A step forward in running-related injuries
Mousavi, Hamed

DOI:
10.33612/diss.131226375

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Kinematic risk factors for lower limb tendinopathy in distance runners: A systematic review and meta-analysis

Seyed Hamed Mousavi
Juha M. Hijmans
Reza Rajabi
Ron Diercks
Johannes Zwerver
Henk van der Worp

INTRODUCTION
Abnormal kinematics have been implicated as one of the major risk factors for lower limb tendinopathy (LLT).

OBJECTIVE
To systematically review evidence for kinematic risk factors for LLT in runners.

METHODS
Individual electronic searches in PubMed, EMBASE and Web of Science were conducted. Two reviewers screened studies to identify observational studies reporting kinematic risk factors in runners with LLT compared to healthy controls. The Down and Black appraisal scale was applied to assess quality. A meta-analysis was performed provided that at least two studies with similar methodology reported the same factor.

RESULTS
Twenty-eight studies were included: Achilles tendinopathy (AT) (9), iliotibial band syndrome (ITBS) (17), plantar fasciopathy (PF) (2), patellar tendinopathy (PT) (1), posterior tibial tendon dysfunction (PTTD) (1). Eighteen studies were rated high-quality and ten medium-quality. The meta-analyses revealed strong evidence of higher peak knee internal rotation, moderate evidence of lower peak rearfoot eversion, knee flexion at heel strike and greater peak hip adduction in runners with ITBS. Very limited evidence revealed higher peak ankle eversion in runners with PF and PTTD or higher peak hip adduction in PT.

SIGNIFICANCE
Peak rearfoot eversion was the only factor reported in all included LLTs; it is a significant factor in ITBS, PT and PTTD but not in AT and PF. More prospective studies are needed to accurately evaluate the role of kinematic risk factors as a cause of LLT. Taken together, addressing rearfoot kinematic and kinematic chain movements accompanied by peak eversion should be considered in the prevention and management of LLT.

KEYWORDS
Running; biomechanics; gait; tendinopathy; injury.
Increased knowledge and more insight into these kinematic risk factors might support the development of successful preventive and management strategies for LLT. In the long run this will be helpful to all healthcare professionals involved in the management of injured runners.

METHODS

This systematic review was reported in accordance with the Prisma guidelines for systematic reviews [18].

SEARCH STRATEGY

Individual electronic search strategies of PubMed, Embase and Web Of Science were formulated and conducted on 1 March 2018. The search strategy was updated on 1 December 2018. There were three headings to the search: 1. “running or jogging or runners”; 2. “tendinopathy or tendinosis or tendinitis”; and 3. “biomechanics or kinematics”. (supplementary material, Table S1). In order to conduct an elaborate search strategy, search strategies of related systematic reviews published were also checked. To ensure identification of all relevant studies, reference lists of appropriate narrative and systematic reviews were hand-searched.

ELIGIBILITY CRITERIA

Studies with a cohort, case-control and cross-sectional design were included in this systematic review. Studies were eligible if they compared healthy male and/or female distance runners to an injured sample related to LLT. To be included, studies needed to assess kinematics during running either on a treadmill or over ground. Articles on sprinters, triathletes or military personnel and studies on the topics of surgery, treatment, rupture or tendinopathy associated with disease or medication were excluded.

STUDY SELECTION

This systematic review followed the process as shown in Fig. 1. Abstract and full-text studies were separately evaluated by two reviewers (HW, SHM). Any disagreements about inclusion/exclusion were resolved through a discussion between the reviewers and in consultation with a third reviewer (JZ).

QUALITY ASSESSMENT

All included studies were scored for quality assessment using 15 items extracted from a modified version of the Downs and Black Quality Index (DBQI) [19]. Two reviewers (HW, SHM) independently assessed each included study and came to an agreement on articles in which the independent assessments differed. Inter-rater reliability of each checklist item was evaluated using the percentage agreement.

DATA COLLECTION

One author (SHM) extracted all relevant data from the included articles and all data were verified by HW in order to reduce bias and errors in data extraction. In this review, only the kinematic data commonly used in the management of injuries in the clinical setting were extracted, hence data for timing- and velocity-related parameters were excluded. Data were divided by type of tendinopathy into AT, ITBS, PF, PT and posterior tibial tendon dysfunction (PTTD) in order to maintain consistency in retrieval. General information on participant characteristics, measured variables, running mileage, speed, phase of the gait, diagnosis, gait analysis tool and test conditions were also extracted.

Figure 1. Flow chart of study selection process
Mean differences and 95% confidence intervals (CI) were calculated using a random effects model in RevMan version 5.3. A meta-analysis was performed where studies investigated the same kinematic outcome measure with a comparable methodology for footwear and gender. The level of statistical heterogeneity for pooled data was established using I² statistics and associated P-values (P<0.05). Results were reported by means of modified levels of evidence as defined by van Tulder et al.[20] (Table 1).

