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ABSTRACT

Oscillatory behavior is ubiquitous in many natural and engineered systems, often emerging through self-regulating mechanisms. In this
paper, we address the challenge of stabilizing a desired oscillatory pattern in a networked system where neither the internal dynamics nor
the interconnections can be changed. To achieve this, we propose two distinct control strategies. The first requires the full knowledge of
the system generating the desired oscillatory pattern, while the second only needs local error information. In addition, the controllers are
implemented as co-evolutionary, or adaptive, rules of some edges in an extended plant-controller network. We validate our approach in
several insightful scenarios, including synchronization and systems with time-varying network structures.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0230879

This work tackles the challenge of stabilizing a desired oscilla-

tory pattern in a network with a fixed structure. We propose

two distributed controllers to achieve this. These controllers are

fundamentally different: the first is highly robust and eliminates

nonlinearities but requires full knowledge of the reference sys-

tem. The second, inspired by the neuromodulation of biological

systems, only requires local error information. Moreover, the

controllers are implemented as co-evolutionary rules for edges

connecting an oscillatory node with the controlled system. This

effectively results in an adaptive network where the adaptation

rules shape the dynamics of the controlled nodes. We showcase

the co-evolutionary controllers by exploring the synchronization

of the controlled system, showing that our approach is indepen-

dent of the network structure, and testing the performance of the

controllers in time-varying networks. Our theoretical and numer-

ical results show two distributed strategies to induce a desired

oscillatory pattern by adaptively modulating node> dynamics.

I. INTRODUCTION

Inducing and regulating a desired oscillatory behavior in
networked systems is a fundamental problem in control the-
ory, with ample relevance for both natural and engineered sys-
tems. Oscillations are ubiquitous in many real-world phenomena
including industrial applications,1–3 chemistry,4,5 neural networks,6,7

psychology,8,9 and biology.10,11 More specifically, in biological sys-
tems, rhythmic signals govern important physiological processes,
including the heartbeat’s regulation, circadian rhythms, central pat-
tern generators, and neuronal signaling.12–15 From the engineering
side, several technologies also need such periodic signals, for exam-
ple, to achieve the coordination of automation processes, includ-
ing robotic locomotion,16,17 or in the developments of synthetic
biological systems.18–20

Several naturally occurring oscillatory patterns are self-
regulated and emerge from the intrinsic dynamics of the system.
In contrast, there are many scenarios, both natural and engineered,
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where external control is required to induce or modify oscillations
in a desired way. This is, for instance, relevant in neuromorphic
engineering,21 where particular oscillatory patterns of biologically
inspired neuronal networks are critical, for example, to mimic cog-
nitive functions, coordinate sensorimotor functions, synchronize
spiking neural networks, and enable efficient signal encoding, to
name a few.22–24 While our interests in this paper are mainly theoreti-
cal, designing controllers that can reliably induce desired oscillations
could lead to advances in neuromorphic engineering and design,
brain-inspired control systems, and adaptive network dynamics,
among others.

In this paper, we design two controllers that impose a desired
oscillatory pattern on a networked system without modifying its
internal dynamics or interconnections. Our focus is on a class of cou-
pled mixed-feedback systems where the interplay of (fast) positive
and (slow) negative feedback plays a key role in the generation of
sustained oscillations [see (1) and further details below].

The manuscript is organized as follows: in Sec. II, we moti-
vate and describe the problem at hand and propose two kinds of
controllers. The first controller, while robust, needs complete infor-
mation from the reference. In contrast, the second one only requires
local error information. Next, in Sec. III, we embed the designed
controllers into a networked framework, implementing them as a
co-evolutionary, or adaptive, rule of the edges connecting a node
(the controller’s node) to the nodes of the controlled system. We
compare and evaluate the controllers’ performance in three key
scenarios: synchronization, arbitrary network structures, and time-
varying network structures. We conclude in Sec. IV, where we also
discuss potential extensions of our work.

