The PRS Rainbow Classification for Assessing Postbariatric Contour Deformities

Claire E. E. de Vries, MD*
Lisa van den Berg, MD†
Valerie M. Monpellier, MD, PhD‡
Maarten M. Hoogbergen, MD, PhD†
Aebele B. Mink van der Molen, MD, PhD§
Steve M. M. de Castro, MD, PhD*†
Berend van der Lei, MD, PhD¶

Background: There is a need for a reliable classification system to grade contour deformities and to inform reimbursement of body contouring surgery after massive weight loss. We developed the PRS Rainbow Classification, which uses select photographs to provide standardized references for evaluating patient photographs, to classify contour deformities in postbariatric patients. To assess the reliability of the PRS Rainbow Classification to classify contour deformities in massive weight loss patients.

Methods: Ten independent experienced plastic surgeons, 7 experienced medical advisors of the healthcare insurance company, and 10 laypersons evaluated 50 photographs per anatomical region (arms, breast, abdomen, and medial thighs). Each participant rated the patient photographs on a scale of 1–3 in an online survey. The inter-observer and the intra-observer reliabilities were determined using intra-class correlation coefficients (ICCs). The ICC analyses were performed for each anatomical region.

Results: Inter-observer reliability was moderate to good in the body regions “arms,” “abdomen,” “medial thighs,” with mean ICC values of 0.678 [95% confidence interval (CI), 0.591–0.768], 0.685 (95% CI, 0.599–0.773), and 0.658 (95% CI, 0.569–0.751), respectively. Inter-observer reliability was comparable within the 3 different professional groups. Intra-observer reliability (test–retest reliability) was moderate to good, with a mean overall ICC value of 0.723 (95% CI, 0.572–0.874) for all groups and all 4 body regions.

Conclusions: The moderate to good reliability found in this study validates the use of the PRS Rainbow Classification as a reproducible and reliable classification system to assess contour deformities after massive weight loss. It holds promise as a key part of instruments to classify body contour deformities and to assess reimbursement of body contouring surgery.

INTRODUCTION

Severe obesity is on the rise in most countries, and bariatric surgery is considered to be the most effective weight loss option.1–3 The subsequent massive weight loss, however, generally leaves patients with excess skin and a significant abnormal body contour. After bariatric surgery, 80%–90% of the patients described problems with excess skin.4–8 The excess skin can cause health and hygiene issues, which may lead to significant impairment of the activities of daily living, as well as severe psychologic problems due to disfigurement.5,6,9–18 Body contouring surgery (BCS) can be used to address these problems of redundant excess skin.19–21 BCS holds promise for significant improvement of health-related quality of life and better weight control after bariatric surgery.20–31 Studies reported that 62%–90% of the postbariatric patients desired additional

Disclosure: The authors have no financial interest to declare in relation to the content of this article.

Related Digital Media are available in the full-text version of the article on www.PRSGlobalOpen.com.
reconstructive surgery. Due to the increasing number of people undergoing bariatric surgery, the number of postbariatric body contouring procedures performed annually continues to increase.

A standardized classification system for body contour deformities is warranted for surgical planning and outcome analysis of postbariatric body contouring procedures, as well as to inform reimbursement. The Pittsburgh Rating Scale (PRS) was the first validated classification system for contour deformities after massive weight loss. In the Netherlands, the PRS is also used for the classification of excess skin, which is one of the criteria for reimbursement by health insurers. Although the PRS represents a useful starting point to inform reimbursement for body contouring surgery, a study by van der Beek et al demonstrated that the PRS did not yet show enough evidence of reliability for this purpose. It is likely that contour deformities were visually assessed without the presence of reference photographs of the PRS, making these assessments more biased by each individual interpretation.

The Rainbow Scale is an online system consisting of reference photographs of the deformity to be assessed, and using the scale has shown to be a reliable way for plastic surgeons to evaluate nasolabial fold severity and breast ptosis. We developed the PRS Rainbow Classification, which builds on the concepts and the work of the PRS and the Rainbow scale. In the PRS Rainbow Classification, the patient photographs were placed in the center for review and classified against the select photographs from the original PRS to provide standardized references. The purpose of this study was to evaluate the reliability of this newly developed PRS Rainbow Classification. The present study examined whether the classification of contour deformities were the same when assessed by different persons and different stakeholders (ie, plastic surgeons, medical advisors of the healthcare insurance company, and laypersons) (inter-observer reliability) and by the same persons at a different moment in time (intra-observer reliability).