Table 1. Definitions of modified evidence levels [20]

<table>
<thead>
<tr>
<th>Level of evidence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong evidence</td>
<td>Pooled results from three or more studies, including a minimum of two high-quality studies which are statistically homogenous (p>0.05); or may be associated with a statistically significant or non-significant pooled result.</td>
</tr>
<tr>
<td>Moderate evidence</td>
<td>Statistically significant pooled results from multiple studies, including at least one high-quality study, which are statistically heterogeneous (p<0.05); or from multiple low- or moderate-quality studies which are statistically homogenous (p>0.05); or statistically insignificant pooled results from multiple studies, including at least one high-quality study, which are statistically homogenous (p>0.05).</td>
</tr>
<tr>
<td>Limited evidence</td>
<td>Results from multiple low- or moderate-quality studies which are statistically heterogeneous (p<0.05); or from one high-quality study.</td>
</tr>
<tr>
<td>Very limited evidence</td>
<td>Results from one low- or moderate-quality study.</td>
</tr>
<tr>
<td>Conflicting evidence</td>
<td>Pooled results that are insignificant and from multiple studies, regardless of quality, which are statistically heterogeneous (p>0.05, i.e. inconsistent).</td>
</tr>
</tbody>
</table>

RESULTS

Twenty five studies were included in the first search strategy conducted. Following an updated search strategy by 1 December 2018, 3 additional studies were eligible, resulting in twenty eight studies included in the final analysis. Details of the included studies are provided in Table 2. A total of seventeen studies investigated kinematic risk factors in runners with ITBS, nine investigated AT, two PF, one PT, and one investigated PTTD.

METHODOLOGICAL QUALITY

Methodological quality assessment by means of the Downs and Black scale is presented in the supplementary material, Table S2. The total scores ranged from 8 to 15 out of a possible 16. Quality assessment scores ranged from 56% to 94% (mean = 71%). Of the 28 prospective, case-control and cross-sectional studies, 18 studies were scored as HQ [9,21–37], ten as MQ [38–47]. Inter-rater reliability between reviewers was calculated using percentage agreement for all studies ranged from 88% to 100%, with a mean of 95%.

ACHILLES TENDINOPATHY

Characteristics of the included studies

Nine articles investigated kinematic data during running of runners with AT [9,23,24,29,31,32,34,40,44]. Eight articles evaluated these factors during the whole stance phase and one at 60% of stance phase. A total of 291 participants were analyzed. Five studies assessed kinematic data while running barefoot, three while running shod, and one while running both shod and barefoot. All subjects ran on a weekly plan ranging from 15 km/w to 97 km/w. Five studies assessed kinematic findings while running over ground at a speed between 3 and 4 m/s, four articles assessed while running on a treadmill at 2.4 m/s (barefoot), 2.8 m/s (shod) or a self-selected speed. Seven studies reported kinematic data on males and females; one study did not report gender and one study reported only on males. Six studies included participants with current symptoms, two with previous symptoms, and one study included participants who developed symptoms during follow-up. Three studies recruited participants with only mid-portion AT while others did not report the type of AT.

Kinematics of the ankle

The ankle kinematic outcomes of nine studies evaluating runners with and without AT are illustrated by a forest plot in the supplementary material, Fig. S1. The meta-analyses assessing ankle kinematics risk factors are shown in Fig. 2A. Moderate evidence suggests significant difference for rearfoot eversion at heel strike (HS) in shod condition (mean 4.78, 95%CI 1.78,7.79) between runners with AT and controls. Strong evidence suggests no significant differences for peak rearfoot eversion in shod condition (mean 0.79, 95%CI -0.85,2.43), peak rearfoot eversion in barefoot condition (mean -0.17, 95%CI -1.74,1.40), peak ankle dorsiflexion in barefoot condition (mean -0.67, 95%CI -4.26,2.93) and shod condition (mean 0.5, 95%CI -1.75,2.75), and ankle dorsiflexion at HS in shod condition (mean 1.35, 95%CI -1.03,3.73) between runners with AT and controls. Moderate evidence suggests no significant differences between runners with AT and controls for the following variables: ankle plantar flexion ROM in barefoot condition (mean -0.84, 95%CI -3.45,1.78), ankle eversion ROM in shod condition (mean -2.17, 95%CI -2.11,6.44), and peak tibial internal rotation in bare foot condition (mean -0.95, 95%CI -2.07,0.17). There is conflicting evidence for ankle eversion ROM in barefoot condition (mean 0.59, 95%CI -2.29,3.47) and ankle dorsiflexion ROM in barefoot condition (mean 0.01, 95%CI -2.37,2.39) between runners with AT and controls.
Table 2. Study characteristics

