a unifying psychological process that
governs preferences in both intertemporal and
risky choices.
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The model also allowed us to test to what
extent the absolute attractiveness of the now/
certain options (which was always an immedi-
ate $100 with certainty in our experiments)
change with variations in the delayed/risky
choice options with which it was paired. Such a
test is difficult with behavioral data or descrip-
tive models of choice that typically only provide
insight into the relative attractiveness of two
presented choice options.1 Following this, our
model constitutes a natural test of integrative
expected and subjective expected utility-based
models which assume an overall fixed utility for
each option irrespective of the context or the
alternative to which it is compared (see also
Brandstätter et al., 2006).

The remainder of this article is organized as
follows: In the next section, we will introduce
our sequential accumulator model of choice: the
linear ballistic accumulator model (LBA;
Brown & Heathcote, 2008). We will then de-
scribe our experiments in detail. Next, we dis-
cuss the behavioral results and then the model-
ing results. We conclude with a discussion of
the gains of our cognitive modeling approach
and the lessons learned about the shared nature
of delay and probability.

The Linear Ballistic Accumulator Model

In the LBA for multialternative RT tasks
(Brown & Heathcote, 2008), the decision-
making process is conceptualized as the accu-
mulation of information over time. A response
is initiated when the accumulated evidence
reaches a predefined threshold. An illustration
for an intertemporal choice with two response
options is given in Figure 1.

The LBA assumes that the decision process
starts from a random point between 0 and A,
after which information is accumulated linearly
for each response option. The rate of this evi-
dence accumulation is determined by drift rates
d1 and d2, normally distributed over trials with
means �1 and �2, and standard deviation s,
which we assume here to be equal for both
accumulators. For the current application, drift
rates are truncated at zero to prevent negative
accumulation rates. Threshold b determines the
speed–accuracy tradeoff; lowering b leads to
faster RTs at the cost of a higher error rate (but
see Rae, Heathcote, Donkin, Averell, & Brown,
2014). The distance between threshold b and the

maximum start point A is quantified by B, such
that b � A � B.

Together, these parameters generate a distri-
bution of decision times DT. The observed RT,
however, also consists of stimulus-nonspecific
components such as stimulus encoding, re-
sponse preparation and motor execution, which
together make up nondecision time t0. The
model assumes that t0 simply shifts the distri-
bution of DT, such that RT � DT � t0 Luce
(1986). Hence, the three key components of the
LBA are (a) the speed of information process-
ing, quantified by mean drift rate �; (b) response
caution, quantified by distance from start point
to threshold that averages at b – A/2; and (c)
nondecision time, quantified by t0.

The LBA has been applied to a number of
perceptual discrimination paradigms (e.g.,
Cassey, Gaut, Steyvers, & Brown, 2015;
Cassey, Heathcote, & Brown, 2014; Forstmann
et al., 2008, 2010; Ho, Brown, & Serences,
2009; van Ravenzwaaij, Provost, & Brown,
2017). Recently, the LBA has also been applied
to preference data. For instance, Hawkins et al.
(2014) applied the LBA to consumer preference
data toward mobile phones. In an adaptation of
the LBA developed by Trueblood et al. (2014),

1 Descriptive models also provide measures of absolute
attractiveness for each option (i.e., the subjective utility),
but it is the relative attractiveness that defines preferences
and choice.

Figure 1. The linear ballistic accumulator and its param-
eters for an intertemporal choice with two response options.
Evidence accumulation begins at start point k, drawn ran-
domly from a uniform distribution with interval [0, A].
Evidence accumulation is governed by drift rate d, drawn
across trials from a normal distribution with mean � and
standard deviation s. A response is given as soon as one
accumulator reaches threshold B. Observed response time is
an additive combination of the time during which evidence
is accumulated and nondecision time t0.
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the model was fit to preference data of three
kinds of context effects: similarity, compro-
mise, and attraction. Rodriguez et al. (2014)
applied the LBA to intertemporal choice data
and concluded that “perceptual and value-based
decision-making may depend on similar com-
parison and selection processes” (p. 7).

The interpretation of the drift rate parameter
changes when applying sequential accumulator
models to preference data without an inherent
correct answer. Rather than speed of informa-
tion processing, drift rate reflects the strength of
preference for a choice option. For this applica-
tion, we define drift rates as representing a
weighted sum of an option’s attribute values
(amount, delay, and probability). In other
words, each attribute’s contribution to the
strength of preference depends on the impor-
tance or attention placed on each attribute,
quantified by scaling parameters (or weights;
see the Implementation of the Model section for
more details). This definition of preferential
strength allows us to test three specific accounts
of how choice preferences vary with different
levels of delay and probability.

Specifically, we examine how preferences for
the now/certain options are formed in relation to
the values of the choice attributes of the de-
layed/risky options. The first account (“propor-
tional”) assumes that the value of the now/
certain option changes proportionally to
different alternatives for the delayed/risky op-
tion. The choice attributes (amount, delay, and
probability) in the now/certain and delayed/
risky options have different weights, suggesting
that the importance or attention placed on each
attribute varies between the two options. On the
other hand, the “invariant” account simply as-
sumes that the absolute value (preferential
strength) of the now/certain option remains con-
stant across all choice trials, irrespective of the
attribute values of the delayed/risky option.
Consequently, this model suggests that a single
absolute value for the now/certain option is
estimated (that is, a single drift rate across all
trials—no scaling parameters or weights needed).
This “invariant” account resembles expected
utility-based models, which assume a single
fixed value for an option regardless of the con-
text (i.e., alternative options) in which a deci-
sion is made. The last account (“symmetrical”)
presents a compromise between the two afore-
mentioned “extreme” accounts: While the value

of the now/certain option does not remain con-
stant, the choice attribute weights are identical
between the two options. For each model ac-
count, we examined linear and nonlinear (i.e.,
power transformations of each attribute’s val-
ues) functional forms for the drift rate �, and
different assumptions relating to the upper start-
ing point A. We formally describe these variants
of the LBA in the Implementation of the Model
section.

We fit the LBA to intertemporal and risky
choice data simultaneously. Thus, our work
presents the first attempt to examine the poten-
tial for a unifying underlying process that gov-
erns preferences in both intertemporal and risky
choices.

Experiment 1

We set out to model people’s preferences on
intertemporal and risky choices separately. Par-
ticipants completed a task with two separate
blocks of intertemporal choice and risky choice
trials. We report the behavioral results of this
experiment, as well as the modeling results pro-
vided by fitting the LBA.

Method

Participants. Forty undergraduate students
(26 female; Mage � 19.40) at the University of
New South Wales participated in return for
course credit. For each participant, one of their
preferences from the risky choice trials was
randomly selected. If the participant preferred
the risky option in that specific choice trial, the
gamble was played for real (e.g., $200 with
50% chance). In case of a win, the participant
was paid 2% of the amount (e.g., $4 as 2% of
$200) and nothing otherwise. Those who pre-
ferred the sure option were paid $2 (i.e., 2% of
$100 for sure).2

Materials. The experiment consisted of
380 intertemporal choice and 380 risky choice
trials. For the intertemporal choices, partici-
pants had to indicate what they preferred: $100
now or $X in D months, with $X varying from

2 At the outset, participants were told that one trial from
the experiment would be selected and the gamble would be
played for real. To facilitate payment, the (pseudo)randomly
selected trial always came from the risky choice trials, but
participants did not know this, thus creating the impression
of equal incentives for both phases of the experiment.
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$120 to $500 in $20 increments (for a total of 20
amounts) and D varying from 2 months to 38
months in 2-month increments (for a total of 19
delays). Thus, every combination of amount
and delay was presented to participants once as
an alternative to $100 now (D � 0).

For the risky choices, participants had to in-
dicate what they preferred: $100 for sure or $X
with P% chance, with $X varying from $120 to
$500 in $20 increments (for a total of 20
amounts) and P varying from 5% to 95% in 5%
increments (for a total of 19 probabilities).
Thus, every combination of amount and proba-
bility was presented to participants once as an
alternative to $100 for sure (p � 100%).

Procedure. Participants completed the ex-
periment in two sessions, of 380 trials each (190
risky choice trials and 190 intertemporal choice
trials). Within a session, the order of the trials
was blocked (i.e., all risky together, all inter-
temporal together) and counterbalanced. The
two sessions were separated by a minimum of 3
hours (i.e., some participants completed the ses-
sions on consecutive days, others in the morn-
ing and afternoon of the same day).

