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Abstract
Background  Cost-effectiveness analysis (CEA) of biomarkers is challenging due to the indirect impact on health outcomes 
and the lack of sufficient fit-for-purpose data. Hands-on guidance is lacking.
Objective  We aimed firstly to explore how CEAs in the context of three different types of biomarker applications have 
addressed these challenges, and secondly to develop recommendations for future CEAs.
Methods  A scoping review was performed for three biomarker applications: predictive, prognostic, and serial testing, in 
advanced non-small cell lung cancer, early-stage colorectal cancer, and all-stage colorectal cancer, respectively. Information 
was extracted on the model assumptions and uncertainty, and the reported outcomes. An in-depth analysis of the literature 
was performed describing the impact of model assumptions in the included studies.
Results  A total of 43 CEAs were included (31 predictive, 6 prognostic, and 6 serial testing). Of these, 40 utilized different 
sources for test and treatment parameters, and three studies utilized a single source. Test performance was included in 78% 
of these studies utilizing different sources, but this parameter was differently expressed across biomarker applications. Sen-
sitivity analyses for test performance was only performed in half of these studies. For the linkage of test results to treatments 
outcomes, a minority of the studies explored the impact of suboptimal adherence to test results, and/or explored potential 
differences in treatment effects for different biomarker subgroups. Intermediate outcomes were reported by 67% of studies.
Conclusions  We identified various approaches for dealing with challenges in CEAs of biomarker tests for three different 
biomarker applications. Recommendations on assumptions, handling uncertainty, and reported outcomes were drafted to 
enhance modeling practices for future biomarker cost-effectiveness evaluations.

1  Introduction

In oncology, biomarker tests are important to guide per-
sonalized treatment decisions by providing genetic and 
molecular information. These tests can provide a variety of 
information, enabling their application in various clinical 
decision problems across different cancer stages and tumor 
types. Applications of biomarkers during cancer treatment 
include predictive, prognostic, and serial testing. Predictive 
testing refers to the identification of markers for the selec-
tion of treatment (e.g. EGFR mutation for tyrosine kinase 

inhibitor treatment for lung cancer patients) [1]. Prognostic 
tests identify markers that allow for stratifying patients into 
subgroups at high- or low-risk to develop an event (e.g. cir-
culating tumor DNA for the risk of recurrence after curative 
surgery) [2]. Serial testing refers to testing at multiple time 
points to monitor tumor evolution (e.g. carcinoembryonic 
antigen in colorectal cancer for surveillance in presumably 
cured patients to detect recurrence of disease and to start 
treatment, or to monitor metastatic patients to detect disease 
progression and to switch treatment) [3].

The accuracy of biomarker tests is evaluated in diagnostic 
accuracy studies. Decision makers, such as reimbursement 
agencies, often require evidence beyond test accuracy—the 
impact of biomarker tests on health outcomes (i.e. clinical 
utility) [4]. This is determined both by the ability of the test 
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Key Points for Decision Makers 

Estimating the cost effectiveness of novel biomarker 
tests is complicated due to challenges in the available 
evidence, linking of different evidence sources, and the 
interpretation of model outcomes.

In cost-effectiveness analysis (CEA), evidence for 
informing test and treatment parameters is mainly 
obtained from separate sources, requiring assumptions to 
link test results to treatment effects. These assumptions 
are crucial as they impact CEA results.

Reporting of intermediate outcomes describing the 
impact of the test, irrespective of the health outcomes of 
subsequent treatment, can enhance understanding of the 
mechanisms that play a role in the cost effectiveness of 
biomarker tests.

to inform treatment decisions (i.e. test accuracy) and by the 
effectiveness of subsequent treatments. Double randomized 
controlled trials (RCTs) are considered the gold standard 
to generate robust evidence for (reimbursement) decision 
making. In such trials, patients are randomized twice: first 
to a testing strategy, and second to a subsequent treatment 
based on the test result [5]. When designed well, they can 
prospectively evaluate both test accuracy and the impact on 
health outcomes. However, successfully performing such 
trials is challenging, due to the complex designs of these 
trials, difficulties in patient recruitment, and limited research 
funding for diagnostic tests [4, 6, 7]. Consequently, most 
existing evidence on biomarker tests focuses on test accuracy 
and is often derived from observational and/or retrospective 
studies, which is generally not directly suitable for policy 
making [5, 8].

Decision-analytic models can be used for estimating the 
long-term impact of biomarker tests on health outcomes and 
for conducting cost-effectiveness analysis. Compared with 
RCTs, decision models are a useful, cheap and time-saving 
method for exploring the potential long-term impact, as they 
can synthesize and link evidence from different sources on 
test accuracy and treatment effectiveness. However, linking 
evidence requires assumptions and introduces an additional 
layer of uncertainty [9–12]. These assumptions can vary 
between different biomarker applications due to different 
downstream consequences. Additionally, there is little guid-
ance available on how to deal with challenges related to the 
evidence linkage for different types of biomarkers [11].

Another challenge in conducting cost-effectiveness 
analyses for biomarker tests is interpreting the results. The 
primary outcome, the incremental cost-effectiveness ratio 

(ICER), is typically expressed in cost per quality-adjusted 
life-year (QALY) gained. However, when assessing bio-
marker tests, the ICER captures not only the impact of the 
biomarker test itself, but also the impact of subsequent 
treatments. This dual influence makes it more difficult to 
accurately interpret cost-effectiveness analysis of biomark-
ers [4, 10–12]. In addition, it has been argued that alongside 
health benefit and costs, other factors can be relevant for 
decision making, such as the capacity of laboratories [8, 
13–16]. However, reporting additional outcomes besides the 
ICER is currently not standard practice for cost-effectiveness 
analysis research.

Several publications have discussed the challenges in con-
ducting cost-effectiveness analysis in the field of personal-
ized medicine and have provided guidance [9–13]. However, 
most of these provide more general guidance, and only a 
few focus specifically on biomarkers or other diagnostic 
tests [10, 11, 17]. These publications do not include the dif-
ferences between various biomarker applications, as they 
mainly address challenges specific to predictive biomarker 
tests.