<table>
<thead>
<tr>
<th>Author</th>
<th>Study design</th>
<th>Population</th>
<th>Participants (m/f)</th>
<th>Age, yrs (SD)</th>
<th>Height, cm (SD)</th>
<th>Weight, kg (SD)</th>
<th>Running distance (km/w)</th>
<th>Injury situation</th>
<th>Speed</th>
<th>Running condition</th>
<th>Tool</th>
<th>Phase of running</th>
</tr>
</thead>
</table>
| *Achilles tendinopathy*
Bramah et al., 2018 [20]
Creavy et al., 2017 [31]
Becker et al., 2017 [44]
Hein et al., 2014 [9]
Almeida et al., 2009 [32]
Ryan et al., 2009 [34]
Donoghue et al., 2008 [40]
Williams et al., 2008 [23]
McCory et al., 1999 [24] | cross-sectional
cross-sectional
cross-sectional
prospective
cross-sectional
cross-sectional
cross-sectional
cross-sectional
cross-sectional | 18 (NR)
14 (m)
9 (m, f)
10 (m, f)
21 (m, f)
2 (m, f)
11 (m, f)
8 (f, m)
31 | 36 (15, m)
14 (m)
9 (m, f)
10 (m, f)
21 (m, f)
2 (m, f)
11 (m, f)
8 (f, m)
31 | 171 (67.3)
171 (67.7)
32.6 (12.4)
177 (4)
174.5 (1.35)
177.8 (7.4)
174 (10.5)
170 (9)
171 (5) | 63.6 (11.2)
33.2 (8.4)
2.7 (0.18)
40 (7)
70.2 (10.9)
74.3 (8)
77.6 (12.6)
177 (7) | 3.2 m/s
3.2 m/s
3.3 m/s
3.3 m/s
3.3 m/s | 3D motion analysis
3D motion analysis
3D motion analysis
3D motion analysis
3D motion analysis |
| *Plantar fasciitis*
Brown et al., 2018 [28]
Baker et al., 2018 [47]
Brown et al., 2019 [36]
Foch et al., 2015 [21]
Phytyomark et al., 2015 [27]
Neesham et al., 2014 [50]
Foch & Milner, 2014 [33]
Foch & Milner, 2014 [37]
Ferber et al., 2010 [26] | cross-sectional
cross-sectional
cross-sectional
cross-sectional
cross-sectional
cross-sectional
cross-sectional
cross-sectional
cross-sectional
cross-sectional | 30 (15, m)
15(7.8, m)
12 (f)
9 (f)
48 (29m, 19f)
17m
17 (f)
20 f
35 f | 30 (15, m)
15(7.8, m)
12 (f)
9 (f)
48 (29m, 19f)
17m
17 (f)
20 f
35 f | 170 (68.5)
131.3 (13.6)
25.8 (1.9)
176 (5.7)
159 (5)
179 (7m)
170 (9)
160 (9) | 63.6 (11.2)
122 (7.8)
60 (5)
53.5 (5.3)
61 (9.1)
61 (9.1) | 3.2 m/s
2.7 m/s
3.3 m/s
3.5 m/s
3 m/s | 3D motion analysis
3D motion analysis
3D motion analysis
3D motion analysis
3D motion analysis |

Hilatibial band syndrome

<table>
<thead>
<tr>
<th>Author</th>
<th>Study design</th>
<th>Population</th>
<th>Participants (m/f)</th>
<th>Age, yrs (SD)</th>
<th>Height, cm (SD)</th>
<th>Weight, kg (SD)</th>
<th>Running distance (km/w)</th>
<th>Injury situation</th>
<th>Speed</th>
<th>Running condition</th>
<th>Tool</th>
<th>Phase of running</th>
</tr>
</thead>
</table>
| *Bramah et al., 2018* [20]
Phytyomark et al., 2015 [27]
Neesham et al., 2014 [50]
Foch & Milner, 2014 [33]
Foch & Milner, 2014 [37]
Ferber et al., 2010 [26] | cross-sectional
cross-sectional
cross-sectional
cross-sectional
cross-sectional
cross-sectional | 48 (29m, 19f)
17 (f)
17 (f)
17 (f)
20 f
35 f | 48 (29m, 19f)
17 (f)
17 (f)
17 (f)
20 f
35 f | 168 (6f)
169 (6f)
167 (5)
167 (5)
168 (5) | 61 (91)
61 (91)
61 (91)
61 (91)
61 (91) | 3.3 m/s
3.3 m/s
3.3 m/s
3.3 m/s
3.3 m/s | 3D motion analysis
3D motion analysis
3D motion analysis
3D motion analysis
3D motion analysis |

KINEMATIC RISK FACTORS FOR LOWER LIMB TENDINOPATHY IN DISTANCE RUNNERS

- **Average running speed:**
 - M/s: 3.3 m/s
 - K/s: 119.27 km/h
- **Running condition:**
 - Running on treadmill, barefoot and shoes
 - Running on 10m pathway, standard natural running shoe
 - Running on 13m ethylene-vinyl acetate foam runway, barefoot
 - Running on 20m over ground, barefoot
 - Running on treadmill, barefoot and shoes
- **Tool:**
 - 3D motion analysis
 - 3D motion analysis
 - 3D motion analysis
 - 3D motion analysis
 - 3D motion analysis
- **Phase of running:**
 - Stance
 - Stance
 - Stance
 - Stance
 - Stance
<table>
<thead>
<tr>
<th>Author</th>
<th>Study design</th>
<th>Population</th>
<th>Participants (m/f)</th>
<th>Age, yrs (SD)</th>
<th>Height, cm (SD)</th>
<th>Weight, kg (SD)</th>
<th>Running distance (km/w)</th>
<th>Injury situation</th>
<th>Speed</th>
<th>Running condition</th>
<th>Tool</th>
<th>Phase of running</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grau et al., 2011</td>
<td>cross-sectional</td>
<td>runners</td>
<td>18 (15m, 6f)</td>
<td>37 (9)</td>
<td>177 (9)</td>
<td>71 (12)</td>
<td>NR</td>
<td>curr symp</td>
<td>3.3 m/s</td>
<td>Running on 13m EVA foam runway, barefoot</td>
<td>3D motion analysis</td>
<td>stance analysis</td>
</tr>
<tr>
<td>Grau et al., 2008</td>
<td>cross-sectional</td>
<td>runners</td>
<td>18 (15m, 6f)</td>
<td>37 (9)</td>
<td>177 (9)</td>
<td>71 (12)</td>
<td>NR</td>
<td>curr symp</td>
<td>3.3 m/s</td>
<td>Running on 13m EVA foam runway, barefoot</td>
<td>3D motion analysis</td>
<td>stance analysis</td>
</tr>
<tr>
<td>Miller et al., 2008</td>
<td>cross-sectional</td>
<td>runners</td>
<td>8 NR</td>
<td>170 (6)</td>
<td>71 (9)</td>
<td>NR</td>
<td>NR</td>
<td>prev symp</td>
<td>3.3 m/s</td>
<td>Running on treadmill, their own shoes</td>
<td>3D motion analysis</td>
<td>full stride cycle stance analysis</td>
</tr>
<tr>
<td>Noehren et al., 2007</td>
<td>prospective</td>
<td>runners</td>
<td>8 f</td>
<td>27 (5)</td>
<td>170 (6)</td>
<td>NR</td>
<td>NR</td>
<td>Self-selected</td>
<td>3.7 m/s</td>
<td>Running on treadmill, standard neutral running shoes</td>
<td>3D motion analysis</td>
<td>stance analysis</td>
</tr>
<tr>
<td>Miller et al., 2007</td>
<td>case-control</td>
<td>runners</td>
<td>8 NR</td>
<td>170 (6)</td>
<td>71 (9)</td>
<td>NR</td>
<td>NR</td>
<td>Self-selected</td>
<td>19 (9.5)</td>
<td>Running on treadmill, their own shoes</td>
<td>3D motion analysis</td>
<td>stance analysis</td>
</tr>
<tr>
<td>Messier et al., 1995</td>
<td>case-control</td>
<td>runners</td>
<td>56 (76% m)</td>
<td>170.59 (13.7)</td>
<td>66.4 (19)</td>
<td>NR</td>
<td>NR</td>
<td>Self-selected</td>
<td>38 (24.3)</td>
<td>Running on 25m runway, standard neutral running shoes</td>
<td>3D motion analysis</td>
<td>stance analysis</td>
</tr>
<tr>
<td>Messier & Pittala, 1988</td>
<td>case-control</td>
<td>runners</td>
<td>15 f&m</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Self-selected</td>
<td>16 (12)</td>
<td>Running on treadmill, training shoes</td>
<td>2D motion analysis</td>
<td>self-selected</td>
</tr>
<tr>
<td>Messier & Pittala, 1988</td>
<td>case-control</td>
<td>runners</td>
<td>15 f&m</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Self-selected</td>
<td>74 (77)</td>
<td>Running on treadmill, training shoes</td>
<td>2D motion analysis</td>
<td>self-selected</td>
</tr>
</tbody>
</table>