Implementation of the Model

We used a hierarchical Bayesian implemen-
tation of the LBA (Turner, Sederberg, Brown,
& Steyvers, 2013). Advantages of the hierarchi-
cal Bayesian framework include the ability to fit
the LBA to data with relatively few trials, be-
cause the model borrows strength from the hi-
erarchical structure. This advantage is impor-
tant, as we are working with a task for which we
essentially have only a single trial per partici-
pant for each type of choice (one single combi-
nation of $X and D for intertemporal choices
and a combination of $X and P% for risky
choices). The Bayesian set-up allows for using
Markov chain Monte Carlo (MCMC) sampling,
which is an efficient way of finding the optimal
set of parameters (Gamerman & Lopes, 2006;
Gilks, Richardson, & Spiegelhalter, 1996; van
Ravenzwaaij, Cassey, & Brown, 2018).

We fit three different model accounts that
differed on how they model the choice process:
proportional, symmetrical, and invariant.
Within each model account we examined four
different assumptions (variants) relating to the
starting point parameters and the functional
form of the drift rate. Specifically, the “2A”

model-variant assumed two parameters for the
upper range of starting point A for each type of
choice (i.e., AI for intertemporal and AR for
risky choices), whereas the “4A” variant had
four starting point parameters for each choice op-
tion in the task (i.e., in the intertemporal choice
task AIN

and AID
for the now and delayed-choice

options, respectively, and in the risky choice task
ARC

and ARR
for the certain and risky choice op-

tions, respectively). The “4A” variants assume that
a response bias is associated with every choice
option, indicating that for some choice options
less evidence might be required to reach a deci-
sion. For the drift rates, we examined linear and
nonlinear versions. Thus, for each model account
we fit four model-variants: linear-2A, linear-4A,
nonlinear-2A, and nonlinear-4A. In total we fit 12
models. For all models we assumed two parame-
ters for threshold B (BI for intertemporal and BR
for risky choices). We first describe the “propor-
tional” model, then describe the two other model
accounts by referring to changes to the “propor-
tional” model.

For the intertemporal choice task, the linear
“proportional” model (both the 2A and 4A vari-
ants) included drift rates for the “now” and
“delayed” options as follows:

�N � �N0
� �NX

� ($X ⁄ 20 � 6) � �ND

� (19 � D ⁄ 2)
�D � �D0

� �DX
� (25 � $X ⁄ 20) � �DD

� (D ⁄ 2 � 1),

(1)

where �N and �D denote drift rates for the now
and the delayed-choice options, �N0

and �D0

denote offset parameters for the now and the
delayed-choice options, $X denotes the amount
in dollars for the delayed-choice option, D de-
notes delay in months for the delayed-choice
option, �NX

and �DX
are amount scale parame-

ters for the now and the delayed-choice options,
and �ND

and �DD
are delay scale parameters for

the now and the delayed-choice options. �N �
�N0

if $X � 120 and D � 38 (the option that
most favors the “now” choice). �D � �D0

if
$X � 500 and D � 2 (the option that most
favors the “delayed” choice). For the nonlinear
version (both the 2A and 4A variants), we ap-
plied a power transformation (� parameters), on
the numerical values of amount and delay of
each option, thus adding two extra parameters
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to be estimated (same � for amount and delay
across the two options).

For the risky choice task, the linear “propor-
tional” model (both the 2A and 4A variants)
included drift rates for the “certain” and “risky”
options as follows:

�C � �C0
� �CX

� ($X ⁄ 20 � 6) � �CP

� (P ⁄ 5 � 1)
�R � �R0

� �RX
� (25 � $X ⁄ 20) � �RP

� (19 � P ⁄ 5),

(2)

where �C and �R denote drift rates for the cer-
tain and risky choice options, �C0

and �R0
denote

offset parameters for the certain and risky
choice options, $X denotes the amount in dol-
lars for the risky choice option, P denotes the
payout probability for the risky choice option,
�CX

and �RX
are amount scale parameters for the

certain and the risky choice options, and �CP

and �RP
are probability scale parameters for the

certain and the risky choice options. �C � �C0
if

$X � 120 and P% � 5 (the option that most
favors the certain option). �R � �R0

if $X � 500
and P% � 95 (the option that most favors the
risky option).3 As in the specification for the
intertemporal choice task, the nonlinear drift
rates for the risky choice task included power
transformations (� parameters) of each option’s
amount values. Unlike amount and delay, we
did not apply a power transformation for prob-
ability (i.e., � � 1).

We fit two other models that test specific
assumptions about the underlying choice pro-
cess. The first model (“invariant”), estimates a
single �N parameter (i.e., drift rate for the now
option) for all intertemporal choice trials and a
single �C parameter (i.e., drift rate for the cer-
tain option) for all risky choice trials. Concep-
tually, this simpler model assumes that the ab-
solute value of the now/certain option does not
change with different alternatives for the de-
layed/risky option. Essentially, the objectively
invariant option would also be perceived as
invariant by the decision makers.

The final model (“symmetrical”) presents a
compromise between the “proportional” model
and the “invariant”. The model assumes that
�NX

� �DX
, �ND

� �DD
, �CX

� �RX
, and �CP

�
�RP

. This means that contrary to the “invariant”
model, the �N parameter and the �C parameter

are not fixed to a single value. Instead, drift rates
for the now/certain option vary symmetrically
(though in the opposite direction) with drift rates
for the delayed/risky option. Table 1 presents the
12 models that we fit (3 Model Accounts � 4
Variants) and their associated parameters.

The comparison of the “proportional,” the
“invariant,” and the “symmetrical” models will
teach us something about the change in subjec-
tive evaluation of the now/certain choice option.
Is the subjective evaluation of the now/certain
choice option fixed irrespective of the delayed/
risky choice option, does the subjective evalu-
ation of the now/certain choice option vary
symmetrically with the delayed/risky choice op-
tion, or does the now/certain choice option vary
nonsymmetrically but proportionally with the
delayed/risky choice option? In addition, is the
linear form of the drift rate sufficient to explain
how preference is accumulated, or can more com-
plex nonlinear relationships provide a better ac-
count for strength of preference? Do we need
separate starting points for each choice option in
the task (4A models) to account for a priori biases
for either the now/delayed or the certain/risky
options, or two starting points for the intertempo-
ral choice and risky choice tasks (2A models)? We
will use formal model comparison to find the
account best supported by the data. Details on
starting values, prior distributions, and number of
iterations may be found in the Appendix.

Subjective Value and Discounted
Utility Models

To compare the performance of the LBA
model against standard approaches in risky and
intertemporal choice, we fit a Prospect Theory
(PT) model to the risky choice data (Kahneman
& Tversky, 1979; Tversky & Kahneman, 1992),
and a HD model to the intertemporal choice
data (Myerson & Green, 1995). For the risky
choice data, the subjective value V of a risky
prospect is given by

V � � w(pi)u(Xi), (3)

where w(pi) is the decision weight (transformed
value of objective probability p, as produced by

3 Note that t0 is fixed to be the same for the intertemporal
and the risky choice tasks.
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a probability weighting function; see Equation
5) and u is the utility of receiving reward X. For
utility u, we assumed a power utility function

u(X) � X�. (4)

For the probability weighting function, we used
the two-parameter version proposed by Gonza-
lez and Wu (1999):

w(p) �
�p�

�p� 	 (1 � p)� , (5)

where � represents the curvature and 	 repre-
sents the elevation of the weighting function.

Similarly, for the intertemporal choice data,
the discounted value V of a delayed option is

V � � D(ti)u(Xi) (6)

where D represents the discount function. We
used a two-parameter variant of HD:

D(t) �
1

(1 	 kt)s , (7)

where k is the discounting rate and s governs the
curvature of the hyperbola (Myerson & Green,
1995). For utility, we used the same power func-
tion as for the risky choice task (Equation 4).