Notation: R and C denote the fields of real and complex num-
bers, respectively. We use sgn for the sign function and O to denote
the big-Oh order symbol. An adjacency matrix is denoted by A, and
a superscript r (for “reference”) or p (for “plant”), as in Ar and Ap, is
used whenever it is necessary to distinguish the adjacency matrices
of the reference and of the plant. Further notation is clarified when
necessary.

II. PROBLEM SETUP AND DESIGN OF THE

CONTROLLERS

Our analysis is concerned with a class of dynamic networks
given by the 2n-dimensional system:

dxi

dt
= −xi − yi + S



αxi + β

n
∑

j=1

Aijxj



 ,

dyi

dt
= ε(xi − yi),

(1)

where n ≥ 1 is the number of nodes (oscillators) in the network,
0 < ε � 1 is a small parameter describing the timescale separa-
tion between the variables, and S is a locally odd sigmoid function.
This means, in particular, that the function S : R → R satisfies:
(a) S(0) = 0, (b) dS

dx
(x) > 0 ∀x ∈ R, (c) argmax(S′(x)) = 0, and (d)

S(x) = −S(−x) for x ∈ U with U a neighborhood of the origin.
Moreover, α > 0, β > 0, and A = [Aij] ∈ R

n×n is the adjacency
matrix of the underlying graph.

Model (1) is an example of a coupled mixed-feedback
system.25,26 Each isolated node, namely,

dxi

dt
= −xi − yi + S(αxi),

dyi

dt
= ε(xi − yi),

(2)

exhibits a (fast) positive feedback through S(αxi) (recall that α > 0)
and (slow) negative feedback through the tendency of yi to follow xi.

Remark 1. The nodes of (1), which are given by (2), undergo
a supercritical Hopf bifurcation of the origin for α = α∗ := 1

S′(0) . This

means that the response of each isolated node converges to the origin
for α < α∗ and to a limit cycle when α > α∗.

As in (2), a key feature of mixed-feedback systems is the inter-
play between positive and negative feedback loops across different
timescales, which is commonly observed in many biological mod-
els, particularly in neuronal dynamics. For example, it is argued26

that mixed feedback is the fundamental mechanism for excitabil-
ity and explains how biological systems are able to exhibit sustained
and robust oscillations.27,28 Moreover, mixed-feedback architectures
have been recently exploited to develop control methods for neuro-
morphic systems.25

Our main motivation to consider systems given by (1) is the
theory developed in Ref. 29. Relevant to us is that they propose a pro-
cedure that allows one, for example, to design an adjacency matrix
such that the output x = (x1, . . . , xn) ∈ R

n corresponds to a rhyth-
mic profile of the network (defined as the inverse problem in Ref. 29).
While brief, let us be more precise: a rhythmic profile is an n-tuple
(σ1e

ıφ1 , . . . , σ1e
ıφ1) ∈ C

n, where σi ∈ R represents the amplitudes
and φi ∈ [0, 2π) phases. If for all i = 1, . . . , n, the solutions xi(t) of
(1) converge to some periodic function with amplitude σi and phase
φi defined as oscillating function,29 then one says that the network
is rhythmic. Assume further that σ1 > 0 and that σ1 ≥ σi, for all
i = 2, . . . , n. The n-tuple (1, ρ2e

ıθ2 , . . . , ρneıθn), where ρi =
σi
σ1

and
θi = φi − φ1 for all i = 2, . . . , n, is called a relative rhythmic profile.
By following the procedure summarized below, one can construct
an adjacency matrix such that the solutions of (1) (locally) converge
to a particular rhythmic profile:

1. Let ωx = (1, ρ2e
ıθ2 , . . . , ρneıθn) with θi 6= {0, π} mod 2π .

2. Pick µ1 = a + ıb with a, b > 0. Further choose µ3, . . . , µn ∈ R

with µi < a for all i = 3, . . . , n. Define D = diag(µ1, µ1, µ3,
. . . , µn).