Plantar fasciopathy

| Pohl et al., 2009 | cross-sectional | runners | 25 F | 166 (6) | 61.6 (6.2) | 40 (11) | prev symp | 3.7 m/s | 42 (13) | Running on 25m runway with standard, neutral, and laboratory running shoes | 3D motion analysis | stance analysis |

Patellar tendinopathy

| Grau et al., 2008 | cross-sectional | runners | 12 F | 167 (168) | NR | NR | curr symp | 3.3 m/s | Running on 15m EVA foam runway, barefoot | 3D motion analysis | stance analysis |

Posterior tibial tendon dysfunction

| Rabbito et al., 2011 | case-control | recreational runners | 12 (3m, 9f) | 168 (12.8) | NR | curr symp | Pedar -X system | 3D motion analysis | stance analysis |

Abbreviations: m male, f female, yrs years, cm centimeters, kg kilograms, km kilometers, h hour, m meters, s second, NR not reported, prev previously, curr currently, symp symptomatic
KINEMATIC RISK FACTORS FOR LOWER LIMB TENDINOPATHY IN DISTANCE RUNNERS

KINETICS OF THE KNEE

The combined knee kinematic outcomes of nine studies evaluating runners with and without AT are illustrated by a forest plot in supplementary material, Fig. S2. Results of meta-analyses for knee kinematic risk factors are shown in Fig. 2B. Moderate evidence suggests no significant differences between runners with AT and controls in the following variables: peak knee flexion in shod condition (mean -0.12, 95%CI -3.68,3.45), peak knee flexion in barefoot condition (mean -3.07, 95%CI -7.45,1.32), and knee flexion ROM in barefoot condition (mean 0.09, 95%CI -2.49,2.67). There is conflicting evidence for peak knee flexion in shod condition (mean -1.68, 95%CI -6.75,3.38) and knee flexion at HS in shod condition (mean 0.04, 95%CI -10.40,19.14) of the AT group compared to the control group.
KINEMATICS OF THE HIP
Limited evidence suggests that all hip kinematic variable comparisons between the AT and healthy groups were not significantly different (supplementary material, Fig. S3).

CHARACTERISTICS OF THE INCLUDED STUDIES
Seventeen articles investigated kinematic data of runners with ITBS during running compared with healthy runners [21,22,36–39,41,45,47,25–30,33,35]. Twelve studies evaluated kinematic data during the whole stance phase, 3 at 60% of stance phase, 1 by maximum excursion of angles at stance phase and 1 at full stride cycle. A total of 631 participants were analyzed. Fifteen articles assessed kinematic data of participants while running shoe and two while running barefoot. All participants ran a weekly distance exceeding 15 km. Most of the studies assessed kinematic findings while running over ground at a speed between 3.3 and 3.7 m/s and seven articles while running on a treadmill at 2.23 to 3.3 m/s or a self-selected speed. Six studies reported data on females, eight reported on combined gender, two did not report gender, and one reported on males. One study compared the kinematic data of males to females, males to controls, and females to controls [27]. Ten studies included participants with current symptoms, five included participants with previous symptoms, one included patients with both current and previous symptoms, and one study included participants who developed symptoms during follow-up. One study investigated lower limb coupling variability between runners with ITBS and controls [38] (supplementary material, Fig. S4).