METHODS

Between June 2018 and March 2019, 10 independent experienced plastic surgeons, 7 independent experienced medical advisors of the healthcare insurance company, and 10 independent laypersons were asked to rate the photographs. Each of them rated 50 anterior–posterior photographs of different grades of deformities per deformity region (arms, breast, abdomen, and medial thighs) against the most appropriate corresponding grade. For intra-observer reliability (test–retest reliability), the photographs were randomly displayed in a different order, with a time interval of at least 2 weeks. Patients signed informed consent before BCS for the use of photographs for both medical and scientific purposes. The photographs are anonymized when used for scientific purposes; therefore, no individual patient data were available (ie, medical history and surgical history) in this study. The Institutional Medical Ethics Committee approved this study.

Photography

Standardized preoperative patient photographs are required by the Dutch healthcare insurers in order for reimbursement of BCS and, therefore, are part of the preoperative evaluation of BCS. The photographs were selected from the Department of Medical Photography of the UMCG, Groningen, and from the Catharina Hospital, Eindhoven. Once the most adequate photographs were obtained, Adobe Photoshop CC 2018 19.1.5.61161 (Adobe Systems Inc., San Jose, Calif.) was used to further anonymize the photographs for this study by not displaying the faces of the patients.

The PRS Rainbow Classification

The method of van der Beek et al was used as a starting point of this study, and we built on it by adding the Rainbow Scale, a classification system called the PRS Rainbow Classification. The PRS includes 10 regions with a 4-point grading system per anatomical region to systematically describe the common deformities in each region of the body. Each anatomical region is scored ranging from 0 (indicating normal appearance) to 3 (indicating the most severe deformity). The Rainbow Scale method has been adapted from the Merz Scales (Merz Pharmaceuticals GmbH, Frankfurt, Germany). The format of the Rainbow Scale has been previously used in nasolabial fold severity and in grading breast ptosis, in which 5 photographs are presented in a rainbow arch with increasing severity. An adapted version was created in the PRS Rainbow Classification by combining the best of both classification systems. Only photographs with grades 1–3 according to the PRS were used as standardized reference photographs in the PRS Rainbow Classification. The patient photograph to be reviewed was placed at the center position, which is surrounded by these 3 standardized photographs. The deformity severity of these standardized reference photographs are placed in increasing order while following the rainbow. The PRS Rainbow Classifications are shown in the Supplemental Digital Content 1. (See figures, Supplemental Digital Content 1, which display the PRS Rainbow Classification of each anatomical region. The photograph of the patient is located at the center of the lower row. Three grades of the PRS are placed around progressively as a rainbow. The photographs are reproduced from Song et al. [http://links.lww.com/PRSGO/B397].)

Data Collection

An online survey was created using Castor EDC (Castor Electronic Data Capture, Ciwit BV, Amsterdam, The Netherlands, 2018).

Statistical Analysis

Power analysis showed that a minimum of 42 photographs were necessary for 10 observers to provide a 95% CI of ±0.1 for an estimated intra-class correlation coefficient (ICC) of 0.7. Therefore, we decided to include 50 photographs per observer and per deformity region. The inter-observer agreement was determined using ICC ± 95% CI using a 2-way random-effects model for
single measurement and absolute agreement. The intraobserver agreement (test–retest reliability) was determined using ICC ± 95% CI using a 2-way mixed-effects model for single measurement and absolute agreement. The ICC will be performed for each anatomical region. The ICC takes values in the range of 0 (no agreement) to 1 (perfect agreement). Consistent with the guideline of reporting ICC values for reliability studies, we considered ICC values <0.5 as “poor” reliability, values between 0.5 and 0.75 as “moderate” reliability, values between 0.75 and 0.9 as “good” reliability, and values >0.90 as “excellent” reliability. A high ICC means that the total variance within the data is rather explained by differences between individuals than by that between the observers. All data were analyzed using SPSS 21.0 for Windows (SPSS Inc., Chicago, Ill.).