3. Find an invertible matrix Q =
[

wx wx B
]

∈ C
n×n, where

B ∈ R
n×(n−2).

4. Define A = QDQ−1.

Remark 2.
• We refer to an adjacency matrix obtained from the above

algorithm as rhythmic.
• Once one picks µ1, one can then choose the parameters α and

β such that the origin of (1) is unstable, leading to the rhythmic
profile through a Hopf bifurcation, recall Remark 1 and see Ref.
29, Sec. VIII.

• In Ref. 29, the slow-fast as well as the mixed-feedback structure of
(1) plays a fundamental role. This structure will also be relevant
for the controllers presented in Secs. II and III.
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We now consider the following problem: suppose we are given
a reference rhythmic network and a plant network, both of type (1).
The adjacency matrix of the plant cannot be adjusted, but we want
to render the plant rhythmic with respect to the reference’s profile.
Since the adjacency matrix of the plant is fixed, we shall design a
controller that solves our problem.

Remark 3. While our focus is theoretical, we notice that the
described situation frequently appears in real-life scenarios: (a) many
neuromorphic devices have fixed hardwired interconnections but
allow modulation through externally controllable nodes; (b) deep
brain stimulation consists of applying external electrical pulses to
the (fixed) brain inducing a desired rhythmic activity. Similar chal-
lenges arise in robotics, where fixed mechanical structures coordinate
with body motion, or the synchronization of power grids, where the
underlying network remains unchanged while controllers regulate, for
example, frequency stability.

The control problem at hand is schematized in Fig. 1 and is
described by the following system of equations:

dXi

dt
= −Xi − Yi + S



αrXi + βr

n
∑

j=1

Ar
ijXj



 ,

dYi

dt
= ε(Xi − Yi),

dxi

dt
= −xi − yi + S



αpxi + βp

n
∑

j=1

A
p
ijxj + ui



 ,

dyi

dt
= ε(xi − yi),

(3)

FIG. 1. Network (upper) and block diagram (lower) representations of our control
problem (3), in which elements of the reference, plant, and control are presented
in blue, green, and red, respectively. For the networks, the effect of the controller
on the plant is displayed in red, while the rest of the connections are provided
for illustrative purposes only, as any topology is allowed in our methodology. For
the block diagram, uppercase (X , Y) and lowercase (x, y) represent the vari-
ables of the reference and of the plant, respectively, from which the error variables
x̃ := X − x and ỹ := Y − y are defined for our analysis.

where (X, Y) = (X1, . . . , Xn, Y1, . . . , Yn) ∈ R
2n are the states of

the reference, (x, y) = (x1, . . . , xn, y1, . . . , yn) ∈ R
2n are the states

of the plant, Ar and Ap denote, respectively, the adjacency matrices
of the reference and of the plant, and ui is the controller input into
the ith node of the plant. The parameters αr > 0 and βr > 0 are cho-
sen according to the procedure sketched in Sec. I and together with
Ar render the reference network rhythmic. The parameters αp > 0,
βp > 0, and Ap of the plant do not need to lead to a rhythmic profile.
We also mention that the controller ui is proposed to directly influ-
ence the plant’s nodes in the same way as its internal connections
and not as an independent mechanism due to the way the controller
will be implemented in Sec. III.

Let us define the errors (x̃, ỹ) ∈ R
2n by

x̃i := Xi − xi, ỹi := Yi − yi.

The corresponding error dynamics read as

dx̃i

dt
= −x̃i − ỹi + S



αrXi + βr

n
∑

j=1

Ar
ijXj





− S



αpxi + βp

n
∑

j=1

A
p
ijxj + ui



 ,

(4)
dỹi

dt
= ε(x̃i − ỹi).

Remark 4. The error system given in (4) is not in closed
form. We shall deal with this when we design the controllers in
Secs. II B–II C.