Table 1
Outline of the 12 Models (3 Model Accounts: Proportional, Invariant, and
Symmetrical � 4 Variants: Linear-2A, Linear-4A, Nonlinear-2A, and Nonlinear-
4A) and Their Parameters That Were Fit to the Data of Experiment 1

Model P Task Parameters

Proportional
Linear-2A 17 I AI, �N0

, �NX
, �ND

, �D0
, �DX

, �DD
R AR, �C0

, �CX
, �CP

, �R0
, �RX

, �RP
Nonlinear-2A 20 I AI, �N0

, �NX
, �ND

, 
IX
, 
ID

, �D0
, �DX

, �DD
R AR, �C0

, �CX
, �CP

, 
RX
, �R0

, �RX
, �RP

Linear-4A 19 I AIN
, AID

, �N0
, �NX

, �ND
, �D0

, �DX
, �DD

R ARC
, ARR

, �C0
, �CX

, �CP
, �R0

, �RX
, �RP

Nonlinear-4A 22 I AIN
, AID

, �N0
, �NX

, �ND
, 
IX

, 
ID
, �D0

, �DX
, �DD

R ARC
, ARR

, �C0
, �CX

, �CP
, 
RX

, �R0
, �RX

, �RP
Invariant

Linear-2A 13 I AI, �N, �D0
, �DX

, �DD
R AR, �C, �R0

, �RX
, �RP

Nonlinear-2A 16 I AI, �N, �D0
, �DX

, �DD
, 
DX

, 
DD
R AR, �C, �R0

, �RX
, �RP

, 
RX
Linear-4A 15 I AIN

, AID
, �N, �D0

, �DX
, �DD

R ARC
, ARR

, �C, �R0
, �RX

, �RP
Nonlinear-4A 18 I AIN

, AID
, �N, �D0

, �DX
, �DD

, 
DX
, 
DD

R ARC
, ARR

, �C, �R0
, �RX

, �RP
, 
RX

Symmetrical
Linear-2A 13 I AI, �N0

, �D0
, �IX

, �ID
R AR, �C0

, �R0
, �RX

, �RP
Nonlinear-2A 16 I AI, �N0

, �D0
, �IX

, �ID
, 
IX

, 
ID
R AR, �C0

, �R0
, �RX

, �RP
, 
RX

Linear-4A 15 I AIN
, AID

, �N0
, �D0

, �IX
, �ID

R ARC
, ARR

, �C0
, �R0

, �RX
, �RP

Nonlinear-4A 18 I AIN
, AID

, �N0
, �D0

, �IX
, �ID

, 
IX
, 
ID

R ARC
, ARR

, �C0
, �R0

, �RX
, �RP

, 
RX

Note. P � number of free parameters per participant; I � intertemporal choice task; R �
risky choice task. In addition to the parameters listed above, all models include a single t0
(nondecision time) and two threshold parameters BI and BR for the intertemporal and risky
choice tasks, respectively.
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Both models assume deterministic choice,
that is, the choice option with the highest ex-
pected or discounted value is selected. Here, we
assumed a probabilistic choice rule, where the
probability of choosing the safe option over the
risky option (p[S]), or the probability of choos-
ing the now option over the delayed (p[N]) is
given by the softmax rule:

p(S) �
exp{�V(S)}

exp{�V(S)} 	 exp{�V(R)}
(8)

where 
 denotes the sensitivity (inverse-temper-
ature) parameter, indicating the degree to which
choice probabilities adhere to numerical differ-
ences between V(S) and V(R) in risky choice,
and V(N) and V(D) for intertemporal choice. To
find the best fitting parameters, we used maxi-
mum likelihood estimation techniques. We fit
both models to the risky and intertemporal
choice data simultaneously for each participant
(six parameters in total: �, �, 	, k, s, 
). The
procedure was a combination of grid search
(300 different starting points for each set of
parameters) and Nelder–Mead simplex methods
(Nelder & Mead, 1965).

Behavioral Results

Choice. All participants completed the ex-
periment.4 Two participants were excluded
from analysis: One participant had chosen the
“delayed” option for every single choice, and
another participant had seemingly responded
randomly, producing responses that seemed
largely inconsistent when compared against one
another. Also, we excluded extreme RTs that
were slower than 7 s and faster than 250 ms
(2.8% of all trials). Preference data for the in-
tertemporal choice trials can be found in the
top-left panel of Figure 2. The figure shows
group average proportion data. Proportions
close to 0 indicate a uniform preference for the
$100 now option. Proportions close to 1 indi-
cate a uniform preference for the delayed op-
tion. The results show that participants prefer
the now option when the delayed option does
not pay very well (i.e., amounts not much
higher than $120) or when the delay is long
(i.e., close to 38 months). In contrast, partici-
pants prefer the delayed option when the de-
layed option pays well (i.e., amounts close to

$500) or when the delay is short (i.e., close to
now).

To examine the factors affecting choice of the
SS or LL options in the intertemporal choice
trials, we performed a mixed-effects logistic
regression with amount and delay of the LL
option as fixed effects (centered and scaled) and
participant-specific random intercepts and
slopes (for amount and delay). As expected,
there was a significant positive effect of amount
(b � 2.13, z � 8.94, p � .001), indicating that
as amount offered by the LL option increased,
so did the likelihood of selecting the delayed
option. In line with the observations from Fig-
ure 2, as delay increased participants were more
likely to select the SS (“now”) option (b �
�3.05, z � �3.06, p � .001).

Preference data for the risky choice trials
can be found in the bottom-left panel of Fig-
ure 2. The figure shows group average pro-
portion data. Proportions close to 0 indicate a
uniform preference for the risk-free option of
$100. Proportions close to 1 indicate a uniform
preference for the risky option. The results
show that participants prefer the certain option
when the risky option does not pay very well
(i.e., amounts not much higher than $120) or
when the payout probability is low (i.e., close to
5%). In contrast, participants prefer the risky
option when the risky option pays well (i.e.,
amounts close to $500) or when the payout
probability is high (i.e., close to 95%). We
performed the same analysis for the risky
choices, with amount and payout probability of
the risky option as fixed effects and participant-
specific random intercepts and slopes, which
showed that both payout probability (b � 5.67,
z � 12.03, p � .001) and amount (b � 1.32, z �
8.78, p � .001) are significant predictors of
risky choice rates. The positive sign of both
regression coefficients indicates that partici-
pants were more likely to select the risky option
when amount and payout probability increased.

Response times. The choice data indicates,
perhaps unsurprisingly, that people prefer high
payout, short delays, and high probability. What
can we learn from the RT data? Overall, higher

4 All data, analyses, and modeling scripts from Experi-
ments 1 and 2 are available on Open Science Framework:
https://osf.io/4dchn/. The analyses reported in this article
contain all variables of interest and experimental conditions
that we tested.
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RTs were associated with intertemporal choices
(M � 1,862 ms) compared to risky choices
(M � 1,420 ms). Also, certain or now options
were chosen faster (M � 1,422 ms) than risky
or delayed options (M � 2,031 ms). Figure 2C
shows group-average RT data for the intertem-
poral choice trials. Low RTs are closer to blue
(darker color) on the color spectrum and high
RTs are closer to yellow (lighter color). The

results show that the more extreme preferences
in terms of proportion are accompanied by
lower RTs (see also Dai & Busemeyer, 2014).
The choices for which preferences varied
among participants (
50%; the black diago-
nal in Figure 2A) are accompanied by higher
RTs (the yellow (lighter color) diagonal in
Figure 2C), indicating a lower absolute
strength of preference.
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Figure 2. Behavioral data of the intertemporal and risky choice trials in Experiment 1
averaged over participants. (A) Proportion of preference data for intertemporal choices. A
proportion of 0 (blue [black]) indicates exclusive preference for the $100 now option, and a
proportion of 1 (yellow [white]) indicates exclusive preference for the delayed option. Black
boxes represent proportions around 0.50. (B) Proportion of preference data for risky choices.
A proportion of 0 (blue [black]) indicates exclusive preference for the $100 certain option, and
a proportion of 1 (yellow [white]) indicates exclusive preference for the risky option. Black
boxes represent proportions around 0.50. (C) Response time (RT) data for intertemporal
choices. (D) RT data for risky choices. Low RTs are closer to blue [black] on the color
spectrum. See the online article for the color version of this figure.
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Figure 2D shows group-average RT data for
the risky choice trials. Similar to the intertem-
poral choice RTs, the results show that the more
extreme preferences in terms of proportion are
accompanied by lower RTs. The choices for
which preferences varied among participants
(the darker axis from the top-left to the mid-
right in Figure 2B) are accompanied by higher
RTs (the yellow (lighter color) axis in Figure
2D), indicating a lower absolute strength of
preference.

In sum, people prefer high payout, short de-
lays, and high probability. As for RTs, people
take less time making risky choices than inter-
temporal choices, and take a relatively short
time to make choices for which response
options are extreme. In the next section, we turn
to the modeling results. We are looking for two
things: (a) Are strengths of preference observed
in the behavioral results reflected in the pattern
of drift rates in the models we consider? (b)
How do people weigh delay and probability in
their choices?

Modeling results. Parameter convergence
was satisfactory as indicated by the individual
chains mixing properly.5 Numerically, we com-
pare the “proportional,” the “invariant,” and the
“symmetrical” models (and their variants) by
calculating the deviance information criterion
(DIC; Spiegelhalter, Best, Carlin, & van der
Linde, 2002), a measure that balances goodness
of fit against model complexity.6 DIC values
for the 12 models can be found in Table 2. The
table shows that in terms of the DIC criterion, the
best-fitting model is the linear-4A “proportional”
model and the worst model belongs to the “invari-
ant” account (nonlinear-4A model). This sug-
gests that decision makers’ absolute valuation
of the now and certain options in the intertem-
poral and risky domains, respectively, change
with different alternatives (different values of
delay and probability) for the delayed and risky
options. In addition, the best-fitting model
shows that the linear functional form of the drift
rate and separate starting points for the drift
process of each choice option provide better fits
than its competitors.