RESULTS

A total of 200 patient photographs (50 photographs of 4 deformity region: arms, breast, abdomen, and medial thighs) were included in the present study. All photographs of the breast, medial thighs, and arms were from women and 37 photographs of the abdomen were from women (74%).

Inter-observer Reliability

The PRS Rainbow Classification demonstrated a moderate to good inter-observer reliability in the body regions such as arms, abdomen, and medial thighs, with mean ICC values of 0.678 (95% CI, 0.591–0.768), 0.685 (95% CI, 0.599–0.773), and 0.658 (95% CI, 0.569–0.751), respectively (Table 1). The inter-observer reliability in the breasts was poor, with a mean ICC value of 0.368 (95% CI, 0.284–0.480) (Table 1). The mean ICC values of inter-observer reliability were comparable for the first and second test. In all different professional groups, moderate to good ICC values were seen in arms, abdomen, and medial thighs and poor to moderate ICC values in breasts (Table 2).

Intra-observer Reliability (Test–Reetest Reliability)

Ten plastic surgeons, 10 lay persons, and 4 medical advisors of the healthcare insurance company completed the second survey for intra-observer reliability (test–retest reliability). Intra-observer reliability per individual is available in the Supplemental Digital Content 2. (See table, Supplemental Digital Content 2, which displays intraobserver (test–retest) reliability per individual by professional groups (plastic surgeons, medical advisors of the healthcare insurance company, and laypersons), http://links.lww.com/PRS/GO/B398.) Intra-observer reliability (test–retest reliability) was moderate to good, with a mean overall ICC value of 0.723 (95% CI, 0.572–0.874) for all professional groups and for all 4 body regions (Table 3). The intra-observer reliability for each single anatomical region was good in arms, abdomen, and medial thighs, with mean ICC values of 0.779 (95% CI, 0.662–0.896), 0.787 (95% CI, 0.689–0.885), and 0.755 (95% CI, 0.649–0.861), respectively. The intra-observer reliability of the breasts was poor, with a mean ICC value of 0.570 (95% CI, 0.407–0.734). The mean ICC values in the different groups (plastic surgeons, medical advisors of the healthcare insurance company, and laypersons) were 0.721

---

**Table 1. Overall Inter-observer Reliability**

<table>
<thead>
<tr>
<th></th>
<th>Overall Intra-class Correlation</th>
<th>95% Confidence Interval</th>
<th>Test 1 Intra-class Correlation</th>
<th>95% Confidence Interval</th>
<th>Test 2 Intra-class Correlation</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arms</td>
<td>0.678</td>
<td>0.590–0.768</td>
<td>0.686</td>
<td>0.598–0.776</td>
<td>0.659</td>
<td>0.567–0.754</td>
</tr>
<tr>
<td>Breasts</td>
<td>0.368</td>
<td>0.284–0.480</td>
<td>0.372</td>
<td>0.283–0.487</td>
<td>0.362</td>
<td>0.272–0.479</td>
</tr>
<tr>
<td>Abdomen</td>
<td>0.685</td>
<td>0.599–0.773</td>
<td>0.672</td>
<td>0.582–0.764</td>
<td>0.698</td>
<td>0.610–0.785</td>
</tr>
<tr>
<td>Medial thighs</td>
<td>0.658</td>
<td>0.569–0.751</td>
<td>0.664</td>
<td>0.572–0.758</td>
<td>0.665</td>
<td>0.573–0.759</td>
</tr>
</tbody>
</table>

**Table 2. Inter-observer Reliability within the 3 Different Professional Groups**

<table>
<thead>
<tr>
<th>Plastic Surgeons</th>
<th>Medical Advisors of the Insurance Company</th>
<th>Laypersons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall ICC (95% CI)</td>
<td>Test 1 ICC (95% CI)</td>
<td>Test 2 ICC (95% CI)</td>
</tr>
<tr>
<td>Arms</td>
<td>0.701 (0.613–0.789)</td>
<td>0.664 (0.563–0.762)</td>
</tr>
<tr>
<td>Breasts</td>
<td>0.357 (0.274–0.480)</td>
<td>0.332 (0.248–0.480)</td>
</tr>
<tr>
<td>Abdomen</td>
<td>0.757 (0.702–0.845)</td>
<td>0.779 (0.701–0.850)</td>
</tr>
<tr>
<td>Medial thighs</td>
<td>0.678 (0.586–0.770)</td>
<td>0.674 (0.571–0.772)</td>
</tr>
</tbody>
</table>