KINEMATICS OF THE ANKLE
The combined ankle kinematic outcomes of studies evaluating runners with and without ITBS are illustrated by a forest plot in the supplementary material, Fig. S5. Fig. 3A shows the possible meta-analyses suggesting moderate evidence with significant difference for decreased peak rearfoot eversion (mean -1.40, 95%CI -2.58, -0.23), strong evidence with no significant difference for peak rearfoot pronation (mean 1.47, 95%CI -0.05,2.99), and conflicting evidence for ankle flexion at HS (mean 2.09, 95%CI -2.86,7.03) between male/female runners with ITBS and controls.

KINEMATICS OF THE KNEE
The combined knee kinematic outcomes of studies evaluating runners with and without ITBS are illustrated by a forest plot in the supplementary material, Fig. S6. Fig. 3B shows the results of the meta-analysis with strong evidence suggesting a significant difference in higher knee internal rotation (mean 2.90, 95%CI 1.20,4.59) of female runners, and moderate evidence with significant differences for decreased knee flexion at HS of male/female runners (mean -3.38, 95%CI -5.23,-1.53) and male runners (mean -2.73, 95%CI -5.03,-0.43) with ITBS and controls.

KINEMATICS OF THE HIP
The combined hip kinematic outcomes of studies evaluating runners with and without ITBS are illustrated by a forest plot in the supplementary material, Fig. S7. Fig. 3C shows the results of the meta-analyses with conflicting evidence suggesting for peak hip adduction (mean 0.36, 95%CI -1.19,1.92), and moderate evidence with no significant difference for peak hip internal rotation (mean -1.96, 95%CI –6.00,2.08) between female runners with ITBS and controls. Moderate evidence suggests a significant difference for increased peak hip adduction (mean 2.79, 95%CI 0.77,4.80) between male/female runners with ITBS and controls.

KINEMATICS OF THE TRUNK AND PELVIS
The combined trunk and pelvis kinematic outcomes of two studies evaluating runners with and without ITBS are illustrated by a forest plot in the supplementary material, Fig. S8. Fig. 3D shows the results of the meta-analyses with moderate evidence suggesting no significant difference for peak trunk ipsilateral flexion (mean 0.39, 95%CI -0.59,1.38) and peak contralateral pelvic drop (mean -0.92, 95%CI -2.12,0.28) between female runners with previous ITBS and controls.
 metadata

Abreviations: HS heel strike, F female, M male, M/F male and female
ACHILLES TENDINOPATHY

Ankle kinematics

The only difference between runners with AT and controls was found in rearfoot eversion at HS. Runners with AT had greater rearfoot eversion. Evidence for this finding was moderate. For none of the other kinematic variables of the ankle a difference was found. This is in contrast with current information, popular beliefs and some AT-related studies claiming that abnormal alignment of the lower limb, especially in the lower leg, plays an important role in the development of AT [48–52]. As mentioned in the literature, excessive rearfoot eversion, mostly accompanied by an internally rotated tibia [53], causing excessive forces on the Achilles tendon, may predispose runners to AT [52]. However, the majority of pooled eversion-related kinematic variables did not show significant differences between AT and controls. The hypothesis that excessive eversion can be involved in the development of AT has led many researchers to evaluate the different features of foot pronation or eversion [24,31,34,40]. Most of the studies found no significant differences in pronation-related kinematic measurements; however, a trend of greater peak eversion was shown overall. Results also indicate that footwear control leads to different results for peak eversion; this indicates an increasing trend of peak eversion while running shod [31,40], in contrast to a decreasing trend of peak eversion while running barefoot [34,40].

Knee kinematics

It has been proposed that increasing the knee flexion angle is a shock-absorbing mechanism that serves to reduce loads on the lower extremity [54,55]. In this theory, an increase in knee flexion reduces peak vertical ground reaction impact force, potentially reducing the risk of AT. This is not supported by the pooled data from our study as no significant difference for knee-related kinematics between runners with and without AT was reported. Another theory that could play a role is that those with a higher risk of AT use a more natural or barefoot running style, which may imply a lower knee flexion with increased plantar flexion, resulting in higher Achilles tendon loads [56], as a result of which the meta-analysis shows a trend toward lower knee flexion in AT group.

ILIOTIBIAL BAND SYNDROME

Ankle kinematics

A significant difference in lower peak rearfoot eversion in female runners with ITBS compared with healthy controls was found. This observation is consistent with lower peak tibial internal rotation being coupled to rearfoot eversion, as reported by two studies [22,45]. The result of the meta-analysis for peak pronation also shows
a tendency toward higher peak pronation in runners with ITBS. These observations suggest that in participants who exhibit such kinematic chain disorders follow a distal mechanism for developing ITBS.

Knee and hip kinematics
Significant differences in knee flexion at HS and Peak hip adduction in runners with ITBS compared with healthy controls were found. However, evidence regarding peak hip adduction in female runners with ITBS compared with healthy controls was conflicting. It is suggested that ITB strain increases with excessive hip adduction and knee internal rotation because of the distal attachments of the ITB to the tibial condyle [45]. Moreover, some studies suggest that higher peak hip adduction in females is a major etiological factor for ITBS [26,45,57,58]. It is evident that hip abductor weakness, which leads to an increase in hip adduction [59], is associated with ITBS in distance runners in three out of five studies included [60]. Therefore, according to the prospective study and moderate evidence of two studies [45], still, greater hip adduction can be seen as etiological risk factors in the development of ITBS, plus greater knee internal rotation as shown in our study.