We examined posterior predictive data for the
best fitting linear-4A “proportional” model, and
compared these to the behavioral data (posterior
predictive data for the other two models—
invariant and symmetrical—can be seen in the
online supplemental materials). Figure 3 indi-

cates that the model fits the RT and choice data
well. It provides good fits for RTs of all choice
options, and accounts for observed choice propor-
tions (see the choice panel).7 Figure 3 also shows
choice simulations based on the best fitting param-
eters for the PT and HD models. It can be seen that
these models provide a good fit to the data, almost
indistinguishable from the predictions of the LBA
model. In other words, accounting for RT data (in
addition to choice data) does not affect the way
that the LBA accounts for and predicts partici-
pants’ preferential choices.8

What can we learn from the resulting esti-
mated parameters? Table 3 contains median val-
ues of the group parameters of the best-fitting
model (i.e., the linear-4A “proportional”; see the
online supplemental materials for group-level
posterior distributions of parameters). Given the
particular set of delays, probabilities, and
amounts we used, there are three things that the
model parameters indicate: First, amount fac-
tors more in the decision for intertemporal
choices than for risky choices as evidenced by
larger values for �NX

and �DX
than for �CX

and
�RX

. Second, risk factors more in the decision
than delay as evidenced by larger values for �CP

5 The focus of the modeling results is on the LBA and we
will refer to the expected and discounted utility models (PT
and HD) wherever necessary.

6 DIC is similar to the well-known Bayesian (BIC) and
Akaike (AIC) information criterion measures. However, in
hierarchical models, the number of free parameters is not
well-defined. As such, DIC quantifies model complexity as
across-sample variability in model fit instead. Lower values
of DIC indicate better support for a model from the data.

7 It is important to note that every cell in our design
contained only a single observation (i.e., any participant
contributed only a single choice for each amount/delay or
amount/probability combination). As such, our data are
relatively noisy, and the model fits reflect that noise.

8 The mean squared error on the simulated choice pro-
portions for each model and choice type, 1

n�i�1
n �Ci �

Ĉi�2, where n � 380, the number of trials for each type of
choice, C is the observed (data) proportion of choices for the
delayed/risky options for each individual choice, and Ĉ is
the predicted (model) proportion of choices: LBAI � 0.083,
HD � 0.053, LBAR � 0.093, PT � 0.070. However,
caution is advised when attempting direct quantitative com-
parisons between the two modeling frameworks: (a) the
LBA assumes deterministic choice whereas the PT and HD
models assume probabilistic choice (as they were imple-
mented in this article), (b) different methodologies were
used to estimate the parameters, and (c) the two modeling
frameworks differ in terms of model complexity (e.g., num-
ber of free parameters) and functional form (see Pitt &
Myung, 2002).
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and �RP
than for �ND

and �DD
. Finally, decisions

are made quicker on average for risky than for
intertemporal choices as evidenced by higher
drift rates and a lower response threshold for
risky (BR) than for intertemporal choices (BI).

9

To delve more deeply into the modeling re-
sults, we examine individual drift rates for each
choice and each participant by entering the ap-
propriate parameters into Equation 1 and Equa-
tion 2. The difference between the resulting
drift rates for all participants’ intertemporal
choice data, �N � �D, can be found in Figure 4.
A highly positive difference between the now
drift rate and the delayed drift rate indicates a
strong preference for the now option. A highly
negative difference between the now drift rate
and the delayed drift rate indicates a strong
preference for the delayed option. The results
show there are considerable individual differ-
ences in the extent to which participants weigh
amount and delay. For example, P5 is mostly
driven by the amount (as indicated by the pre-
dominantly vertical transition in colors),
whereas P1 tends to be driven by the delay (as
indicated by the predominantly horizontal tran-
sition in colors). We also see differences in the
proportions of choices: participants for whom
yellow (lighter color) dominates generally pre-
fer the now option, whereas participants for

whom blue (darker color) dominates generally
prefer the delayed option.

The difference between the resulting drift
rates for all participants’ risky choice data, �C �
�R, can be found in Figure 5. Note that partic-
ipants are location matched across the figures.
The results show that most participants had their
strength of preference almost exclusively be
determined by probability, rather than amount
(the transition among colors goes predomi-
nantly along the vertical axis). There are still a
few exceptions to this rule, for instance P12
who seems to weigh amount and probability
almost evenly. The other stand-out observation
here is that people are very risk averse: Across
the board, we see a lot more blue (darker color)
than we see yellow (lighter color).

Discussion

Experiment 1 showed that in an intertemporal
choice setting, people prefer high payouts and
short delays. In a risky choice setting, they
prefer high payouts and high payout probabili-
ties. We have showed how RT data can aug-
ment the information provided by choice re-

9 Results from a parameter recovery analysis are pre-
sented in the online supplemental materials.

Table 2
Deviance Information Criterion (DIC) Values Summed Over Participants for All
12 Models Fit to the Experiment 1 Data Set

Model P Deviance pD DIC

Proportional
Linear-2A 17 57,459.82 549.43 58,558.68
Nonlinear-2A 20 57,881.67 914.51 59,710.69
Linear-4A 19 57,135.14 651.98 58,439.09
Nonlinear-4A 22 57,885.15 920.59 59,726.34

Invariant
Linear-2A 13 65,653.85 382.53 66,418.90
Nonlinear-2A 16 65,652.03 490.78 66,633.61
Linear-4A 15 64,988.77 388.96 65,766.65
Nonlinear-4A 18 65,053.51 537.21 66,127.92

Symmetrical
Linear-2A 13 60,102.31 407.51 60,917.34
Nonlinear-2A 16 60,074.14 495.70 61,065.56
Linear-4A 15 59,576.31 471.22 60,518.74
Nonlinear-4A 18 59,758.51 555.81 60,870.14

Note. P � number of free parameters per participant; Deviance � �2 times the likelihood
of the mean parameter estimate; pD � �2 times the mean likelihood of the overall model �
2 times the likelihood of the mean parameter estimate; DIC � deviance � 2pD. Boldface
indicates the best model for these data (i.e., the linear-4A proportional model).
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sponses: in conjunction with choice responses
they give a measure of strength of preference. In
our experiment, decisions were made quicker
on average for risky than for intertemporal
choices. In addition, the formal comparison be-
tween the three model accounts of the LBA
(“invariant,” “proportional,” and “symmetri-
cal”) revealed that the absolute attractiveness of
the now/certain choice option changes with dif-
ferent alternatives for the delayed/risky options
as implemented by the “proportional” model.
The LBA produced almost identical predictions
when compared to standard modeling ap-
proaches in risky and intertemporal choice
(such as PT and HD), suggesting that account-
ing for RT data does not invalidate good pre-
dictions for the choice data: our cognitive pro-
cess model can account for both streams of
behavioral data (choice and RT) equally well.

Experiment 2

Experiment 1 suggested that our instantiation
of LBA can provide a good fit to the choice and
RT data from intertemporal and risky choices
based on a simple concept of accumulated pref-
erential strength. In Experiment 2, we examine
whether our cognitive process model can pro-
vide a good explanation for choice and RT data

when probability and delay combine in a single
option. We also test the three different accounts
of the relationship between now/certain and de-
layed/risky options (“invariant,” “symmetrical,”
and “proportional”) and put LBA to the test by
fitting a standard discounted expected utility
model to intertemporal risky choice data. Thus,
the main objective of Experiment 2 is twofold:
first, to extend the LBA to account for the
combined effect of probability and delay and
second, to examine whether the “proportional”
model will be the best fitting model.

On each trial of the experiment participants
faced a choice between an option that was avail-
able now with certainty and one that differed from
the fixed option in terms of probability, delay, and
amount of money. The full factorial combination
of all the amounts, delays and probabilities for
which we wished to elicit preferences resulted in a
very large number of trials (i.e., 7,220; see Meth-
od). For this reason, in Experiment 2, we decided
to collect a large amount of data from a small
number (four) of participants.

Method

Participants. Four graduate students (two
female; Mage � 23) at the University of New
South Wales participated in return for a $15
participation fee. In addition, they were paid $2

Figure 3. Posterior predictives of the linear-4A proportional model for response times (RTs)
and choice data in Experiment 1. For all panels, circles represent mean posterior predictive
data (error bars indicate 95% credible intervals of the posterior) and squares represent
experimental data. Crossed-out squares (only for the choice panel) indicate simulated pre-
dictive data for prospect theory (risky choice task) and hyperbolic discounting (intertemporal
choice task).
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(i.e., outcome of the sure option) in each of 10
experimental sessions.10

Materials. The experiment consisted of a to-
tal of 7,220 intertemporal and risky choice trials.
For all choices, participants had to indicate what
they preferred: $100 now for sure or $X in D
months with P% chance with $X varying from
$120 to $500 in $20 increments (for a total of 20
amounts), D varying from 2 months to 38 months
in 2-month increments (for a total of 19 delays),
and P varying from 5% to 95% in 5% increments
(for a total of 19 probabilities). Thus, every com-
bination of amount, delay, and probability was
presented to the participant once as an alternative
to $100 now for sure.