Therefore, our study aimed to observe how previous stud-
ies have dealt with the specific challenges described above 
by an in-depth exploration of published cost-effectiveness 
analyses for three biomarker applications (predictive, prog-
nostic, and serial testing), focusing on (1) the model assump-
tions and uncertainty and (2) the reporting of additional out-
comes. Building on the observations and lessons learned 
from our review, our second objective was to propose a set of 
recommendations that may provide guidance to future inves-
tigators conducting cost-effectiveness analysis of biomarker 
tests in the context of these three biomarker applications.

This study is initiated from the Dutch multidisciplinary 
“Circulating Tumor DNA on the Road to Implementation in 
the Netherlands” (COIN) consortium, which aims to facili-
tate the controlled, evidence-based introduction of circulat-
ing tumor DNA (ctDNA) testing into the Dutch healthcare 
system. Consequently, occasionally a ctDNA perspective is 
taken in this study. However, recognizing that the described 
challenges related to cost-effectiveness analysis are not 
unique to ctDNA, we adopted a broader perspective to evalu-
ate the challenges associated with biomarkers in general, 
while distinguishing between different types of biomarker 
applications.

2 � Methods

A scoping review was performed for three different bio-
marker applications (predictive, prognostic, and serial test-
ing), which are described in the following section. This 
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review included an in-depth exploration of the literature 
findings. Building on the lessons learned during the in-depth 
exploration and discussions with experts, recommendations 
for future cost-effectiveness research were proposed.

2.1 � Biomarker Applications

Three different applications of biomarker testing in can-
cer care were selected to explore differences in the cost-
effectiveness analysis approach and in the (downstream) 
consequences of a biomarker test: predictive, prognostic, 
and serial testing (Table 1). A schematic visualization of 
the biomarker applications, their downstream consequences, 
and the clinical settings is shown in Fig. 1. The clinical set-
tings of non-small cell lung cancer (NSCLC) and colorectal 
cancer (CRC) were selected based on available expertise 
within the COIN consortium and the findings of a previous 
study examining ctDNA applications with clinical potential 
that may be implemented in the future [18]. In addition, the 
availability of studies was checked in an initial literature 
scan for the selected clinical settings.

The biomarker application ‘predictive testing’ involves 
tumor profiling in advanced NSCLC patients for the iden-
tification of targets to select targeted treatments. Currently, 
many healthcare systems offering targeted treatments 
already perform biomarker tests in this setting [19]. How-
ever, there are substantial national and international differ-
ences between European hospitals in terms of which tests 
have been adopted, as many different methods and assays 
(e.g. single-gene, multi-gene tests, either tissue- or blood-
based) are available for the identification of targets [20, 21].

The biomarker application ‘prognostic testing’ involves 
biomarker testing to establish a patient’s prognosis (low- or 
high-risk of recurrence) after surgery with curative intent for 
stage II/III CRC to inform adjuvant treatment decisions. If 
a patient has a poor prognosis, an intensified treatment plan 
might be desired, whereas if a prognosis is good, treatment 
could potentially be de-escalated. Currently, the selection 
for adjuvant treatment differs among countries, but is gen-
erally based on prognostic clinicopathological factors and a 
biomarker test for mismatch repair status [22].

The third application (serial testing) involves sequential 
testing in all stages of CRC for monitoring patients over time 
to identify progression or recurrence of disease. In CRC, this 
is based on imaging techniques (e.g. CT scan or MRI) and 
the measurement of the biomarker carcinoembryonic anti-
gen in blood [22, 23]. Serial testing can involve follow-up 
programs with a variety of tests and/or procedures comple-
menting each other.

2.2 � Scoping Review

A separate literature search was performed in PubMed 
between June and December 2023 for each biomarker appli-
cation. The search strategies included relevant MeSH terms 
and title and/or abstract keywords to identify relevant arti-
cles. No publication date restrictions were applied to these 
searches. All searches contained search terms to identify 
cost-effectiveness analyses. Additionally, each search strat-
egy contained separate search terms related to the speci-
fied population for each biomarker application, and search 
terms to identify the relevant biomarker application and tests 
(Online Resource 1, see electronic supplementary material 
[ESM]). The search queries were optimized by cross-check-
ing with a recently published systematic review on health 
economic evidence for liquid biopsies [24].

The eligibility criteria were identical for all three bio-
marker applications. Studies were included only if they 
reported cost-effectiveness outcomes (both costs and sur-
vival measures, such as [quality-adjusted] life years), evalu-
ated a test, and matched the clinical setting described in 
Table 1. For serial testing, imaging tests were also included, 
because they are typically included in follow-up programs 
and their evaluation involves similar modeling challenges to 
biomarker tests. Studies were excluded when they were not 
published in English, did not match the clinical setting, no 
cost-effectiveness outcomes were reported, or when the full 
text was not available. Titles and abstracts were screened by 
two independent reviewers (AK, LS) based on the eligibility 
criteria. Disagreements were resolved through consensus. 
Subsequently, full-text articles were assessed in an identical 
procedure to the title and abstract screening.

Table 1   Description of the selected biomarker applications in the scoping review

CRC​ colorectal cancer, NSCLC non-small cell lung cancer

Application Goal of test/biomarker Treatment decision Test frequency Population

Predictive testing Identify target Select (targeted) treatment Single timepoint Advanced NSCLC
Prognostic testing Identify patients at high-risk 

for recurrence
Treat with adjuvant therapy Single timepoint Non-metastatic CRC​

Serial testing Identify recurrence Treat recurrence Multiple timepoints All stages CRC​
Identify progression Adapt treatment
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The data extraction process was conducted by the same 
reviewers, AK and LS. Of the included studies, 30%, dis-
tributed across the biomarker applications, were indepen-
dently extracted and subsequently discussed by AK and LS 
to ensure consistency and extraction of all relevant informa-
tion. Subsequently, the data extraction process was standard-
ized and the remaining studies were divided between AK 
and LS. Any ambiguities were discussed when encountered. 
In addition to general study characteristics, the data extrac-
tion process collected information on (i) model assumptions 
and uncertainty, and (ii) the reported outcomes. The model 
assumptions and uncertainty consisted of the evidence base 
for the input parameters, the link between the test and treat-
ment consequences, and the performed sensitivity analyses. 
The reported outcomes consisted of all outcomes that were 
reported in the included cost-effectiveness studies. An over-
view of the extracted items can be found in Online Resource 
2 (see ESM).