In the following, we propose two different kinds of controllers
that render the origin of (4) locally stable. The first one eliminates
the sigmoidal nonlinearities, which results in a robust controller but
requires complete knowledge of the reference. For comparison pur-
poses, we propose an additional controller inspired by the synaptic
modulation of neuronal systems. Such a controller does not require
any knowledge of the reference. For clarity of our exposition, these
two types of controllers are first provided without considering their
implementation, see Propositions 1 and 2. After that, we propose a
particular way of implementing them in a networked system where
all nodes are of type (1), including the controller. This will mean
that the controller action is implemented via the adaptation of the
weights connecting the controller node and the plant’s nodes; see
more details in Sec. III.

A. General aspects of the simulations

We describe some generalities about the simulations that we
present below. When required, more details are provided, and all
codes are available in Ref. 30. In our simulations, the function S is
chosen as the odd sigmoid S(·) = tanh(·), the small parameter ε is
fixed at ε = 1

100 , while many of the other parameters are chosen at
random. When we say that a parameter is chosen “at random,” we
always mean it under a uniform distribution and specify the inter-
val of possible values. The following steps align with the algorithm
described inSec. I:
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1. The relative amplitudes ρi, i = 2, . . . , n, are chosen at random
within the interval ( 1

3 , 1). The lower value 1
3 is simply chosen

so that the ith relative amplitude is not too small in the simula-
tions. The phases θi, i = 2, . . . , n, are chosen at random within
the interval (0, 2π). The probability of θi = π is zero.

2. For the leading eigenvalue µ1 = a + ıb, we let a = 1 and b
is randomly chosen within the interval ( 1

100 , 1
10 ). The choice

of b is so that the period of the rhythmic profile, which is29

T ≈ 2π(β=(µ1))
−1, is not too small. The rest of the eigenvalues

µi ∈ R, i = 3, . . . , n, are chosen at random within the interval
(0, 9

10 a). This provides D = diag(µ1, µ1, µ3, . . . , µn).
3. The complement matrix B is a randomly generated sparse

matrix with nonzero coefficients within the interval (0, 1). This
matrix is generated until Q =

[

wx wx B
]

is invertible.
4. The adjacency matrices Ar and Ap are, thus, given via the previ-

ous algorithm as A• = QDQ−1. Since the algorithm to obtain
the adjacency matrices is mostly random, both matrices are,
with probability 1, different. Likewise, since B is sparse and
randomly generated, the topologies of the adjacency matrices
are, with probability 1, different. We emphasize that, from the
results we present below, the plant’s adjacency matrix Ap does
not have to be rhythmic. To keep all systems (reference, plant,
and controller) within the same context, we have opted to keep
it rhythmic for the simulations.

In addition, and due to the choice of µ1, β• is randomly cho-
sen within the interval (0, 1), and the corresponding α• is set as
α• = 1 + ε − β• + 1

100 (see Ref. 29, Theorem 1).
To better see the effect of the controllers, we present our

simulations in the following way: for the first 300 time units, the
controller is off, and so we see the open-loop response. At t = 300,
the controller is turned on, and so from thereon, we see the closed-
loop response. In our algorithms, this is realized by multiplying the
controller by l(t − tc), where l(x) = 1

1+e−x and tc = 300 is the time at
which the controller is turned on. Since we chose some parameters at
random, the plots we show are representative of several simulation
runs.

B. Elimination of nonlinearities

The first controller we propose follows from the next very
simple observation: suppose that the controller can eliminate the
sigmoidal nonlinearities of (4). The resulting error system is linear,

dx̃i

dt
= −x̃i − ỹi,

dỹi

dt
= ε(x̃i − ỹi),

(5)

and the origin is globally exponentially stable. Hence, the ideal
controller that achieves this can be simply computed as follows:

ui = −αpxi − βp

n
∑

j=1

A
p
ijxj + αr (x̃i + xi)