Procedure. Participants completed the
experiment in 10 separate experimental ses-
sions, each comprising of 722 choice trials.
Experimental sessions were again separated
by a minimum of three hours for each partic-
ipant. Presentation of the sure option, and the

intertemporal risky option on the screen was
counterbalanced across participants.

Implementation of the Model

Fitting the model to the intertemporal and
risky choice data in Experiment 1 revealed that
the linear-4A model was the best fitting variant
within each model account, indicating that lin-
ear drift rates and separate starting points for
each choice option improves model fits and
predictive accuracy. We assumed the same
model variant in Experiment 2, with linear drift
rates and as many parameters for the upper
starting point A as the number of choice options
(i.e., two: ANC for the now/certain option and
ADR for the delayed/risky option). Thus, in Ex-

10 As in Experiment 1, participants were told that one trial
from the experiment would be selected and the gamble
would be played for real.

Table 3
Parameters of the Linear-4A Proportional Model of the Data From Experiment 1

Description Parameter � �

Intertemporal choice

Starting points (A)
Now AIN

0.90 (0.50, 1.29) 3.27 (2.90, 3.68)
Delayed AID

2.18 (1.66, 2.57) 2.20 (1.75, 2.71)
Threshold BI 0.92 (0.71, 1.11) 1.11 (0.98, 1.28)
Intertemporal drift rates (�N, �D)

Offset: Now �N0
2.96 (2.83, 3.09) 0.97 (0.87, 1.08)

Offset: Delayed �D0
3.43 (3.29, 3.55) 0.93 (0.81, 1.08)

Amount scale: Now �NX
0.12 (0.10, 0.13) 0.13 (0.12, 0.15)

Amount scale: Delayed �DX
0.12 (0.11, 0.13) 0.06 (0.06, 0.07)

Delay scale: Now �ND
0.13 (0.13, 0.14) 0.05 (0.05, 0.06)

Delay scale: Delayed �DD
0.29 (0.27, 0.32) 0.22 (0.19, 0.24)

Risky choice

Starting points (A)
Certain ARC

0.43 (0.21, 0.71) 1.90 (1.68, 2.14)
Risky ARR

2.40 (2.05, 2.66) 1.75 (1.40, 2.22)
Threshold BR 0.91 (0.77, 1.03) 0.72 (0.62, 0.84)
Risky drift rates (�C, �R)

Offset: Certain �C0
3.20 (3.11, 3.29) 0.62 (0.53, 0.75)

Offset: Risky �R0
3.80 (3.69, 3.93) 0.62 (0.46, 0.84)

Amount scale: Certain �CX
0.03 (0.03, 0.03) 0.03 (0.03, 0.03)

Amount scale: Risky �RX
0.09 (0.08, 0.09) 0.06 (0.05, 0.07)

Probability scale: Certain �CP
0.17 (0.16, 0.18) 0.07 (0.06, 0.07)

Probability scale: Risky �RP
0.48 (0.45, 0.52) 0.27 (0.23, 0.30)

Nondecision time t0 0.10 (0.07, 0.13) 0.12 (0.10, 0.13)

Note. Displayed are the median parameter values of the group parameters, with a 50%
credible interval of the posterior presented in parentheses. Rows represent parameters and
columns represent the two group parameters.
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periment 2, we fit the same three model ac-
counts (proportional, invariant, and symmetri-
cal), but focusing on the linear-2A variants of
these model accounts. The linear-2A variant is
identical to the linear-4A variant in Experiment
1, with the only difference being that there were
twice as many choice options in Experiment 1
(four, hence four starting parameters A) com-
pared to only two in Experiment 2 (hence the
2A). As in the implementation of the model in
Experiment 1, we assumed one parameter for
threshold B, and one nondecision time parame-
ter t0.

In Experiment 1 we observed that the same
evidence accumulation (or strength of prefer-

ence) process provided a good fit to both risky
and intertemporal choices. This allowed us to
assume that expanding the drift rates to account
for the combination of probability and delay in
the same choice option would provide a good
account for the risky intertemporal choice data.
The definition of the drift rates of the linear-2A
“proportional” model for the risky intertempo-
ral choice task follows the same principles as
for the drift rates when the two dimensions are
examined in isolation, that is, a weighted sum of
the attribute values of each option. Hence, we
extended the model presented in Experiment 1
to account for the joint effect of delay and
probability as follows:

Figure 4. Absolute difference between the drift rates for the now and delayed options (�N � �D)
across choices and participants (i.e., “P” panels) for the intertemporal choice trials in
Experiment 1. Positive drift rates reflect a preference for the now option and are displayed in
colors that are closer to blue (black) on the color spectrum. Negative drift rates reflect a
preference for the delayed option and are displayed in colors that are closer to yellow (white)
on the color spectrum. See the online article for the color version of this figure.
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�NC � �NC0
� �NCX

� (X ⁄ 20 � 6) � �NCD

� (19 � D ⁄ 2) � �NCP
� (P ⁄ 5 � 1)

�DR � �DR0
� �DRX

� (25 � X ⁄ 20) � �DRD

� (D ⁄ 2 � 1) � �DRP
� (19 � P ⁄ 5),

(9)

where X, D, and P denote the amount in dollars,
delay in months, and payout probability, respec-
tively, for the delayed/risky option, �NC and �DR

denote drift rates for the now/certain and the
delayed/risky choice options, �NC0

and �DR0
de-

note offset parameters for the now/certain and
the delayed/risky choice options, �NCX

and �DRX

denote amount scale parameters for the now/
certain and the delayed/risky choice options,
�NCD

and �DRD
denote delay scale parameters

for the now/certain and the delayed/risky choice
options, and �NCP

and �DRP
denote risk scale

parameters for the now/certain and the delayed/

Figure 5. Absolute difference between the drift rates for the certain and risky options (�C �
�R) across choices and participants (i.e., “P” panels) for the risky choice trials in Experiment
1. Positive drift rates reflect a preference for the certain option and are displayed in colors that
are closer to blue (black) on the color spectrum. Negative drift rates reflect a preference for
the risky option and are displayed in colors that are closer to yellow (white) on the color
spectrum. See the online article for the color version of this figure.
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risky choice options. �NC � �NC0
if X � 120,

D � 38, and P% � 5 (the option that most
favors the now/certain option). �DR � �DR0

if
X � 500, D � 2, and P% � 95 (the option that
most favors the delayed/risky option).

This results in a total of 12 parameters to be
estimated: ANC, ADR, B, t0, �NC0

, �NCX
, �NCD

,
�NCP

, �DR0
, �DRX

, �DRD
, and �DRP

. Together,
these parameters should account for the distri-
bution of RTs and choice proportions for the
combined intertemporal and risky choice data.

Just as for Experiment 1, we fit two other
models that test specific assumptions about the
underlying choice process. The “invariant”
model estimates a single �NC parameter (drift
rate for the now/certain option) for all intertem-
poral risky choice trials. Thus, it replaces the
four free parameters (�NC0

, �NCX
, �NCD

, and
�NCP

) from the definition of �NC under the “pro-
portional” model (see Equation 9) with one free
parameter. Conceptually, this simpler model as-
sumes that the absolute value of the now/certain
option does not change with different alterna-
tives for the delayed/risky option (i.e., same
absolute value for the now/certain option across
all trials). The “invariant” model has nine free
parameters to be estimated. The “symmetrical”
model assumes that drift rates for the now/
certain option vary symmetrically (in the oppo-
site direction) with drift rates for the delayed/
risky option (i.e., �NCX

� �DRX
, �NCD

� �DRD
,

and �NCP
� �DRP

). This model has nine free
parameters to be estimated.

For Experiment 1, the “proportional” model
fit the data better than both the “invariant” and
the “symmetrical” models. Here, we examine if
the same result holds when the intertemporal
and risky elements are combined in a single
choice. Due to the small number of participants,
we fit the models to individual data (as opposed
to hierarchical models in Experiment 1). We
used formal model comparison to find the ac-
count best supported by the data. Details on
starting values, prior distributions, and number
of iterations may be found in the Appendix.