2.3 � Development of Recommendations

An expert roundtable was organized to discuss the findings 
of the scoping literature review and the preliminary recom-
mendations formulated by the core research team (AK, LS, 
WvH, VR, VC). Experts who participated in the roundtable 
included three members of the Dutch national advisory com-
mittee for diagnostic tests in oncology (i.e. cieBOD), two 
clinicians with (research) experience with biomarker tests, 
and two members of the advisory committee on expensive 
drug reimbursement from Dutch healthcare insurers (i.e. 
CieBAG). After the meeting, a summary of the discussion 
including the revised recommendations was sent to the 
experts for additional feedback.

Fig. 1   A simplified schematic overview of the biomarker applications 
and their potential impact on subsequent clinical decisions. This fig-
ure illustrates how biomarker tests inform clinical decision making 
across various applications. Predictive testing involves identifying a 
biomarker where the test result indicates the presence (positive result) 
or absence (negative result) of the target biomarker. The test results 
can be further classified as true or false, depending on the clinical 
sensitivity and specificity of the test. Prognostic testing predicts the 
risk of disease recurrence within a patient population, often due to 

biological differences between subgroups. A prognostic biomarker 
stratifies patients into high-risk or low-risk groups. The greater the 
difference in recurrence risk between these subgroups, the more 
effective the biomarker is in accurately categorizing patients. Serial 
testing involves repeated testing to detect disease recurrence or pro-
gression. Like predictive testing, both positive and negative results in 
serial testing can be classified as true or false, based on the sensitivity 
and specificity. CRC​ colorectal cancer, NSCLC non-small cell lung 
cancer
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3 � Results

3.1 � Included Publications

After removal of duplicates, a total of 86, 157, and 110 
records were identified for predictive, prognostic, and serial 
testing, respectively. Of these, 55, 151, and 104 studies were 
excluded after abstract screening and the assessment of the 
full-text as they did not fulfill the eligibility criteria. Reasons 
for exclusion were non-English papers, other intervention 
or population, no cost-effectiveness outcomes reported, and 
full-text not available. Ultimately, 43 papers were included 
in total: 31 papers for predictive testing [25–54], 6 for prog-
nostic testing [55–60], and 6 for serial testing [61–66]. The 
flow diagram of the study selection process of the screening 
procedure is shown in Online Resource 3 (see ESM).

Table  2 presents the summary characteristics of the 
included studies for the three biomarker applications. Differ-
ent testing strategies were compared between the biomarker 
applications, but also a wide variety of testing strategies 
were observed within each biomarker application. Note 
that the included studies for serial testing were generally 
older compared with the other biomarker applications, as 
five of the six studies were published before 2005. In gen-
eral, these older studies tended to report less comprehensive 
information on the methodology and the data sources. A 
more detailed overview of the included studies, including 
the extracted data per study, is listed in Online Resource 4 
(see ESM).

3.2 � Literature Findings

3.2.1 � Model Assumptions and Uncertainty

Of the 43 included studies, 38 (88%) relied on distinct 
sources for the input data used for the test and treatment 
parameters (28 predictive testing, 6 prognostic testing, and 
4 serial testing). These studies required linkage of test results 
to treatment evidence, which will be further described below. 

A further three (7%) studies, all predictive testing, informed 
their cost-effectiveness analysis with sources describing the 
combined effect of testing and subsequent treatments (‘end-
to-end’ evidence). These three studies were not required to 
link test results to treatment parameters in the model. One 
study incorporated data from four RCTs on immunotherapy 
with biomarker-stratified trial designs [26]. The two other 
studies utilized real-world data (RWD) to inform their analy-
ses (i.e. one national registry and one prospective observa-
tional cohort) [39, 51]. In the remaining two (5%) studies 
it was unclear what evidence was used as input for each 
parameter (both serial testing) [61, 62].

3.2.1.1  Input for Biomarker Test  Studies linking sources 
for test parameters to different sources for subsequent 
treatment effects utilized a variety of input parameters 
related to the biomarker test to inform their models. Most 
studies (78%) included the test performance, although 
how the test performance was expressed differed across 
the three biomarker applications which will be further 
discussed below. Besides test performance, 15/43 (35%) 
studies also included other parameters related to the test, 
such as success rates of tests or biopsies, turnaround time 
or lead time for disease progression.

For predictive testing, test performance expressed 
as sensitivity and/or specificity was explicitly included 
in 21/28 (75%) studies. Of these 21 studies, ten studies 
derived the evidence for these parameters from retrospec-
tive evidence, four from prospective evidence and the 
remaining seven studies had a mixture of evidence, relied 
exclusively on expert opinion, or did not clearly report 
the source. Studies that did not include test performance-
related parameters informed their cost-effectiveness analy-
sis with the prevalence of mutations or the positivity rate 
of tests.

For prognostic testing, test performance was expressed 
as the difference in recurrence risk between prognostic sub-
groups, and was included in all six (100%) studies. Four 
of the six (66%) studies used a hazard ratio for recurrence 
risk between subgroups, one (17%) used a continuous scale 

Table 2   Summary characteristics of included studies for the three biomarker applications

Predictive testing Total studies 31 [25–54]
Range publication year (median) 2012–2023 (2020)
Testing strategies Single-gene tests, multi-gene tests, liquid or tissue based

Prognostic testing Total studies 6 [55–60]
Range publication year (median) 2014–2022 (2021)
Testing strategies Immunohistochemistry, genetic tests, clinicopathological risk factors

Serial testing Total studies 6 [61–66]
Range publication year (median) 1990–2019 (2004)
Testing strategies Follow-up strategies including blood tests, imaging, colonoscopies
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relative risk which was dependent on the prognostic score, 
and one (17%) used time to recurrence distributions for dif-
ferent prognostic subgroups. Five (85%) studies based this 
parameter on prospective evidence, and one (17%) on retro-
spective evidence.