**Table 3. Intra-observer (Test–Retest) Reliability by Professional Group**

<table>
<thead>
<tr>
<th>Plastic Surgeons</th>
<th>Medical Advisors of the Insurance Company</th>
<th>Laypersons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arms</td>
<td>0.765 (0.676–0.850)</td>
<td>0.842 (0.766–0.916)</td>
</tr>
<tr>
<td>Breasts</td>
<td>0.557 (0.461–0.654)</td>
<td>0.649 (0.553–0.747)</td>
</tr>
<tr>
<td>Abdomen</td>
<td>0.819 (0.739–0.899)</td>
<td>0.842 (0.766–0.916)</td>
</tr>
<tr>
<td>Medial thighs</td>
<td>0.743 (0.656–0.830)</td>
<td>0.871 (0.785–0.957)</td>
</tr>
</tbody>
</table>
Researchers from several countries have raised the issue following bariatric surgery is limited due to the lack of per-
to select those patients who may qualify for BCS reim-
for reliable classification of contour deformities, but also
the same person compared with those related to breasts.
was more consistent across different persons and within
photographs. In arms, abdomen, and medial thighs, the PRS
Classification showed higher ICC values com-
to avoid inevitable differences in photographs of differ-
ent persons as seen in the original PRS and in this PRS
Rainbow Classification. A specific increase in the length of
overhang per anatomical region will be incorporated
into the photographs with image morphing techniques to
create a representative grading classification with equal
steps between the grades. This equal stepwise variation
of morphed photographs used in a classification scale
has already been shown to be reliable in the Merz Scales
(Merz Pharmaceuticals GmbH, Frankfurt, Germany).
Moreover, image morphing techniques will allow for addi-
tional improvements in the photographs (eg, knees are
not visible on the PRS photographs of the abdomen, even
though this is an essential point of reference in the judg-
ment of excessive skin of the abdomen). These next steps
will be undertaken to further improve the PRS Rainbow
Classification.

A limitation in the use of the PRS Rainbow Classification
is the lack of anthropometry. On the other hand, not using
anthropometry makes the PRS Rainbow Classification a
quick and straightforward tool for use in daily practice.
Another limitation of this study is that the PRS Rainbow
Classification was only tested for the indication of body
contouring procedures. Moreover, while excess loose skin
can be functionally and psychologically bothersome, these
issues are not incorporated in the current PRS Rainbow
Classification. Excess loose skin may hamper the health-
related quality of life of patients and can lead to medical
complaints, and body contouring procedures (ie, abdomi-
noplasty, lower body lift, upper body lift) are the only effec-
tive treatments to remove excess skin. Not only should all
these aspects be evaluated when selecting patients to
qualify for BCS reimbursement, but the factors that can
affect the development of excess skin, such as preoperative
ptosis, body mass index, and circumference, have to be con-
sidered too. The PRS Rainbow Classification should
be used as an objective tool for classifying excessive loose skin
in addition to the screening tools that take into account
medical, psychological, and physical complaints, as well as
the predictors of excess skin (eg, the Dutch Reboc tool) to
justify insurance coverage. A pilot study combining the
improved version of the PRS Rainbow Classification and
the Dutch Reboc Scale is currently underway.

CONCLUSIONS

The moderate to good reliability found in this study
validates the use of the PRS Rainbow Classification, which
uses select photographs from the original PRS to

(95% CI, 0.578–0.864), 0.801 (95% CI, 0.673–0.929) and
0.693 (95% CI, 0.534–0.852), respectively.