︸ ︷︷ ︸

Xi

+βr

n
∑

j=1

Ar
ij (x̃j + xj)
︸ ︷︷ ︸

Xj

= αrx̃i + (αr − αp)xi +

n
∑

j=1

βrA
r
ijx̃j(βrA

r
ij − βpA

p
ij)xj. (6)

For future reference, let

Fi := αrx̃i + (αr − αp)xi +

n
∑

j=1

βrA
r
ijx̃j(βrA

r
ij − βpA

p
ij)xj. (7)

For our implementations in Sec. III, it will be convenient that
the controller is of integral type. Hence, we propose the closed-loop
system:

dXi

dt
= −Xi − Yi + S



αrXi + βr

n
∑

j=1

Ar
ijXj



 ,

dYi

dt
= ε(Xi − Yi),

dxi

dt
= −xi − yi + S



αpxi + βp

n
∑

j=1

A
p
ijxj + ui



 ,

dyi

dt
= ε(xi − yi),

dui

dt
= ki(Fi − ui).

(8)

Indeed, we have the following:
Proposition 1. Consider (8) with Fi given by (7). If ki ≥ k > 0

for all i = 1, . . . , n and with k sufficiently large, then limt→∞ |x̃(t)|
= O( 1

k
).

Proof. It suffices to let k1 = · · · = kn = k. For k � 1 suffi-
ciently large, the dynamics of ui evolve in a fast timescale. In the
limit when k → ∞, Fi is constant, and the equilibrium of dui

dτ
=

(Fi − ui), where τ = kt is the fast time, is hyperbolic. This is equiva-
lent to saying that the critical manifold associated with (8), namely,
C := {ui = Fi} is normally hyperbolic31 and globally exponentially
stable. The restriction of (8) to the critical manifold leads precisely to
the linear error dynamics (5), whose origin is globally exponentially
stable. Since the equilibria of both the fast and the slow dynamics are
exponentially stable, the result follows from, for example, Fenichel’s
(or Tikhonov’s) theorem.31,32 �

A simulation of (8) with Fi given by (7) is provided in Fig. 2;
recall the general considerations described in Sec. II A. Figure 2
shows in the first two rows and Fig. 2(a) the time series for xi(t),
Xi(t), ui(t) and the mean norm of the error 1

n
|x̃| in logarithmic scale

for n = 4 nodes. In this and all following simulations, we prefer to
show 1

n
|x̃| because we keep all the controller constants the same,

even for different numbers of nodes. Therefore, for comparison pur-
poses, it is convenient to normalize the error. In Fig. 2(b), we show
the mean error for a simulation similar to the previous one but for
n = 100. Figure 2(c) also shows the mean error for a simulation with
n = 100 nodes but for time-varying adjacency matrices. More pre-
cisely, for this simulation, each entry A•

ij (for both the plant and
the reference) of the adjacency matrices is of the form A•

ij = A•
ij(t)

= Ā•
ij(1 + 1

5 sin(ωijt)) where ωij is some random frequency within

the interval (0, 1) and Ā is a random rhythmic matrix. Since the con-
troller fully uses these adjacency matrices, its performance is also
good. Finally, on Fig. 2(d), we show another simulation for n = 100
nodes but now with a mismatch between the parameters used by
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FIG. 2. The first and second rows and (a) correspond to a simulation of (8) with u∗
i given by (6) and for four nodes; xi (plant) is dashed, and Xi (reference) is solid. (a)–(d)

show, in logarithmic scale, the mean norm of the error, 1
n
|x̃|: (a) for four nodes, (b) for 100 nodes, (c) for 100 nodes with time-varying adjacency matrices, and (d) for 100

nodes with a mismatch in the reference’s parameters used by the controller. For t ∈ (0, 300), the controller is off, and, hence, we see the open-loop response. At t = 300,
the controller is turned on, and from thereon, we observe the closed-loop response. We notice, naturally, that for t > 300, the plant closely follows the reference. See more
details in the main text and compare it with Fig. 3.
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the controller and those of the reference. More precisely, for this
simulation, we perturb the parameters αr, βr, and Ar

ij used by the
controller in (6), by some small random number within the interval
(− 1

20 , 1
20 ). Such small perturbation is different for each parameter

and each entry of Ar. We notice that since the mismatch is relatively
small, the performance of the controller is still reasonable, although
the error is roughly one order of magnitude larger than the error
without the mismatch [Fig. 2(b)]. For all these simulations, we have
set ki = k = 100. It follows from Proposition 1 that the larger k, the
smaller the error.