For serial testing, test performance was expressed as sen-
sitivity and/or specificity, and was explicitly included in 4/6 
(66%) studies. Two of these studies based this parameter on 
prospective evidence, one study on expert opinion, and the 
last study did not clearly report the evidence source. The 
remaining two (33%) studies did not clearly report how and 
if it was incorporated in their cost-effectiveness analysis.

Some testing strategies included multiple tests, which 
were performed either in parallel and/or in sequence. For 
predictive testing, 23/28 (82%) studies included multiple 
tests. Of these 23 studies, 13 (57%) studies included multiple 
tests performed in parallel and 19 (83%) performed tests in 
sequence; 12 (52%) of these studies explicitly reported on 
the relationship between these multiple tests. They mostly 
assumed that mutations were mutually exclusive. In addi-
tion, two studies incorporated a correlation between PD-L1 
and other biomarker status in their models. In prognostic 
testing, only 2/6 (33%) studies included multiple tests. These 
tests were performed in parallel, and no relationship between 
test results was discussed. In serial testing, all six (100%) 
studies included multiple tests. All of these studies included 
sequential testing, and four (66%) also included strategies 
with multiple tests performed in parallel. The relationship 
between these tests was not reported in five (80%) of these 
studies. The study that reported on the relationship between 
tests pooled the sensitivity and specificity of all tests at one 
time point to estimate the combined testing performance.

3.2.1.2  Assumptions About the  Adherence to  the  Test 
Result  Studies that used different evidence sources for test 
and treatment parameters were required to make assump-
tions to link a test result to the treatment effectiveness. 
One of the underlying assumptions includes to what extent 
the test result is always followed in the subsequent treat-
ment decisions. Of the 38 studies using different evidence 
sources, most studies assumed in the base-case analysis that 
clinicians perfectly adhered to the test results in making 
the subsequent treatment decision (26/28 [93%] for predic-
tive testing, 3/6 [50%] for prognostic testing, 4/4 [100%] 
for serial testing). However, this assumption was often not 
explicitly mentioned.

3.2.1.3  Assumptions About the Different Treatment Effects 
for  Different Biomarker Subgroups  A second underlying 
assumption for linking test and treatment parameters from 
different sources concerns the treatment effectiveness for 
different subgroups with a different test result. For predic-
tive and serial testing, this related to the difference in treat-

ment effectiveness in patients with true- or false-positive 
test results (and true-/false-negative test results). For predic-
tive testing, the impact of false-positive and false-negative 
test results was incorporated in 11/28 (39%) studies, while 
in serial testing, this was explicitly addressed in 2/4 (50%) 
studies. For prognostic testing, a differentiation in treatment 
effects between prognostic subgroups (low and high risk) 
would indicate that besides a prognostic effect, the bio-
marker also has some predictive effects. Two of six (33%) 
studies assumed different treatment effects in different prog-
nostic subgroups in the base case analysis. In addition, one 
other study stated that they did not assume a different treat-
ment effect in their model, as existing evidence had demon-
strated that there was no difference between the subgroups 
[56].

3.2.1.4  Exploring the  Uncertainty  Almost all included 
studies, both studies utilizing different evidence sources 
and end-to-end sources, conducted sensitivity analyses, 
including scenario analyses, probabilistic, and one- or two-
way sensitivity analyses (42/43). Among the studies that 
included test performance, 17/21 (81%), 5/6 (83%), and 
2/4 (50%) studies explored the impact of test performance 
in predictive, prognostic, and serial testing, respectively. 
The impact of the cost of testing was less often explored, 
with 15/31 (48%) exploring cost for predictive testing, 4/6 
(66%) for prognostic testing, and cost was not explored in 
any of the studies for serial testing. The impact of subopti-
mal adherence to the test results was explored in sensitivity 
analyses in 2/31 (6%), 2/6 (33%), and 0/6 (0%) studies, for 
predictive, prognostic, and serial testing, respectively. The 
uncertainty around different treatment effects for different 
biomarker subgroups was assessed in 5/31 (13%) for predic-
tive testing, 3/6 (50%) for prognostic testing, and 0/6 (0%) 
for serial testing in sensitivity analyses.

3.2.2 � Reported Model Outcomes

3.2.2.1  Long‑Term Outcomes (of Test and  Subsequent 
Treatment(s)) and  Intermediate Outcomes (of Diagnos‑
tic Test Phase)  All included studies reported long-term 
cost outcomes and clinical outcomes in terms of survival. 
Besides long-term outcomes, 67% of studies reported inter-
mediate outcomes, which are outcomes that provide infor-
mation on the impact of the test, without yet incorporating 
the effects and costs of subsequent treatments (22/31 [71%] 
for predictive testing, 4/6 [66%] for prognostic testing, 3/6 
[50%] for serial testing). Costs related to the testing proce-
dure only (i.e. costs of testing) were reported in 17/31 [55%], 
2/6 [33%], and 0/6 [0%] studies for predictive, prognostic, 
and serial testing, respectively. Various other intermediate 
outcomes were reported by 16/31 (52%) studies for predic-
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tive testing, 3/6 (50%) studies for prognostic testing, and 3/6 
(50%) studies for serial testing. Especially within predictive 
testing, a wide range of short-term outcomes were identified 
(Fig. 2).

