Imputation of restricted data
Tempelman, Caren

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Contents

1 An Introduction to Imputation and Editing .. 1
 1.1 Potential sources of error in survey estimates ... 1
 1.2 Missing data ... 3
 1.2.1 The missing data mechanism ... 4
 1.2.2 Strategies for handling nonresponse ... 5
 1.2.3 An overview of imputation methods ... 7
 1.2.4 Variance estimation in the presence of imputation 12
 1.2.5 Concluding remarks on imputation .. 15
 1.3 Erroneous data .. 16
 1.3.1 The error mechanism ... 16
 1.3.2 Strategies for dealing with errors ... 17
 1.3.3 Data editing ... 18
 1.3.4 The editing process at Statistics Netherlands 19
 1.3.5 Concluding remarks on editing ... 20
 1.4 The relationship between editing and imputation 21
 1.4.1 Linear balance and inequality restrictions 23
 1.5 Overview of this thesis ... 24

2 Maximum Likelihood Estimation in the Presence of Missing Data 27
 2.1 Maximum likelihood inference for complete data 27
 2.2 Maximum likelihood inference in the presence of nonresponse 32
 2.2.1 The missing data mechanism ... 32
 2.2.2 The EM algorithm .. 34
 2.2.3 Theory behind the EM algorithm .. 35
 2.2.4 Starting values ... 37
 2.2.5 The rate of convergence of the EM algorithm 37
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.6 The missing information principle</td>
<td>38</td>
</tr>
<tr>
<td>2.2.7 Advantages and disadvantages of the EM algorithm</td>
<td>39</td>
</tr>
<tr>
<td>2.2.8 Generalisations of the EM algorithm</td>
<td>40</td>
</tr>
<tr>
<td>2.2.9 Simulated EM algorithms</td>
<td>41</td>
</tr>
<tr>
<td>2.3 The exponential family</td>
<td>42</td>
</tr>
<tr>
<td>2.3.1 Introduction</td>
<td>42</td>
</tr>
<tr>
<td>2.3.2 Mean and variance of exponential families</td>
<td>43</td>
</tr>
<tr>
<td>2.3.3 Maximum likelihood estimation for exponential families</td>
<td>44</td>
</tr>
<tr>
<td>2.3.4 EM and exponential families</td>
<td>45</td>
</tr>
<tr>
<td>2.4 Monte Carlo integration</td>
<td>46</td>
</tr>
<tr>
<td>2.4.1 Classical Monte Carlo</td>
<td>47</td>
</tr>
<tr>
<td>2.4.2 Importance sampling</td>
<td>48</td>
</tr>
<tr>
<td>2.4.3 Multivariate Monte Carlo integration</td>
<td>49</td>
</tr>
<tr>
<td>2.4.4 Concluding remarks</td>
<td>50</td>
</tr>
<tr>
<td>2.5 Markov chain Monte Carlo</td>
<td>50</td>
</tr>
<tr>
<td>2.5.1 Markov chains</td>
<td>51</td>
</tr>
<tr>
<td>2.5.2 Convergence of Markov chain Monte Carlo methods</td>
<td>53</td>
</tr>
<tr>
<td>2.5.3 The burn-in period</td>
<td>53</td>
</tr>
<tr>
<td>2.5.4 The Metropolis-Hastings algorithm</td>
<td>54</td>
</tr>
<tr>
<td>2.5.5 Gibbs sampling</td>
<td>56</td>
</tr>
<tr>
<td>2.5.6 Practical convergence of Markov chains</td>
<td>57</td>
</tr>
<tr>
<td>3 Imputation of Data Subject to One Balance Restriction</td>
<td>63</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>63</td>
</tr>
<tr>
<td>3.2 The edit constraint</td>
<td>64</td>
</tr>
<tr>
<td>3.3 A statistical distribution of economic data</td>
<td>65</td>
</tr>
<tr>
<td>3.4 Parameter estimation</td>
<td>69</td>
</tr>
<tr>
<td>3.4.1 The method of moments estimator</td>
<td>69</td>
</tr>
<tr>
<td>3.4.2 Maximum likelihood estimation</td>
<td>70</td>
</tr>
<tr>
<td>3.5 The EM algorithm</td>
<td>72</td>
</tr>
<tr>
<td>3.6 Imputation of missing data items</td>
<td>74</td>
</tr>
<tr>
<td>3.7 Imputation performance</td>
<td>75</td>
</tr>
<tr>
<td>3.7.1 Description of the data</td>
<td>75</td>
</tr>
<tr>
<td>3.7.2 Estimation of population parameters</td>
<td>76</td>
</tr>
<tr>
<td>3.7.3 Generation of missing data items</td>
<td>76</td>
</tr>
<tr>
<td>3.7.4 The effects of imputation on parameter estimation</td>
<td>77</td>
</tr>
<tr>
<td>3.7.5 The performance of the imputation methods on item level</td>
<td>83</td>
</tr>
<tr>
<td>3.8 Concluding remarks</td>
<td>84</td>
</tr>
</tbody>
</table>
4 Imputation of Data Subject to Multiple Balance Restrictions 87
 4.1 Introduction ... 87
 4.2 Balance edit restrictions 89
 4.3 Multivariate singular normal distribution 89
 4.4 Maximum likelihood estimation for the singular normal distribution 92
 4.4.1 Maximum likelihood estimation and linear balance restrictions 93
 4.5 The EM algorithm applied to singular normal data 93
 4.6 EM estimates and linear balance restrictions 96
 4.6.1 Starting values 102
 4.7 Imputation ... 103
 4.7.1 The singularity of $\Sigma^{(t)}_{\text{mis,mis,obs}}$ 103
 4.7.2 Imputation of missing data items 103
 4.8 Imputation performance 104
 4.8.1 Estimation of population parameters 105
 4.8.2 One linear balance restriction 106
 4.8.3 Multiple linear balance restrictions 109
 4.9 Concluding remarks 113