Discounted expected utility model. As in
Experiment 1, we also fit a discounted expected
utility model for the intertemporal risky choice
data. The model combines (in a multiplicative
way) a HD of time and probabilities (see
Vanderveldt et al., 2015):

D(t, �) �
1

[(1 	 kt)sd � (1 	 h�)sp]
. (10)

The first term in the denominator is identical to
the two-parameter HD model used in Experi-
ment 1 (see Equation 7). The second term is the
probability discounting part, where 
 represents
the odds against receiving a reward. It can be
expressed in terms of actual probabilities as 
 �
(1 � p)/p. This form of probability discounting
can be understood as reflecting similar proper-
ties of the probability weighting function
(Equation 5) used in Experiment 1 (see also
Vanderveldt et al., 2015). As in Experiment 1,
the value of a delayed risky prospect is defined
as V � � D�ti, �i�u�Xi�. We used the same
power utility function (Equation 4) and the soft-
max rule (Equation 8) for probabilistic choice.
The parameter estimation procedure was iden-
tical to that in Experiment 1, apart from the fact
that we used 500 starting points for each set of
parameters.

Behavioral Results

Choice and response times. All partici-
pants completed the experiment. As in Experi-
ment 1 we excluded responses that were slower
than 7 s and faster than 250 ms (0.47% of all
trials). Preference data for Experiment 2 can be
found in Figure 6. The figure shows group av-
erage proportion data. Proportions close to 1,
indicate a uniform preference for the delayed/
risky choice. Proportions close to 0 indicate a
uniform preference for the $100 now/certain
choice. The results show that participants prefer
the now/certain option when the delayed/risky
option does not pay very well (i.e., amounts not
much higher than $120), when the delay is long
(i.e., close to 38 months), or when the payout
probability is low (i.e., close to 5%). In con-
trast, participants prefer the delayed/risky op-
tion when it pays well (i.e., amounts close to
$500), when the delay is short (i.e., close to
now), or when the payout probability is high
(i.e., close to 95%).

We analyzed the data using a generalized
linear mixed-effects model (binomial distribu-
tion and logit transformation) with amount, pay-
out probability, and delay in months of the
delayed/risky option as fixed-effects predicting
selection of the delayed/risky option, and ran-
dom intercepts and slopes (amount, probability,
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and delay) for each participant. The results in-
dicated a positive relationship between amount
(b � 1.75, z � 7.87, p � .001) and payout
probability (b � 3.72, z � 10.61, p � .001) and
selection of the delayed/risky option on one
hand, and a negative relationship between delay
(b � �2.27, z � �2.23, p � .026) and selection
of the delayed/risky option on the other hand.

Analogous to Experiment 1, the choice data
indicate that people prefer high payouts, short
delays, and high probabilities. RT data for Ex-
periment 2 can be found in Figure 7. The figure
shows group average RT data, binned in five
equal groups. Low RTs are closer to blue
(darker color) on the color spectrum and high
RTs are closer to yellow (lighter color) on the
color spectrum. The results show a clear pat-
tern: as the probability of the delayed/risky
option increases, participants tend to slow

down (especially once the probability exceeds
.5).

Modeling Results

Parameter convergence was satisfactory. DIC
values for the three models can be found in
Table 4. We obtained the same results as in
Experiment 1, with the “proportional” model
being the best-fitting model and the “invariant”
being the worst-fitting model. Consequently,
this suggests that decision makers’ absolute val-
uation of the now/certain option changes with
different alternatives for the delayed/risky op-
tion.

Moving to the estimated parameters, we ex-
amined posterior predictive data for the lin-
ear-2A “proportional” model, which are com-
pared against the behavioral empirical data. The
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Figure 6. Aggregate choice preference data of Experiment 2. Panels represent different
probability levels. A proportion of 0 (blue [black]) indicates exclusive preference for the $100
now/certain option, a proportion of 1 (yellow [white]) indicates exclusive preference for the
delayed/risky option. See the online article for the color version of this figure.
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model fit the data well (i.e., choice proportions
and RTs; see Figure 8), only slightly underes-
timating RTs for the delayed/risky responses.
Thus, extending the LBA to account for the
combined effect of time and probability and
implementing the same principle of accumu-
lated preference for intertemporal risky choices
provides a parsimonious and psychologically
plausible account of choice behavior in this
context. Figure 8 also plots simulated choice
predictions of a discounted expected utility
model (multiplicative hyperboloid model; gray
triangle marker): Compared with a discounted
expected utility model that has been found to
provide good fits to intertemporal risky choice
data (see Vanderveldt et al., 2015), the LBA
performs well with the additional benefit of
providing predictions for RT data too.11

Table 5 contains median parameter values of
the aggregate and individual participant param-
eters of the linear-2A “proportional” model.

One aspect that clearly stands out is that prob-
ability has a much stronger influence on the
decision than either amount or delay, as evi-
denced by the fact that the probability scale
parameters (�NCP

, �DRP
) are substantially larger

than the amount (�NCX
, �DRX

) and delay scale
parameters (�NCD

, �DRD
). It is important to note

that as in Experiment 1, the larger effect of
probability on participants’ choices is predi-
cated on the range of amounts and delays we
used in this study.

To delve more deeply into this pattern, we
examined individual drift rates for two repre-
sentative participants (i.e., based on their
model parameter values) by entering the ap-
propriate parameters into Equation 9. Inspec-
tion of the individual parameter values (col-

11 The corresponding mean squared errors are LBA �
0.134 and multiplicative hyperboloid � 0.104.

Figure 7. Response time (RT) data of Experiment 2. Panels represent different probability
levels. Low RTs are closer to blue (black) on the color spectrum. See the online article for the
color version of this figure.
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umns labeled 1 to 4 in Table 5) suggests that
2 out of 4 participants (i.e., P1 and P2) weigh
probability more than delay in their decisions,
whereas the remaining two participants seem
to equally weigh both dimensions to make
choices. The difference between the resulting
drift rates for representatives of these two
types of participants’ (P2 and P3) risky inter-
temporal choice data, �NC � �DR, can be
found in Figure 9. A highly positive differ-
ence between the now/certain drift rate and
the delayed/risky drift rate indicates a strong
preference for the now/certain choice. A
highly negative difference between the now/
certain drift rate and the delayed/risky drift
rate indicates a strong preference for the de-
layed/risky choice. As expected based on the

individual parameter values, Figure 9 shows
that the two participants have quite distinct
choice profiles (see also individual parameter
values in Table 5): P2’s choices are almost
exclusively driven by amount and payout
probability as indicated by the vertical tran-
sitions in colors within and across probability
levels. P3 is considerably more risk averse
than P2 as there is a lot more blue (darker
color) than yellow (lighter color) in their pan-
el. In addition, it appears that P3’s choices are
also impacted by delay (in addition to prob-
ability and amount) as shown by the mostly
horizontal transitions in colors for probability
levels greater than 55% (see the online sup-
plemental materials for individual differences

Table 4
Deviance Information Criterion (DIC) Values Summed Over Participants for All
Three Models Fit to the Experiment 2 Data Set

Model P Deviance pD DIC

Proportional 12 37,028 41 37,110
Invariant 9 47,944 30 48,003
Symmetrical 9 38,033 31 38,096

Note. P � number of free parameters per participant; Deviance � �2 times the likelihood
of the mean parameter estimate; pD � �2 times the mean likelihood of the overall model �
2 times the likelihood of the mean parameter estimate; DIC � deviance � 2pD. Boldface
indicates the best model for these data (i.e., the proportional model).

Figure 8. Posterior predictives of the linear-2A proportional model for response times (RTs;
now/certain and delayed/risky options) and choice data (proportion of now/certain choices) in
Experiment 2 (Individuals 1–4 and group results). For all panels, white-filled points represent
mean posterior predictive data (error bars indicate 95% credible intervals of the posterior) and
black-filled points represent experimental data. The gray triangle marker (only for the choice
panel) indicates simulated predictive data for the multiplicative hyperboloid model.
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in the drift rates of the remaining two partic-
ipants).

General Discussion

The search for understanding the principles
that underlie choice in intertemporal and risky
settings has been dominated by descriptive ex-
planations of observed behavior. Choice anom-
alies and deviations from EUT and DUT have
led to the development of a vast number of
utility/subjective value-based models which
propose different functional forms and addi-
tional parameters to account for observed be-
havioral effects. However, in recent years, de-
cision scientists have started to adopt cognitive
processing models of choice behavior, suggest-
ing a possible paradigm shift within judgment
and decision-making research (Bhatia & Mul-
lett, 2016; Oppenheimer & Kelso, 2015). Infor-
mation processing models have been applied in
many areas of decision-making and have pro-
vided psychological explanations and insights
into the dynamics underlying preferential
choice (see, e.g., Busemeyer & Townsend,
1993; Krajbich, Armel, & Rangel, 2010; Newell
& Bröder, 2008; Rodriguez et al., 2014; True-
blood et al., 2014; Usher & McClelland, 2001).