3.2.2.2  Cost‑Effectiveness Ratios  Most studies included 
cost-effectiveness ratios for long-term outcomes (24/31 for 
predictive testing, 6/6 for prognostic testing, 6/6 for serial 
testing) (e.g. cost/QALY). Few studies also reported cost-
efficiency ratios for intermediate outcomes (i.e. related to 
the impact of the test only) (5/31 [16%] for predictive test-
ing, 0/6 [0%] for prognostic testing, 0/6 [0%] for serial test-
ing).

3.3 � Lessons Learned and Observations From 
the Scoping Review

3.3.1 � Lessons Learned Regarding Model Assumptions 
and Uncertainty

Observation 1: Most studies utilized different evidence 
sources for the input of test and treatment parameters.

The most robust evidence for the clinical utility of a 
biomarker and the subsequent treatment (decision) can be 
obtained through RCTs. Double randomized RCTs, in which 
patients undergo two levels of randomization: (1) an initial 
randomization to the test, and (2) a subsequent randomiza-
tion within each arm to the subsequent treatment based on 
the biomarker result, is the ideal trial design that allows for 
the evaluation of both the test and the treatment [5]. How-
ever, such trials are challenging to perform due to practi-
cal and sometimes ethical concerns. This is reflected in our 
scoping review, where none of the studies used evidence 
from a double-randomized RCT, and most used different 

evidence sources for the test and treatment parameters. Of 
the three studies that used a single source for these param-
eters, two relied on RWD.

Studies using an end-to-end source for test and treatment 
often combined these into a single test-treatment parameter, 
as can be seen in Steuten et al. [51] and Loubière et al. [39]. 
As a consequence, these studies did not require assumptions 
to link test outcomes to treatment effects. In addition, if a 
study uses a single evidence source for both test and treat-
ment parameters, the data is derived from the same popu-
lation, avoiding bias that can occur when linking multiple 
sources of potentially different populations. An advantage 
of using real-world test and treatment data is that it better 
reflects the real clinical pathway, and implicitly includes 
other relevant testing aspects, such as the timing of testing 
or test adherence. However, studies using a single source, 
particularly when this concerns RWD, also have several 
drawbacks: RWD tends to be more susceptible to bias, com-
parator data can be more difficult to obtain, and there is less 
flexibility to evaluate multiple testing strategies or conduct 
extensive sensitivity analyses.

Using different evidence sources for test and treatment 
parameters enables more stepwise modeling of all clinical 
actions and greater flexibility in the analysis, allowing for 
the evaluation of a broader range of strategies and more sen-
sitivity and scenario analyses. While robust cost-effective-
ness analyses can be conducted using multiple data sources, 
researchers should remain aware of potential pitfalls and 
implications of linking evidence. The following observa-
tions, lessons learned, and recommendations are particularly 
relevant for studies utilizing different data sources.

During the round table discussion, experts indicated that 
the use of a different patient population may result in a dif-
ferent test performance and/or treatment efficacy, thereby 
introducing bias in the cost-effectiveness analysis. Therefore, 
the first recommendation is that ‘the intended population 
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and biomarker test application in the economic evaluation 
should align with the evidence sources’ (Recommendation 1, 
Table 3). To clarify, if the cost effectiveness of a biomarker 
test X that identifies biomarker Y in a patient population Z 
is evaluated, test parameters should be informed by evidence 
in which biomarker test X is used to identify biomarker Y in 
patient population Z.

Observation 2: Test performance is included in most 
studies but expressed in different parameters across 
biomarker applications, and the relationship between 
multiple tests is not always considered.

When evaluating the cost effectiveness of different test-
ing strategies, the key differences between the tests lie in 
how well they identify a target (predictive testing), high-risk 
patients (prognostic testing), or disease recurrence/progres-
sion (serial testing). In our scoping review, we found that 
most studies included a parameter for test performance. In 
predictive and serial testing, this was primarily incorporated 
as sensitivity and/or specificity, while in prognostic testing, 
this was incorporated as the difference in recurrence risk 
between prognostic subgroups. If test performance was not 
incorporated, we observed that evidence linkage was simpli-
fied by assuming a 100% test accuracy. For example, Simons 
et al. compared different testing strategies using only the 
prevalence of alterations [49, 50]. Omitting test performance 
in their model may have contributed to similar identified 
alteration rates across the compared testing strategies.

Explicitly incorporating test performance allows for a 
more accurate comparison of testing strategies and their 
characteristics, as demonstrated in the study by Hofmarcher 
et al. [36]. They accounted for differences in sensitivity and 
specificity between biomarker tests, with a notable differ-
ence in specificity between PCR (86%) and next-generation 
sequencing (NGS) (100%). This contributed to improved 
treatment allocation in the NGS-based testing strategy. To 
avoid oversimplification when evaluating testing strategies, 

we propose to ‘explicitly consider test performance in cost-
effectiveness analysis’ (Recommendation 2, Table 3). This 
enhances the comparison of test strategies, enables modeling 
of downstream consequences of inaccurate or suboptimal 
test results, and allows for the reporting of intermediate out-
comes related to the test.

The majority of studies in predictive and serial testing 
evaluated strategies that involved a combination of tests. 
When multiple tests are conducted, their results may be 
interdependent. For predictive testing, most studies dealt 
with this by assuming that mutations were mutually exclu-
sive. Only one study included a source containing evidence 
on the likelihood of co-occurrence of multiple targets [41]. 
In serial testing, little consideration was given to the correla-
tion between outcomes of tests performed in parallel or in 
sequence, while this is particularly relevant in this context, 
because follow-up programs often include a variety of tests. 
Therefore, we recommend to ‘consider the interdependency 
between different tests at the same or at sequential time 
points, and explicitly report the underlying assumptions’ 
(Recommendation 3, Table 3).

Observation 3: Most studies that included the test 
performance analyzed its impact through sensitivity 
analyses, whereas only approximately half of the stud-
ies varied the cost of testing.