5 Imputation of Data Subject to Balance and Inequality Restrictions 115
 5.1 Introduction ... 115
 5.2 Linear inequality and balance restrictions 116
 5.3 Truncation of data 117
 5.3.1 Some properties of the truncated multivariate normal distribution 117
 5.4 Maximum likelihood estimation for truncated normal data 121
 5.4.1 Using the method of simulated scores to obtain the maximum likelihood estimates 123
 5.5 The EM algorithm applied to truncated normal data 130
 5.6 Imputation of missing data items 133
 5.7 Handling balance and inequality restrictions simultaneously 133
 5.7.1 The truncated singular normal distribution 133
 5.7.2 Maximum likelihood estimation for truncated singular normal data 135
 5.7.3 The EM algorithm applied to truncated singular normal data 136
 5.7.4 Imputation of missing data items 139
 5.8 Imputation performance 139
5.8.1 Generation of data and missing values 140
5.8.2 The effects of imputation on parameter estimation 140

5.9 Concluding remarks 142
5.A Positive (semi)definiteness of \(\Sigma \) 142
5.B The step size of the Fisher scoring algorithm 143

6 Imputation of Data Using a Sequential Regression Approach 147

6.1 Introduction ... 147
6.2 Linear inequality and balance restrictions 148
6.3 Full conditional distributions 149
6.3.1 Incompatibility 150
6.4 Sequential regression multivariate imputation 151
6.5 Regression models .. 153
6.5.1 Classical linear regression model 155
6.5.2 Truncated regression model 155
6.5.3 Logistic regression model 157
6.6 Box-Cox transformations to normality 158
6.6.1 Normal variables 158
6.6.2 Truncated normal variables 160
6.6.3 Conclusions .. 161
6.7 Incorporation of linear balance restrictions 163
6.8 Imputation performance 164
6.8.1 Description of the data and generation of missing items 165
6.8.2 Imputation using the sequential regression approach 166
6.8.3 The effects of imputation on parameter estimation 167
6.8.4 The performance of the imputation method on item level 170

6.9 Concluding remarks 171

7 Conclusions .. 173

Bibliography .. 179

Samenvatting (Summary in Dutch) 185