In this work, we followed a similar approach
using an evidence accumulation model (LBA)
to account for intertemporal and risky choices.
The novelty of our approach rests on the fact
that the same modeling framework can be ap-
plied to two seemingly different types of

choices, without relying on assumptions derived
from either EU or DU models. In addition, the
current work presents the first attempt to model
the combined effect of probability and delay
assuming an evidence accumulation framework
and relying on a simple specification (weighted
sum) of how preference is accumulated: Drift
rates provide a parsimonious and elegant mea-
sure for strength of preference, combining the
information provided by choice responses and
RTs.

Choice Behavior in intertemporal and
Risky Settings

In Experiment 1, we observed that people
prefer larger, sooner to later, and certain to risky
payouts. A closer inspection of the results re-
vealed that delay and payout probability had a
larger effect on choice for intertemporal and
risky options, respectively, as compared to
amount. Comparing intertemporal and risky
choices, amount appears to matter more in an
intertemporal setting. This pattern is consistent
with observations from previous research on
delay and probability discounting showing that
changes in amount magnitude have a larger
effect in an intertemporal than a risky choice
setting (see Greenhow, Hunt, Macaskill, &
Harper, 2015; Myerson, Green, Scott Hanson,
Holt, & Estle, 2003; Yi et al., 2006). For the
particular set of delays, probabilities, and
amounts we used, a comparison of the relative
importance of probability and delay across

Table 5
Estimated Parameters of the Proportional Model in Experiment 2

Parameter Group 1 2 3 4

ANC 0.98 (0.01, 1.74) 0.00 (0.00, 0.01) 0.01 (0.00, 0.02) 2.41 (2.35, 2.47) 1.24 (1.17, 1.31)
ADR 2.39 (1.74, 4.27) 1.99 (1.92, 2.08) 1.40 (1.32, 1.49) 4.73 (4.16, 5.28) 3.86 (3.43, 4.37)
B 1.89 (1.28, 2.06) 1.04 (1.01, 1.07) 1.90 (1.87, 1.92) 1.87 (1.80, 1.95) 2.13 (2.11, 2.16)
�NC0

3.66 (3.53, 4.92) 3.45 (3.40, 3.50) 3.72 (3.68, 3.76) 5.43 (5.37, 5.49) 3.60 (3.56, 3.65)
�DR0

3.72 (3.15, 3.85) 3.77 (3.68, 3.85) 3.79 (3.72, 3.85) 3.81 (3.58, 4.05) 2.64 (2.48, 2.82)
�NCX

0.03 (0.01, 0.06) 0.01 (0.01, 0.01) 0.07 (0.07, 0.07) 0.05 (0.05, 0.06) 0.00 (0.00, 0.01)
�NCD

0.02 (0.01, 0.04) 0.01 (0.00, 0.01) 0.01 (0.00, 0.01) 0.05 (0.05, 0.06) 0.03 (0.03, 0.04)
�NCP

0.15 (0.11, 0.17) 0.17 (0.17, 0.18) 0.17 (0.17, 0.17) 0.13 (0.13, 0.14) 0.07 (0.07, 0.07)
�DRX

0.13 (0.10, 0.16) 0.09 (0.09, 0.09) 0.14 (0.13, 0.14) 0.20 (0.19, 0.22) 0.13 (0.11, 0.14)
�DRD

0.12 (0.01, 0.36) 0.01 (0.00, 0.01) 0.02 (0.01, 0.02) 0.45 (0.43, 0.48) 0.29 (0.27, 0.31)
�DRP

0.28 (0.19, 0.35) 0.28 (0.28, 0.29) 0.17 (0.17, 0.18) 0.50 (0.47, 0.53) 0.25 (0.23, 0.27)
t0 0.01 (0.00, 0.09) 0.11 (0.11, 0.12) 0.00 (0.00, 0.01) 0.04 (0.02, 0.05) 0.00 (0.00, 0.01)

Note. Displayed are the median parameter values of the group (Group column) and individual (columns labeled 1 to 4)
parameters, with a 50% credible interval of the posterior presented in parentheses.
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Figure 9. Absolute difference between the drift rates for the now/certain and delayed/risky
options (�CN � �RD) for each choice in Experiment 2 for two participants (P2 and P3). Panels
represent different probability levels. Positive drift rates reflect a preference for the now/certain
option and are displayed in colors that are closer to blue (black) on the color spectrum. Negative
drift rates reflect a preference for the delayed/risky option and are displayed in colors that are
closer to yellow (white) on the color spectrum. See the online article for the color version of this
figure.
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choice settings (i.e., logit regression coefficients
and model parameters) indicates that probabil-
ity may have a larger effect on choice compared
to delay. Vanderveldt et al. (2015) found in a
task where both dimensions were combined that
increasing the payout probability eliminated the
effect of delay, whereas when delay was in-
creased, the effect of probability was reduced
but not completely eliminated. Nonetheless,
they mentioned that the superior effect of prob-
ability may be an artifact of the amounts and the
range of delays and probabilities used in their
study. This could also be the case in our exper-
iment: the larger effect of probability may have
been the result of the range in which we ma-
nipulated amount and delay (probability is nat-
urally constrained between 0 and 1). With lon-
ger delays (longer than 38 months that we used
in this experiment) and different starting and
ending points for the range of amounts (smaller
than $120 and larger than $500 that we used in
this experiment), the relative importance of de-
lay could have been different. Alternatively and
consistent with our results, probability may be
generally more salient than delay (see also Kon-
stantinidis, van Ravenzwaaij, & Newell, 2017).

RT data showed that risky choices were made
on average faster than intertemporal choices.
Participants’ responses were slower when risky
or delayed options were more attractive than the
default option of $100 now or with certainty. In
addition, clear preferences in terms of propor-
tion produced shorter RTs. These results are
suggestive of the dynamic nature of intertem-
poral and risky choice, indicating that the use of
static and descriptive models of choice may
hinder our understanding of how preferences
and choices are formed (see Dai & Busemeyer,
2014).

The purpose of Experiment 2 was to elicit
preferences for the factorial combination of a
wide range of amounts, payout probabilities,
and delays. This resulted in a very large amount
of delayed risky options being offered as choice
alternatives to a fixed amount now-certain
choice option. While this design allowed us to
provide more accurate individual model param-
eter estimates, the small sample size in this
experiment (i.e., four) does not allow strong
conclusions to be drawn regarding the general-
izability of the behavioral patterns found in the
data. Figure 9 shows that there is considerable
variation in participants’ choice patterns. How-

ever, the cognitive modeling analyses and the
way that drift rates are defined (weighted sums
and scaling parameters) allowed us to quantify
and explain individual differences, and the ex-
tent to which participants weighed each dimen-
sion in their decision-making behavior.

Perspectives on Modeling Probability
and Delay

We used formal model comparison to pit
three different variants of LBA against each
other that differed in the assumptions they make
about the absolute evaluation of the now/certain
choice option.12 In both experiments, the “pro-
portional” model (with as many starting point
parameters as the available choice options and
linear drift rates) fit the data best, suggesting
that the absolute attractiveness of the now/
certain choice option cannot be judged in a
vacuum. This goes against classic expected and
discounted utility models which assume that the
subjective value of an option is fixed and the
product of a utility function paired with a dis-
counting function (intertemporal choice) or a
probability weighting function (risky choice).
Our cognitive process model makes no such
assumptions; instead the definition of the drift
rates suggests that preference for each option is
formed through a weighted sum of its attributes
(money, delay, and probability) and it is depen-
dent on the numerical value of the attributes of
the alternative option. However, one can as-
sume different functional forms for the defini-
tion of drift rates and the way amount, proba-
bility, and delay combine. We tested this
assumption by allowing the drift rates to have
nonlinear forms, but this led to poorer fits com-
pared to the linear forms of the drift rates. A
complementary approach is to assume that drift
rates incorporate the functional forms from ex-
isting models (such as those used in PT and HD)
in determining preferences for choice alterna-
tives (e.g., Dai & Busemeyer, 2014). In this
sense, accumulated preference over time is gov-
erned by discounted or subjective utility valua-
tions of delayed risky prospects (e.g., Rodriguez
et al., 2014). Future research can determine the

12 Our model also assesses “relative” attractiveness and
preferences because the numerical value of the now/certain
option is also dependent on the numerical value of the
delayed/risky option.
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practical and theoretical advantages of imple-
menting and testing such models. The objective
of the present work was to present a process
model which takes into account RTs and as-
sumes the same modeling and processing
framework for both types of preferential choice.