In the studies that performed sensitivity analysis for either 
or both test performance and test costs, the influence of these 
parameters seemed to vary between clinical applications and 
patient populations. In predictive testing, test performance 
and costs were often not among the most influential fac-
tors, as test costs were typically overshadowed by expen-
sive (targeted) treatments. In prognostic testing, varying test 
performance had limited impact in the studies. Two stud-
ies demonstrated that varying the costs of testing impacted 
their conclusions, changing the preferred strategy [57, 58]. 
In serial testing, the study from Wanis et al. showed that 
varying the test performance affected the preferred testing 

Table 3   Proposed recommendations for cost-effectiveness analysis for biomarker tests

Model assumptions and uncertainty 1. The intended population and biomarker test application in the economic evaluation should align with 
the evidence sources

2. Explicitly consider test performance in cost-effectiveness analysis
3. Consider the interdependency between different tests at the same or at sequential time points, and 

explicitly report the underlying assumptions
4. Explore the impact of specifically the test costs and the test performance in sensitivity analyses
5. Explore the impact of suboptimal adherence to the test results through sensitivity analyses
6. When using different sources of evidence for test and treatment parameters, consider potential differ-

ences in treatment effects between biomarker subgroups
Reported outcomes 7. Besides the standard long-term outcomes (of test and subsequent treatment(s)), also report intermediate 

outcomes (of the diagnostic phase) to provide more insight into downstream consequences
8. Report incremental cost-efficiency ratios for relevant intermediate outcomes
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strategy [66]. The impact of test costs was not explored in 
any of the studies on serial testing, despite the fact that this 
impact is multiplied over time in this biomarker application 
due to the repetitive nature of testing.

The evolving landscape of biomarker applications can 
result in advances in technologies improving the test perfor-
mance and decreasing costs over time. Performing sensitiv-
ity analyses for these parameters is therefore highly informa-
tive, guiding future research and further test development. 
Several examples illustrated how these analyses contributed 
to the robustness of cost-effectiveness analyses. Therefore, 
we propose to ‘explore the impact of specifically the test 
costs and the test performance in sensitivity analyses’ (Rec-
ommendation 4, Table 3).

Observation 4: Most studies assumed a perfect adher-
ence between test results and subsequent clinical deci-
sions.

In our scoping review, we observed that the impact of 
suboptimal adherence to the test result was only considered 
in a minority of studies in either the base-case or sensitivity 
analysis, while this can also significantly impact the results 
of cost-effectiveness studies. To illustrate, we observed 
in the study of Jongeneel et al. that the preferred strategy 
changed in the sensitivity analysis in which they assumed 
real-world adherence compared with perfect adherence [59]. 
Data for the sensitivity analysis reflecting a scenario for real-
word adherence cannot be obtained from RCTs, thus was 
generally obtained from RWD sources [59, 60], or expert 
opinion [48]. Considering that clinical practice does not per-
fectly adhere to guidelines and/or test results, we propose 
to ‘explore the impact of (suboptimal) adherence to the test 
results through sensitivity analyses’ (Recommendation 5, 
Table 3).

Observation 5: A minority of the included studies 
explored different treatment effects in different bio-
marker subgroups.

In the scoping review, we observed that studies using 
different sources for test and treatment parameters did not 
always explicitly consider that different biomarker sub-
groups can respond differently to the same treatment. For 
predictive and serial testing, this implies that patients with 
true- or false-positive (or negative) test results (may) exhibit 
a different response to the same treatment. Within predictive 
testing, evidence to inform the false-positive biomarker sub-
group was often lacking, which multiple studies solved by 
assuming a treatment effect equal to best supportive care in 
these patients. One study informed the effectiveness of treat-
ment in false-positive patients based on an RCT that evalu-
ated targeted treatment in both wild-type and mutation-pos-
itive patients [29]. In this study, false positives, in patients 
who were assumed to have a treatment effect observed in 

wild-type patients, had a substantial impact on the overall 
survival (OS) and led to high additional costs due to mis-
classified patients. The application of adjusted treatment 
responses in serial testing can be illustrated by the work of 
Wanis et al., where false negatives led to missed diagnoses 
and delayed detections [66]. In addition, false positives led 
to extra costs for diagnostic workup. Conversely, Gazelle 
et al. included test sensitivity, but not specificity in their 
analysis, which limited their ability to account for the effects 
of false positives [63].

Prognostic biomarker tests stratify patients into subgroups 
by differentiating between high and low risk for recurrence. 
Two studies acknowledged that high-quality evidence 
informing the effectiveness of treatments in differentiated 
prognostic subgroups was not (yet) available for their prog-
nostic biomarker tests [55, 60]. They both emphasize the 
role of prospective trials to examine whether a prognostic 
biomarker also has predictive value, indicating a different 
treatment effect in low- and high-risk subgroups. When such 
trials have not yet been performed, it can be worthwhile to 
explore the impact of a potential predictive value of prognos-
tic biomarkers. These two studies explored the scenario in 
which high-risk patients responded better to treatment com-
pared with low-risk patients [55, 60], which is beneficial for 
the prognostic biomarker of interest. On the other hand, Jon-
geneel et al. explored the impact of the biomarker-identified 
high-risk group being resistant to treatment [58]. This sen-
sitivity analysis showed that an alternative testing strategy 
would be preferred in this situation. Therefore, we propose 
‘to consider potential differences in treatment effects for dif-
ferent biomarker subgroups’ (Recommendation 6, Table 3). 
Note that the inclusion of test performance is a requirement 
for studies to incorporate these different treatment effects, as 
otherwise the biomarker subgroups cannot be differentiated.

3.3.2 � Lessons Learned Regarding the Reported Outcomes

Observation 6: 67% of included studies reported inter-
mediate outcomes.

Model-based cost-effectiveness analyses can provide 
long-term outcomes such as the total costs, life-years or 
QALYs, which are often seen some of the most important 
outcomes for decision makers. However, included studies 
across biomarker applications solely reporting these long-
term outcomes provided limited insight into the underlying 
mechanisms driving these outcomes. Wolff et al. reported 
both long-term and intermediate outcomes, demonstrat-
ing that the intermediate outcomes revealed complemen-
tary insights [53]. While the long-term outcomes indicated 
a modest health benefit at higher costs, the intermediate 
outcomes showed a substantial increase in the number of 
patients receiving a diagnostically correct treatment, along 
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with reductions in turnaround time, test costs, and the num-
ber of unsuccessful tests. Thus, while demonstrating that the 
increase in costs was driven by treatment costs only, they 
highlighted the importance of reporting intermediate out-
comes to better understand the mechanisms that play a role.