Pelvic and trunk kinematics
The results from our meta-analyses demonstrate no significant differences in peak trunk ipsilateral flexion and peak contralateral pelvic drop in female runners with previous and without ITBS. Nevertheless, it is assumed to be true that trunk and pelvic alignments are subject to ITB function, in which either ITB tightness may result in greater trunk lateral flexion or trunk lateral flexion during stance phase may be causing ITB tightness, resulting in a greater tensile strain of the ITB [33,35,61]. According to this theory, a recently published study revealed that greater contralateral pelvic drop is a contributing factor for classifying healthy runners not only with injured runners with ITBS but also runners with patella femoral pain, AT, and medial tibial stress syndrome [29]. Therefore, trunk motion might be important when managing ITBS. However, the results of this study could not be involved in the meta-analysis as subjects were a mix of male and female.

PLANTAR FASCIOPATHY
No differences were found in ankle and rearfoot kinematic factors among subjects with and without PF [41,43]. It is believed that reduced ankle dorsiflexion in subjects with PF is compensated by increasing rearfoot eversion. Included studies reported no significant differences in rearfoot eversion between runners with PF and controls. It could be due to the similarity seen in ankle dorsiflexion between groups. It appears though that greater rearfoot eversion, accompanied with lower medial longitudinal arch, shifts the center of pressure to more medial and leads to increased plantar fascia tension [62]. Altogether, PF kinematics are most likely influenced by foot kinematics which cannot be analyzed with the kinematic models describing the foot as one rigid segment.

PATELLAR TENDINOPATHY
While the kinematic risk factors are considered to be predisposing factors in the development of PT, only one study was found reporting kinematics of runners who developed PT [42]. Peak ankle eversion had a significantly greater magnitude in PT subjects, but interestingly, the author reported that the amount of pronation does not play a role in the development of PT. Despite eversion, being usually coupled with tibial internal rotation [63,64],—surprisingly—a higher peak ankle eversion with reduced tibial internal rotation as well as reduced tibial internal/external ROM were noted in PT subjects. It was believed that the mechanism transferring foot eversion into internal tibial rotation may be important to knee injuries [65]. Hip adduction, which can be considered as a pronation/tibial internal rotation coupling in the lower extremity kinematic chain [63,66,67], was significantly higher in subjects with PT compared to controls.

POSTERIOR TIBIAL TENDON DYSFUNCTION
Very limited evidence suggests higher peak eversion in runners with PTTD relative to controls. Previous studies found that medial longitudinal arch angle and rearfoot and forefoot kinematics are contributing factors in predisposing individuals to PTTD [68–71]. The simulated results of a study on 22 cadaveric feet show that flat foot deformity and increased peak eversion may increase the effect of PTT friction [72]. It has been shown that when stage I PTTD is lasting and progresses into stage II, the medial and plantar elements of the foot such as the deltoid and spring ligaments work inefficiently, resulting in increased rearfoot eversion as well as decreased foot arch [73].

LIMITATIONS AND RESEARCH IMPLICATIONS
The results of this study should be interpreted with some caution. Only two prospective studies, investigating the development of AT and ITBS, were included in this review. Most studies had a cross-sectional design because of which it remains unclear whether kinematic differences cause the injury or are a result of the injury.

There was a great variety of diagnostic methods in the included studies and AT studies did not differentiate between insertional and midportion AT. A clear description and
CONCLUSION
Peak rearfoot eversion was the only factor reported in all included LLTs; it is a significant factor in ITBS, PT and PTTD but not in AT and PF. Taken together, the findings of this systematic review might aid clinicians in preventive and therapeutic clinical decision-making where appropriate interventions can target the kinematic risk factors, potentially reducing pain and improving function of runners with LLT.

CONFLICT OF INTEREST
None.

FINANCIAL DISCLOSURE
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

CLINICAL IMPLICATIONS
The results stress the need for controlling rearfoot eversion, which is most likely accompanied by proximal changes in the relevant kinematic chain of the lower extremity, as a potential management strategy for LLT. In a meta-analysis [75], interventions such as foot orthoses, motion control shoes and therapeutic taping were found to be effective in reducing rearfoot eversion in healthy and injured populations. Clinicians may apply these interventions to control rearfoot eversion when managing runners with LLT.

It is also proposed that clinicians consider potential interventions for modifying abnormal hip adduction in order to obtain more efficient results in the management of runners with ITBS. Possible conservative interventions to control abnormal hip adduction include gait retraining [76–79], foot orthoses [80,81], exercise approaches [82–84], gluteal strengthening [57,85], and femoral rotational taping [86]. These interventions have been shown to be effective in modifying increased hip adduction in lower limb injuries and might be helpful toward controlling increased hip adduction when managing ITBS too. Likewise, foot orthoses, which have been shown to be effective in reducing knee internal rotation in healthy [81] and patellofemoral pain syndrome individuals [80], might be effective in controlling knee internal rotation when managing ITBS. Increasing cadence and modifying foot strike pattern could be useful in controlling knee flexion [87].
REFERENCES

CHAPTER 3

KINEMATIC RISK FACTORS FOR LOWER LIMB TENDINOPATHY IN DISTANCE RUNNERS

CHAPTER 3

KINEMATIC RISK FACTORS FOR LOWER LIMB TENDINOPATHY IN DISTANCE RUNNERS

doi.org/10.1007/BF02844131.