C. Neuromodulation inspired controller

As already mentioned, a drawback of the controller presented
in Sec. II B is its dependence on the full knowledge of the ref-
erence’s parameters. To offer an alternative, we propose a second
controller whose behavior is inspired by the neuromodulation of
synaptic weights in neuroscience and neuromorphic systems.

For clarity, let us recall the general error system,

dx̃i

dt
= −x̃i − ỹi + S



αrXi + βr

n
∑

j=1

Ar
ijXj





− S



αpxi + βp

n
∑

j=1

A
p
ijxj + ui



 ,

(9)
dỹi

dt
= ε(x̃i − ỹi).

The controller we now propose is given in an integral form by

dui

dt
= τ

(

−λui + kx̃i

)

, (10)

with τ , k, and λ being positive constants.
Intuitively, the controller ui adapts to the rescaled error k

λ
x̃i

(quickly if τ is large) and effectively provides a proportional feed-
back ui ≈ k

λ
x̃i. If the error x̃i is large, then the controller compen-

sates the second sigmoid function to balance them out. If the error
is small, then both sigmoid functions have roughly the same value
and cancel out, which leads to the exponentially stable linear error
dynamics (5). Besides the well-known advantages of introducing the
controller in integral form, the idea just described has its inspiration
in some neurological mechanisms, where the dynamic equation for
ui is in “leaky form,” similar to the way biological neurons process
information. Likewise, the introduced controller can be regarded
as an adaptive synaptic weight that modulates the influence of the
error. All these interpretations become more evident in Sec. III.

The previous idea is formalized in Proposition 2.
Proposition 2. Consider error system (9) with the controller

given through (10). If τ > 0 and k > 0 are sufficiently large, then
limt→∞ |x̃(t)| = O( 1

k
).

Proof. First, notice that the nonlinear terms in (9) are bounded,
that is, |S(·)| ≤ m. Due to the linear part of (9), its trajectories are
globally attracted to a forward invariant set around the origin. Since
sup(a,b)∈R2 |S(a) − S(b)| = 2m, a rough estimate of such a region is a
ball of radius 2m centered at the origin.

Substituting the steady state value of the controller ui = k
λ
x̃i =

σ x̃i into the equation of dx̃i
dt

in (9),

dx̃i

dt
= −x̃i − ỹi + S



αrXi + βr

n
∑

j=1

Ar
ijXj





− S



αpxi + βp

n
∑

j=1

A
p
ijxj + σ x̃i



 ,

where we recall that (X, Y) and (x, y) are bounded.
For simplicity, let

ζ r
i (z) = αrzi + βr

n
∑

j=1

Ar
ijzj,

ζ
p
i (z) = αpzi + βp

n
∑

j=1

A
p
ijzj,

for z ∈ R
n. Notice that ζ r

i (z) and ζ
p
i (z), i = 1, . . . , n, are bounded

along solutions of (8), i.e., for z = x or z = X.
Consider the candidate Lyapunov function V = 1

2

∑n
i=1(x̃

2
i

+ 1
ε
ỹ2

i ). Then,

dV

dt
=

n
∑

i=1

(

−x̃2
i − ỹ2

i + x̃i[S(ζ
r
i (X)) − S(ζ

p
i (x) + σ x̃i)]

)

.