In the scoping review, a variety of intermediate clinical 
outcomes were identified. We classified them into three 
distinct types of outcomes (performance, efficiency, oppor-
tunity) and complemented the identified outcomes with 
suggestions from the experts (Table 4). Intermediate out-
comes related to test performance and costs of testing can 
and should always be reported, but the specific outcomes 
depend on the biomarker application and the input param-
eters. For example, the quantification of the number of false 
test results showing the impact of the (in)accuracy of a test is 
only possible when sensitivity and specificity are included. 
Furthermore, depending on the aim of the cost-effective-
ness analysis and the clinical setting, other intermediate 
outcomes can be relevant to report, such as the efficiency 
of laboratory procedures or new opportunities (e.g. clini-
cal trial enrollment). To illustrate, four studies on predictive 
testing reported intermediate outcomes related to time (e.g. 
turnaround time of the test or time to treatment) [25, 27, 30, 
53]. This can be particularly informative and relevant for 
institutional decision makers when they have to deal with 
time or capacity constraints. Note that modelers should not 
only report positive intermediate outcomes, but should also 
report negative ones as well. To provide a better understand-
ing into the mechanisms that play a role in the cost effective-
ness of biomarker tests, we propose to ‘report intermediate 
outcomes (of the diagnostic phase), alongside the standard 
long-term outcomes’ (Recommendation 7, Table 3) to pro-
vide more insight into downstream consequences.

Observation 7: Few studies reported intermediate cost-
efficiency ratios.

Intermediate cost-efficiency ratios were only reported in 
predictive testing studies. Similar to reporting intermediate 
outcomes, reporting the incremental cost-efficiency ratio for 
intermediate outcomes and diagnostic costs provides use-
ful insights about the diagnostic process for (institutional) 
decision makers. This can be illustrated by the results of 
Schluckebier et al., who present incremental ‘diagnostic 
cost per correct case identified’ (diagnostic cost of roughly 
$1000 per correct case identified), besides the long-term 
ICER including both diagnostic and treatment costs (roughly 
$200,000 total costs per QALY gained) [47]. By disentan-
gling the effects of tests and treatments, the authors demon-
strate that identifying correct diagnosed cases does not nec-
essarily lead to cost-effective treatments. No cost-efficiency 
ratios were reported for prognostic and serial biomarker 
applications, while these ratios could also provide additional 
insights (e.g. the incremental cost per detected recurrence 
for serial testing). Therefore, we propose our final recom-
mendation: ‘Report incremental cost-efficiency ratios for rel-
evant intermediate outcomes’ (Recommendation 8, Table 3). 
It is worth noting that no universally accepted thresholds 
can exist for such outcomes, and may not be desirable as 
they would differ between indications and clinical settings. 
Therefore, the interpretation of such cost-efficiency ratios 
should be made with care.

4 � Discussion

In this study, we explored if and how published cost-effec-
tiveness analyses of biomarker tests addressed challenges 
related to evidence linkage and to the evaluation of the 
impact of biomarker tests by conducting an in-depth explo-
ration of (i) model assumptions and uncertainty, and (ii) 
the reported outcomes across three biomarker applications: 

Table 4   Different types of 
clinical outcomes classified as 
intermediate- and long-term 
model outcomes, providing 
relevant example outcomes for 
the three biomarker applications

OS overall survival, PFS progression-free survival

Predictive testing Prognostic testing Serial testing

Long-term clinical outcomes
OS
PFS
Quality of life

OS
PFS
Quality of life

OS
PFS
Quality of life

Intermediate clinical outcomes
Performance Biomarker matched treatments

Targets identified
Test accuracy-related outcomes 

(e.g. false positive rate)

Treatment rate (in risk 
groups)

Recurrence/progression rate
Treatment rate
Test accuracy-related out-

comes (e.g. false positive 
rate)

Lead time
Efficiency Turnaround time

Failure rate
Turnaround time
Failure rate

Turnaround time
Failure rate

Opportunity Trial enrollment
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predictive, prognostic, and serial testing. Most studies 
derived evidence for the test and treatment effectiveness 
from different sources, requiring assumptions to link test 
results to treatment effects, which were rarely explicitly 
considered in the analyses or explored in sensitivity analy-
ses. Of these studies, we found that test performance was 
not always explicitly included in the analyses, although 
this is a requirement for such studies to incorporate down-
stream consequences for each biomarker subgroup. When 
included, the test performance was expressed differently 
across biomarker applications. Regarding the reported cost-
effectiveness outcomes that are relevant for biomarker tests, 
our results showed that half of the studies reported inter-
mediate outcomes (of the diagnostic test phase) alongside 
long-term outcomes. These studies showed that reporting a 
combination of intermediate- and long-term outcomes can 
enhance the understanding of the (broad) impact and the 
downstream consequences of biomarker tests. Based on the 
literature findings and in-depth exploration, we provide eight 
recommendations tailored to three biomarker applications, 
focusing on (i) the model assumptions and uncertainty, and 
(ii) the reported outcomes. These recommendations can help 
to improve modeling practices for future cost-effectiveness 
analyses of biomarker tests.