Table S1. Search strategy used in the PubMed database

<table>
<thead>
<tr>
<th>Search Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running[Mesh] or Jogging[Mesh] or runner or jogging or running or runners</td>
</tr>
<tr>
<td>AND</td>
</tr>
<tr>
<td>tendinopathy[Mesh] or tendon injuries[Mesh] or Achilles Tendon[Mesh] or</td>
</tr>
<tr>
<td>tendon or tendons or tendinopathy or tendonopathy or jumper’s knee or</td>
</tr>
<tr>
<td>jumpers knee or plantar fasciopathy or Plantar fascitis or *trochanteric</td>
</tr>
<tr>
<td>pain syndrome* or greater trochanteric pain syndrome or trochanteric burden</td>
</tr>
<tr>
<td>or gluteal tendino or Gluteus medius tendino or iliotibial band syndrome[Mesh]</td>
</tr>
<tr>
<td>or iliotibial band syndrome or tibialis posterior tendino or *peroneus longus</td>
</tr>
<tr>
<td>tendino* or peroneal tendino or pes planus tendino or pes anserine tendino</td>
</tr>
<tr>
<td>or lateral hip tendino or lateral hip pain tendino</td>
</tr>
<tr>
<td>AND</td>
</tr>
<tr>
<td>biomechanic* or kinematic or kinematics or etiology or etiologies or *etiological</td>
</tr>
<tr>
<td>factors* or lower extremity dynamics or Mechanics[Mesh] or gait or *Risk</td>
</tr>
<tr>
<td>Factors*[Mesh] or risk factors</td>
</tr>
</tbody>
</table>
Table 52. Results of quality assessment using the Downs and Black methodological index.

<table>
<thead>
<tr>
<th>Authors</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>25</th>
<th>Total</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creaby et al., 2017</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Beecroft et al., 2017</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Hem et al., 2014</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Azevedo et al., 2009</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Ryan et al., 2009</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Donoghue et al., 2008</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Williams et al., 2008</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>McCorry et al., 1999</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Brahmah et al., 2018</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Luginie et al., 2018</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Baker et al., 2016</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Brown et al., 2016</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Focht et al., 2015</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Phinyomark et al., 2015</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Noethen et al., 2014</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Focht and Milner, 2014</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Focht and Milner, 2014</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Focht and Milner, 2014</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Grau et al., 2011</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Grau et al., 2012</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Miller et al., 2008</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Noethen et al., 2007</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Miller et al., 2007</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 52 continued.

<table>
<thead>
<tr>
<th>Authors</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>25</th>
<th>Total</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messier et al., 1995</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Messier and Pittala, 1988</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Pohl et al., 2009</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Grau et al., 2008</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Rabito et al., 2011</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

| Percentage agreement/reliability | 100% | 100% | 92% | 96% | 100% | 96% | 92% | 100% | 100% | 96% | 92% | 88% | 88% | 92% | 95% | | |

Key: 1 = Yes; 0 = No; *2 = Yes; 1 = Partially; 0 = No

KNEISMA: Risk factors for lower limb tendinopathy in distance runners
Figure S1. Forest plot displaying ankle kinematic outcomes of AT-related studies
Abbreviations: Max maximum, AB abduction, BF barefoot, HS heel strike, S shod, ROM range of motion, PF plantar flexion, DF dorsiflexion, TD touchdown, EV eversion, IN inversion

Figure S2. Forest plot displaying knee kinematic outcomes of AT-related studies
Abbreviations: BF barefoot, S shod, ROM range of motion, IR internal rotation

Figure S3. Forest plot displaying hip kinematic outcomes of AT-related studies
Abbreviation: ROM range of motion

Figure S4. Forest plot displaying lower limb coupling variability in runners with and without ITBS
Abbreviations: AD adduction, AB abduction, IN inversion, EV eversion, FL flexion, EX extension, IR internal rotation

Figure S52. Forest plot displaying knee kinematic outcomes of AT-related studies
Abbreviations: BF barefoot, S shod, ROM range of motion, IR internal rotation

Figure S53. Forest plot displaying hip kinematic outcomes of AT-related studies
Abbreviation: ROM range of motion

Figure S54. Forest plot displaying lower limb coupling variability in runners with and without ITBS
Abbreviations: AD adduction, AB abduction, IN inversion, EV eversion, FL flexion, EX extension, IR internal rotation
Figure S7. Forest plot displaying hip kinematic outcomes of ITBS-related studies
Abbreviations: AD abduction, AB abduction, TD touchdown, FL flexion, EX extension, ER external rotation

Figure S5. Forest plot displaying ankle kinematic outcomes of ITBS-related studies
Abbreviations: Max maximum, AD abduction, ROM range of motion, EX extension, FL flexion, TD touchdown, EV eversion, IN inversion, PRO pronation, HS heel strike

Figure S6. Forest plot displaying knee kinematic outcomes of ITBS-related studies
Abbreviations: HS heel strike, FL flexion, EX extension, ER external rotation

Figure S55. Forest plot displaying ankle kinematic outcomes of ITBS-related studies
Abbreviations: Max maximum, AD abduction, ROM range of motion, EX extension, FL flexion, TD touchdown, EV eversion, IN inversion, PRO pronation, HS heel strike

Figure S8. Forest plot displaying trunk and pelvic kinematic outcomes of ITBS-related studies
Abbreviations: AD abduction, AB abduction, TD touchdown, FL flexion, EX extension, ER external rotation
Abbreviations:
- EV: Eversion
- IN: Inversion
- FL: Flexion
- EX: Extension
- IR: Internal Rotation
- EX: External Rotation
- AD: Adduction
- AB: Abduction

Abbreviation:
- MLA: Medial Longitudinal Arch

Figure S9. Forest plot displaying kinematic outcomes of PF-related studies

Figure S10. Forest plot displaying kinematic outcomes of PT study

Figure S11. Forest plot displaying kinematic outcomes of PTTD study

Table 3.1:

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean Difference</th>
<th>SD</th>
<th>F, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV</td>
<td>14.2</td>
<td>3</td>
<td>14.4</td>
<td>4</td>
<td>12</td>
<td>14.6</td>
<td>12</td>
<td>-0.7 (0.1 - 1.2)</td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>25.7</td>
<td>2.9</td>
<td>26</td>
<td>3.6</td>
<td>25</td>
<td>3.0</td>
<td>10.5</td>
<td>4.2</td>
<td>-2.5 (0.0 - 5.4)</td>
</tr>
<tr>
<td>Peak ankle dorsiflexion, Pichler et al., 2008</td>
<td>8.4</td>
<td>2.2</td>
<td>11</td>
<td>5</td>
<td>12</td>
<td>9.0</td>
<td>0.32</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Peak eversion, Pichler et al., 2008</td>
<td>0.72</td>
<td>2.02</td>
<td>0.73</td>
<td>2.03</td>
<td>0.74</td>
<td>2.04</td>
<td>9.4</td>
<td>2.05</td>
<td>-2.9 (0.0 - 5.8)</td>
</tr>
<tr>
<td>Peak pronation, Mesiano and Pittalis, 1998</td>
<td>15.6</td>
<td>3.7</td>
<td>15.7</td>
<td>4</td>
<td>12</td>
<td>15.9</td>
<td>12</td>
<td>-1.1 (0.0 - 2.1)</td>
<td></td>
</tr>
<tr>
<td>Total outlet movement, Mesiano and Pittalis, 1998</td>
<td>15.1</td>
<td>3.7</td>
<td>15.2</td>
<td>3</td>
<td>12</td>
<td>15.4</td>
<td>12</td>
<td>-1.3 (0.0 - 2.6)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.2:

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean Difference</th>
<th>SD</th>
<th>F, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleke Kinematics Changes</td>
<td>44</td>
<td>6</td>
<td>42</td>
<td>4</td>
<td>12</td>
<td>45</td>
<td>12</td>
<td>-1.0 (1.0 - 2.0)</td>
<td></td>
</tr>
<tr>
<td>Aleke Kinematics Changes</td>
<td>73</td>
<td>6</td>
<td>75</td>
<td>5</td>
<td>12</td>
<td>75</td>
<td>12</td>
<td>-0.0 (1.0 - 2.0)</td>
<td></td>
</tr>
<tr>
<td>Peak ankle eversion, Onuma et al., 2000</td>
<td>14</td>
<td>2</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>0.0 (1.0 - 2.0)</td>
<td></td>
</tr>
<tr>
<td>Peak knee flexion, Onuma et al., 2000</td>
<td>19</td>
<td>4</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>-0.0 (1.0 - 2.0)</td>
<td></td>
</tr>
<tr>
<td>Peak knee flexion, Onuma et al., 2000</td>
<td>21</td>
<td>2</td>
<td>23</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>0.0 (1.0 - 2.0)</td>
<td></td>
</tr>
<tr>
<td>Tibia ROM (ER), Onuma et al., 2000</td>
<td>12</td>
<td>3</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>0.0 (1.0 - 2.0)</td>
<td></td>
</tr>
<tr>
<td>Tibia ROM (ER), Onuma et al., 2000</td>
<td>12</td>
<td>3</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>0.0 (1.0 - 2.0)</td>
<td></td>
</tr>
<tr>
<td>Hip ROM (AD), Onuma et al., 2000</td>
<td>19</td>
<td>3</td>
<td>12</td>
<td>21</td>
<td>12</td>
<td>21</td>
<td>12</td>
<td>-1.0 (1.0 - 2.0)</td>
<td></td>
</tr>
<tr>
<td>Hip ROM (AD), Onuma et al., 2000</td>
<td>48</td>
<td>5</td>
<td>48</td>
<td>4</td>
<td>12</td>
<td>48</td>
<td>12</td>
<td>0.0 (1.0 - 2.0)</td>
<td></td>
</tr>
<tr>
<td>Max hip AD, Onuma et al., 2000</td>
<td>15</td>
<td>3</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>0.0 (1.0 - 2.0)</td>
<td></td>
</tr>
<tr>
<td>Max hip AD, Onuma et al., 2000</td>
<td>31</td>
<td>6</td>
<td>32</td>
<td>4</td>
<td>12</td>
<td>32</td>
<td>12</td>
<td>0.0 (1.0 - 2.0)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.3:

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean Difference</th>
<th>SD</th>
<th>F, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>8.6</td>
<td>3</td>
<td>8.9</td>
<td>5</td>
<td>12</td>
<td>9.0</td>
<td>12</td>
<td>0.0 (1.0 - 2.0)</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>9.8</td>
<td>3</td>
<td>9.8</td>
<td>12</td>
<td>12</td>
<td>9.8</td>
<td>12</td>
<td>0.0 (1.0 - 2.0)</td>
<td></td>
</tr>
<tr>
<td>Exercise intensity, Plappato et al., 2011</td>
<td>5.1</td>
<td>3</td>
<td>5.2</td>
<td>12</td>
<td>12</td>
<td>5.2</td>
<td>12</td>
<td>0.0 (1.0 - 2.0)</td>
<td></td>
</tr>
<tr>
<td>Peak pronation, Plappato et al., 2011</td>
<td>12.5</td>
<td>2</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>-0.0 (1.0 - 2.0)</td>
<td></td>
</tr>
<tr>
<td>Time to peak pronation, Plappato et al., 2011</td>
<td>12.5</td>
<td>2</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>-0.0 (1.0 - 2.0)</td>
<td></td>
</tr>
</tbody>
</table>

Figure S11. Forest plot displaying kinematic outcomes of PTTD study

Abbreviation: MLA: Medial Longitudinal Arch