We also compared the performance of our
cognitive process model against standard ap-
proaches, such as PT in risky choice and HD in
intertemporal choice. We also attempted a com-
bination of these two models (i.e., the multipli-
cative hyperboloid model) when probability and
delay appear in the same choice option (Vander-
veldt et al., 2015). In both Experiments 1 and 2,
we observed that predictions from these models
were almost identical to those of the LBA,
indicating that assuming a modeling framework
akin to attribute-wise models and accounting
for choice RTs provide an equally plausible
account of choice behavior. The additional ben-
efits from using our cognitive process model are
that the LBA provides predictions on two
streams of behavioral data, choice proportions
and RTs (while standard approaches are only
concerned with the former, and in most cases at
the aggregate level) and it also provides an
economic way (weighted sum of attribute val-
ues) to model the effect of probability and delay
when they are treated independently from each
other, but also when combined. Glöckner and
Herbold (2011) showed that cumulative PT can
provide adequate (“reasonably good,” p. 94)
descriptions of aggregate choice behavior in
risky choice tasks, but they suggested that in
order to account for individual choice behavior
and the underlying choice process, models such
as decision field theory (an evidence accumula-
tion model; see Busemeyer & Townsend, 1993)
are more appropriate.

The fact that our instantiation of the LBA
assumes weighted comparisons between choice
options makes it analogous to attribute-wise
models of intertemporal and risky choice. These
models assume that preferential choice between
options is not necessarily based on underlying
delay or probability discounting functions, but it
is rather driven by direct comparisons between
the attributes of each option (see, e.g., Brand-
stätter et al., 2006; Cheng & González-Vallejo,
2016; González-Vallejo, 2002; Read, Frederick,
& Scholten, 2013; Scholten & Read, 2010).
Attentional focus or importance placed on each
attribute is instantiated by weights. The scaling

parameters for amount, delay, and probability in
the drift rates of the LBA can be conceived as
serving the same purpose (for similar ideas, see
Dai & Busemeyer, 2014; Read et al., 2013).

Our modeling analysis also adds to recent
attempts that employed evidence accumulation
models to account for effects in risky and inter-
temporal choice. For example, Dai and Buse-
meyer (2014) found that an attribute-wise dif-
fusion model, based on absolute comparisons
between the dimensions of money and time,
could account for three intertemporal choice
effects. Rodriguez et al. (2014) used the LBA in
an intertemporal choice setting and concluded
that delayed decision-making can be also ex-
plained by sequential sampling mechanisms.
Our current work extends these theoretical and
practical observations and presents LBA as a
model which accounts for intertemporal and
risky decision-making independently but also
when the two dimensions combine in a single
choice option. The model fits the combined
choice data well (see Figures 3 and 8) without
incorporating trade-offs between probability
and time (as is required in the probability and
time trade-off model Baucells & Heukamp,
2010, 2012), and without assuming any partic-
ular functional form for probability and delay
discounting (as is required in the multiplicative
hyperboloid model; Vanderveldt et al., 2015).
In addition, the LBA naturally accounts for RTs
and implements them in the decision process as
an important component of developing a pref-
erential strength for each option. Taking all
these facets together, our work presents the first
attempt to model the combined effect of prob-
ability and delay through an evidence accumu-
lation process and to provide psychological ex-
planations about preferential choice that rely on
the simultaneous examination of choice and RT
data.
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Appendix

Distributional Choices

Experiment 1

Starting values for the MCMC chains for
individual parameters were drawn from the fol-
lowing distributions:

BI � N(1.2, 0.12) | (0, �),

BR � N(1, 0.1) | (0, �),

AD � N(2, 0.2) | (0, �),

AR � N(1.75, 0.175) | (0, �),

�N0
� N(3, 0.3) | (0, �),

�D0
� N(3, 0.3) | (0, �),

�C0
� N(3.5, 0.35) | (0, �),

�R0
� N(3, 0.3) | (0, �),

�NX
� N(0.11, 0.311) | (�3, �),

�ND
� N(0.15, 0.315) | (�3, �),

�DX
� N(0.15, 0.315) | (�3, �),

�DD
� N(0.3, 0.33) | (�3, �),

�CX
� N(0.06, 0.036) | (�3, �),

�CP
� N(0.16, 0.316) | (�3, �),

�RX
� N(0.1, 0.31) | (�3, �),

�RP
� N(0.4, 0.34) | (�3, �),

and

t0 � N(0.15, 0.015) | (0, �).

In case of any of the 4-A models, starting values
for both the now/delayed and the certain/risky
starting points were drawn from the same dis-

tribution as indicated above. In case of the non-
linear models,


IX
, 
ID

� N(�0.3, 0.27) | (�3, �)

and


RX
� N(0, 0.3) | (�3, �).

The notation 
 N(,) indicates that values were
drawn from a normal distribution with mean
and standard deviation parameters given by the
first and second number between parentheses,
respectively. The notation |(,) indicates that the
values sampled from the normal distribution
were truncated between the first and second
numbers in parentheses.

The hierarchical set-up prescribes that all in-
dividual parameters come from a truncated
Gaussian group-level distribution (truncated to
positive values only). Thus, for each parameter
to be estimated, we are estimating a group level
mean parameter and a group level standard de-
viation parameter. All group level mean param-
eters are normally distributed, both

B
s � N(1, 0.3) | (0, �),

AD
 � N(2, 1) | (0, �),

AR
 � N(1.75, 1) | (0, �),

all

�
s � N(3, 1.5) | (0, �),

all

�
s � N(0, 1) | (0, �),

and

t0
 � N(0.15, 0.07) | (0, �).

(Appendix continues)
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In case of any of the 4-A models, both the
now/delayed and the certain/risky options had
the same prior for starting point as indicated
above. In case of the nonlinear models, all



s � N(0, 1) | (�3, �).

All group level standard deviation parameters
are gamma distributed, with a shape and a scale
parameter of 1. Starting values for the MCMC
chains for group level � parameters were drawn
from the same distributions as those for the
individual parameters, and starting values for
group level � parameters were derived from
starting value distributions for the individual
parameters by dividing the mean by 10 and the
standard deviation by 2. These prior settings are
quite uninformative, and are based on previous
experience with parameter estimation for the
LBA model. As a result, the specific settings
will not have a large influence on the shape of
the posterior. For more details on distributional
choices for the priors, we refer the reader to
Turner et al. (2013).

For sampling, we used 32 interacting Markov
chains and ran each for 1,000 burn-in iterations
followed by 1,000 iterations after convergence.
The two tuning parameters of the differential
evolution proposal algorithm were set to stan-
dard values used in previous work: random per-
turbations were added to all proposals drawn
uniformly from the interval [–.001, .001]; and
the scale of the difference added for proposal
generation was set to � � 2.38 � (2K)�0.5,
where K is the number of parameters per par-
ticipant. The MCMC chains blocked proposals
separately for each participant’s parameters,
and also blocked the group-level parameters in
{�, �} pairs.

Experiment 2

Starting values for the MCMC chains for
individual parameters were drawn from the fol-
lowing distributions:

B � N(2, 0.2) | (0, �),

both

As � N(2, 0.2) | (0, �),

�NC0
� N(6, 0.6) | (0, �),

�DR0
� N(6, 0.6) | (0, �),

�NCX
� N(0.1, 0.01) | (0, �),

�NCD
� N(0.15, 0.015) | (0, �),

�NCP
� N(0.2, 0.02) | (0, �),

�DRX
� N(0.1, 0.01) | (0, �),

�DRD
� N(0.15, 0.015) | (0, �),

�DRP
� N(0.2, 0.02) | (0, �),

and

t0 � N(0.2, 0.02) | (0, �).

Priors for all individual parameters are nor-
mally distributed,

B � N(2, 2) | (0, �),

both

As � N(2, 2) | (0, �),

�NC0
� N(6, 6) | (0, �),

�DR0
� N(6, 6) | (0, �),

�NCX
� N(0.1, 0.1) | (0, �),

�NCD
� N(0.15, 0.15) | (0, �),

�NCP
� N(0.2, 0.2) | (0, �),

�DRX
� N(0.1, 0.1) | (0, �),

�DRD
� N(0.15, 0.15) | (0, �),

�DRP
� N(0.2, 0.2) | (0, �),

(Appendix continues)
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and

t0 � N(0.2, 0.2) | (0, �).

For sampling, we used 32 interacting Markov
chains and ran each for 1,000 burn-in iterations
followed by 1,000 iterations after convergence.
The two tuning parameters of the differential
evolution proposal algorithm were set to stan-
dard values used in previous work: random per-
turbations were added to all proposals drawn

uniformly from the interval [–.001, .001]; and
the scale of the difference added for proposal
generation was set to � � 2.38 � (2K)�0.5,
where K is the number of parameters per par-
ticipant. The MCMC chains blocked proposals
separately for each participant’s parameters,
and also blocked the group-level parameters in
{�, �} pairs.
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