We notice that x̃iS(ζ
r
i (X)) ≤ m|x̃i| and that S(ζ

p
i (x) + σ x̃i)

∼ S(σ x̃i) + O( 1
σ
) ∼ m sgn(x̃i) + O( 1

σ
) as σ → ∞. This leads to

dV

dt
∼

n
∑

i=1

(

−x̃2
i − ỹ2

i + O

(
1

σ

))

,

as σ → ∞, showing that the region where dV
dt

> 0 is bounded by a
ball of radius O

(
1
σ

)

. �

Figure 3 shows a simulation of (3) with the controller given by
(10); recall the general considerations described in Sec. II A. The
figure shows in the first two rows and Fig. 3(a) the time series for
xi(t), Xi(t), ui(t) and the mean norm of the error 1

n
|x̃| in logarithmic

scale for n = 4 nodes. In Fig. 3(b), we show the mean error for a
simulation similar to the previous one but for n = 100. Figure 3(c)
also shows the mean error for a simulation with n = 100 nodes but
for time-varying adjacency matrices in the same way as those for
Fig. 2. Since this controller does not use the parameters of the plant,
there is no equivalent simulation to that of the Fig. 3(d) in Fig. 2. For
all the simulations in Fig. 3, τ = 1, λ = 1, and k = 100. It follows
from Proposition 2 that the larger the k, the smaller the error.

III. CO-EVOLUTIONARY IMPLEMENTATION OF THE

CONTROLLERS AND APPLICATIONS

In Sec. II, we have proposed two distinct controllers that render
a reference profile stable for a plant with a fixed network structure. A
system of the form (1) has the potential to be exploited in, for exam-
ple, neuromorphic applications as it is suitable to be implemented
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FIG. 3. Simulation of (3) with the neuromorphic inspired controller given by (10). The first and second rows and (a) correspond to a simulation with four nodes; xi (plant) is
dashed, and Xi (reference) is solid. (a)–(c) show, in logarithmic scale, the mean norm of the error 1

n
|x̃|: (a) for 4 nodes, (b) for 100 nodes, (c) for 100 nodes with time-varying

adjacency matrices. For t ∈ (0, 300), the controller is off, and, hence, we see the open-loop response. At t = 300, the controller is turned on, and from thereon, we observe
the closed-loop response. We notice, naturally, that for t > 300, the plant closely follows the reference. See more details in the main text and compare it with Fig. 2.
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FIG. 4. Synchronization of the plant with respect to a reference node using the adaptation rule (12) and (13). The first and second rows show the time series of X1 (solid)
and xi (dashed) and the corresponding adaptive weights ai for n = 4 nodes, while (a) shows the corresponding error in logarithmic scale. (b) shows a similar simulation but
for n = 100 nodes. In all simulations, we first show the system in open-loop for t ∈ [0, 300). At t = 300, the controller is turned on, and we see how the error decreases.
For t ∈ [500, 550], a random constant disturbance is added to each node of the plant, hence the observed increase in the error. After t = 550, we see how the error again
decreases, showcasing the recovery from the added disturbance.

in hardware. Therefore, it is reasonable to consider possible ways
to also implement the controllers. While there are many ways to
approach this, in this section, we propose to consider an extra node
of type (1) as the controller. Since the dynamics of the controller’s
node are relatively simple (either converge to the origin or oscillate),
the actual control action is to be performed by adapting the weights
of the edges connecting the controller’s node to the plant. Biological
systems, particularly neuronal ones, are the inspiration for this. The
controller is regarded as a pre-synaptic neuron and the nodes of the
plant as post-synaptic, while the adaptation rule is associated with
synaptic plasticity. More precisely, we consider the system,

dXi

dt
= −Xi − Yi + S



αrXi + βr

n
∑

j=1

Ar
ijXj



 ,

dYi

dt
= ε(Xi − Yi),

dxi

dt
= −xi − yi + S



αpxi + βp

n
∑

j=1

A
p
ijxj + aix

c



 ,

dyi

dt
= ε(xi − yi), (11)

dxc

dt
= −xc − yc + S (αcx

c) ,

dyc

dt
= ε(xc − yc),

dai

dt
= τcgi(ai, x

c, yc, x, y, x̃, ỹ).