Our scoping review identified different numbers of rel-
evant studies for the biomarker applications of interest. Only 
six papers were included for both prognostic and serial test-
ing, compared with 31 for predictive testing. The high vol-
ume of publications on predictive testing is likely due to 
the increased attention that expensive targeted treatments 
receive from both regulatory bodies and the pharmaceutical 
industry, as well as their established role in clinical prac-
tice. Companion diagnostics, a form of predictive testing, 
are closely linked to these expensive targeted treatments. 
For serial testing, most papers were published before 2005. 
This was unexpected as, for example, several promising 
prospective studies for ctDNA testing have been published 
indicating the potential use of both prognostic and serial 
testing in CRC [67–70]. The lack of cost-effectiveness 
analyses for serial testing could be due to evidence gaps for 
pending clinical questions and difficulties in modeling (e.g. 
complex diagnostic pathways, number of treatment lines, or 
challenges in detectability thresholds and observing disease 
progression). This should, however, not be seen as a reason 
to refrain from performing cost-effectiveness analyses. Even 
at an early development stage, while considering current 
evidence gaps, they can provide valuable insights and guide 
future research. The lack of cost-effectiveness analyses in 
early research phases of biomarkers can delay the timely 
assessment of effective biomarkers and increases the risk of 
uncontrolled introduction into clinical practice.

In our recommendations, we underscore the significance 
of reporting intermediate outcomes in cost-effectiveness 

analyses to provide enhanced insights into the impact in 
the diagnostic test phase, especially when limited data is 
available. Intermediate outcomes can facilitate in the inter-
pretation of long-term outcomes, as they provide additional 
insight into the relationships that translate test parameters 
via intermediate outcomes to long-term outcomes. This 
increases the understanding of how biomarkers may con-
tribute to the cost effectiveness of the test-treatment path-
way. While it fell outside the scope of our recommendations, 
achieving reimbursement for novel biomarker applications 
was a prominent topic during the round table discussion. 
From a policy perspective, long-term outcomes (e.g. ICER, 
OS, QALY) are often primary outcomes in national reim-
bursement decisions. However, during the round table dis-
cussion it was also mentioned that in specific cases, such 
as when a new test is a technical variant of an existing test, 
demonstrating similarity in test performance may suffice. 
Although national reimbursement bodies, in most cases, 
deem intermediate outcomes insufficient for decision mak-
ing, the additional insights they offer can be valuable for 
other stakeholders, including institutional decision makers 
and researchers.

The valuation of these intermediate outcomes may vary 
among stakeholders and no universal willingness-to-pay 
thresholds exist for such outcomes. For instance, hospital 
administrators also may prioritize efficiency outcomes in 
their decisions, such as capacity and turnaround time, while 
patients may place greater value on opportunity outcomes, 
such as trial enrollment. This stakeholder-dependent valu-
ation adds complexity to interpreting these outcomes and 
assessing the benefits of biomarker tests. Besides quanti-
fiable outcomes that can be included in cost-effectiveness 
analyses, other factors that are not so easily included in 
cost-effectiveness analyses may contribute to the benefits 
of biomarker tests, such as organizational benefits of using 
a widely applicable biomarker test for multiple purposes, 
or the benefit of more certainty in clinical decision making 
[13–16].

Our recommendations build upon and complement exist-
ing literature concerning the challenges and recommenda-
tions for cost-effectiveness analyses in precision oncology. 
Vellekoop, Annemans, and Bouttel, and their colleagues 
have offered broad guidelines for performing cost-effec-
tiveness analyses in the topic of personalized medicine, 
whereas our focus lies in providing more specific guidance 
for cost-effectiveness analysis of biomarker tests, tailored 
to specific applications [9, 12, 13]. Kip et al. developed a 
checklist of aspects to consider in cost-effectiveness analyses 
of biomarkers, irrespective of their application [10]. These 
aspects were also explored in our review, and in a systematic 
review focusing on liquid biopsies by Fagery et al., which 
reported comparable findings to ours [24]. To illustrate, most 
included studies in their review assessed test performance, 
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while the adherence to test results was seldom addressed. 
Considering that both studies identified similar challenges, 
we suggest that researchers adhere to the checklist of Kip 
et al. and use our lessons learned for more context on how 
published cost-effectiveness analyses have addressed or 
incorporated different topics on the checklist for the three 
different types of biomarker applications.

Additionally, Shinkins et al. discussed the challenges 
associated with linking test outcomes to treatment effects 
specifically for predictive biomarkers, highlighting the 
consequences of different assumptions [11]. Our research 
reveals that this linking process is often overlooked across 
all three included applications, and its execution varies 
significantly over the biomarker applications, especially 
regarding the estimates or assumptions for the treatment 
effectiveness in biomarker subgroups. For predictive testing, 
we suggest explicitly considering differentiating treatment 
effects for false positives and negatives, while for prognostic 
testing the treatment differentiation should be considered for 
the stratified risk groups. For serial testing, consequences of 
false positives and negatives should be considered beyond 
the treatment effect, as false-positive results can lead to 
additional diagnostics and false-negative results to delayed 
detection of recurrence and delayed initiation of treatments.

One of the strengths of our study is our comprehensive 
approach, examining several clinical biomarker applica-
tions across different tumor types, not just predictive testing, 
which is the main focus of existing guidance. Additionally, 
we incorporated expert opinions from various decision-mak-
ing perspectives, including clinical, molecular, and health 
insurance authorities. Our study also has limitations. Our 
scoping search might have been too narrow, as we focused 
on studies that aimed to evaluate a test, potentially missing 
studies that aimed to evaluate a treatment while still includ-
ing a companion diagnostic in their analysis. A second 
limitation is that, especially for serial testing, some of the 
included studies were older, of limited quality, and provided 
limited detail on their methodology. Despite these limita-
tions, our study provides valuable insights and actionable 
recommendations for improving cost-effectiveness analyses 
for biomarker tests, aiming for a more comprehensive evalu-
ation of the impact of biomarker tests in clinical practice.

5 � Conclusion

Our study has identified various approaches for dealing 
with challenges in cost-effectiveness analyses of biomarker 
tests. We propose eight recommendations to improve future 
modeling practices, addressing modeling choices and down-
stream consequences of biomarker tests. Implementing these 
recommendations will enhance comprehensive and accurate 

evaluations specific to the biomarker application, ultimately 
improving the evaluation process which will facilitate the 
implementation of (cost-effective) biomarker tests.
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