DISCUSSION

The present study demonstrates that the PRS Rainbow
Classification is a reliable tool for the classification of con-
tour deformities in postbariatric patients with a desire for
BCS. In the arms, abdomen, and medial thighs, there was
moderate to good inter-observer and intra-observer reli-
bility, indicating that plastic surgeons, laypersons, and
medical advisors of the healthcare insurance company
rated photographs similarly. Intra-observer reliability was
good in arms, abdomen, and medial thighs for all raters,
which means that individuals consistently rated the pho-
tographs. In arms, abdomen, and medial thighs, the PRS Rainbow
Classification showed higher ICC values com-
pared with the breasts, which describes that the classifica-
tion of the photographs pertaining to these body regions
was more consistent across different persons and within
the same person compared with those related to breasts.

An objective and easy-to-use tool is not only essential
for reliable classification of contour deformities, but also
to select those patients who may qualify for BCS reim-
bursement. Patient access to body contouring procedures
following bariatric surgery is limited due to the lack of per-
sonal financial resources, and therefore patients primar-
ily rely on their healthcare insurer. Many insurance pol-
licies, however, currently use the length of overhang-
ing skin as an objective means of quantifying excess loose
skin deformities, which is not a reliable measure. Originally, the PRS
was designed to describe preoperative deformities in a
standardized manner. It was never intended as a tool for
insurance companies to determine whether or not the
deforomy is reimbursed for BCS. In clinical practice, a
significant discrepancy exists between the PRS assessment
by plastic surgeons or medical advisors of the healthcare
insurance company. This probably also reflects the dif-
ferent viewpoints and concerns of both professionals (ie,
plastic surgeon serving patients and getting work; insurance
companies limiting costs) and emphasizes the need
for a better classification tool to decide which patients
should be reimbursed. The PRS Rainbow Classification, as
evaluated in this study, is a classification tool that results in
reliable scoring across different stakeholder groups. The comparable rating scores of the postbariatric patient pho-
tographs among and within plastic surgeons, medical advi-
sors of the healthcare insurance company, and laypersons
indicated that the PRS Rainbow Classification is a reliable
classification system for different purposes.

Only in the breasts, the PRS Rainbow Classification
demonstrated poor inter-observer and intra-observer reli-
abilities. We hypothesize that this difference is due to the
variability in breast deformities after massive weight loss.
Breast deformities vary more significantly with deformities of other body regions. Postbariatric patients
present with a wide range of different breast deformities,
different breast volumes, and additional deformities (ie,
nipples deformities or lateral chest rolls) that are not ade-
quately described with the 3 deformity scales of anterior–
posterior photographs presented in the original PRS. For
better classification of breast deformities, the PRS Rainbow
Classification should be further enhanced using different
views (eg, oblique and lateral views). Furthermore,
the steps between the different grades of breast defor-
mities vary more significantly compared with the steps
between the different grades of other body regions. The PRS
Rainbow Classification could be further improved
with computer-simulated photography of one person
to avoid inevitable differences in photographs of differ-
ent persons as seen in the original PRS and in this PRS
Rainbow Classification. A specific increase in the length of
overhang per anatomical region will be incorporated
into the photographs with image morphing techniques to
create a representative grading classification with equal
steps between the grades. This equal stepwise variation
of morphed photographs used in a classification scale
has already been shown to be reliable in the Merz Scales
(Merz Pharmaceuticals GmbH, Frankfurt, Germany).
Moreover, image morphing techniques will allow for addi-
tional improvements in the photographs (eg, knees are
not visible on the PRS photographs of the abdomen, even
though this is an essential point of reference in the judg-
ment of excessive skin of the abdomen). These next steps
will be undertaken to further improve the PRS Rainbow
Classification.
provide standardized references for evaluating patient photographs, as a reproducible and reliable classification system to assess body contour deformities after massive weight loss. This classification system holds promise as a key part of instruments to classify body contour deformities and to assess reimbursement of BCS and should be further improved, especially for the breast deformities.

Claire E. E. de Vries, MD
Obesity Center Amsterdam
OLVG West
Jan Tooropstraat 164
1061 AE Amsterdam, The Netherlands
E-mail: c.e.e.devries@olvg.nl

ACKNOWLEDGMENT

We thank everyone who evaluated the photographs in this study.

REFERENCES

35. Monpellier VM, Antoniou EE, Mulhens S, et al. Body contouring surgery after massive weight loss: excess skin, body satisfaction,