where the control is now to be performed by the adaptation rule gi,
and τc > 0 sets the adaptation rate. The parameter αc > 1 is chosen
so that the controller’s node (xc, yc) is oscillatory. By “implementa-
tion of the controllers,” we precisely mean that we will choose an

Chaos 35, 033155 (2025); doi: 10.1063/5.0230879 35, 033155-8

© Author(s) 2025

 03 April 2025 11:34:27

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 5. Synchronization of the plant with respect to a reference node using the Hebbian-like adaptation rule (14). The first and second rows show the time series of X1

(solid) and xi (dashed) and the adaptive weights ai for n = 4 nodes while (a) shows the corresponding error in logarithmic scale. (b) shows a similar simulation but for
n = 100 nodes. In all simulations, we first show the system in open-loop for t ∈ [0, 300). At t = 300, the controller is turned on, and we see how the error decreases. For
t ∈ [500, 550], a random constant disturbance is added to each node of the plant, hence the observed increase in the error. After t = 550, we see how the error again
decreases, showcasing the recovery from the added disturbance. The most important distinction with Fig. 4 is that we observe periodic increases of the error, which coincide
with the crossings of xc at the origin and due to the multiplicative effect of xc in the interconnection, namely, the term aix

c in each equation of the nodes.

adaptation rule gi to mimic the control actions of those in Secs. II B
and II C.

The first controller, given by (6), is implemented through the
adaptation rule,

gi = (a∗
i − ai), (12)

where

a∗
i =









Fi
xc , |xc| ≥ δ,
Fi
δ

, 0 ≤ xc < δ,

−
Fi
δ

, −δ < xc < 0,

(13)

with 0 < δ � 1 and Fi given by (7). Indeed, for |xc| > δ, we have
that a∗

i xc = Fi and so the effective input to the ith node is exactly as
in Proposition 1. Since xc is oscillatory, and crosses the origin, we
must account for it and, hence, propose the piece-wise continuous
rule given by (13).

Remark 5.
• The form of (13) is due to the multiplicative action of xc. If xc = 1,

then the controller would be exactly the same as in (6). However,
from (2), the only stable equilibrium point of the controller’s node
dynamics is the origin.

• While the adaptation rule is discontinuous, it is reminiscent of
sliding mode control.33 Improvements to this approach, for exam-
ple, to avoid discontinuities or to rigorously prove the uniqueness
of solutions is not further discussed here but shall be considered in
future research.
On the other hand, the controller given in Proposition 2 is

heuristically implemented in (11) by

gi = −λai + kx̃ix
c, (14)

and compare with (10), where we notice that they share the same
“error modulated behavior.”
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FIG. 6. Simulation of (11) with (12) and (13) where the plant and the reference have different network topologies. At the top of the figure, we show on the left the reference’s
graph, and on the right the plant’s graph for n = 4, notice that they are indeed different. The second and third rows show the time series of X1 (solid) and xi (dashed) and the
adaptive weights ai for n = 4 nodes, while (a) shows the corresponding error in logarithmic scale. (b) shows a similar simulation but for n = 100 nodes. In all simulations,
we first show the system in open-loop for t ∈ [0, 300). At t = 300, the controller is turned on, and we see how the error decreases. For t ∈ [500, 550], a random constant
disturbance is added to each node of the plant, hence the observed increase in the error. After t = 550, we see how the error again decreases, showcasing the recovery
from the added disturbance.

Here, the biological inspiration is more evident: the adaptation
rule (14) has two main components; one is a “pre-synaptic” activity-
dependent term x̃ix

c, which is regulated by the “post-synaptic” error
and is reminiscent of a Hebbian-like adaptation (one could say that
the learning rate is mediated by how far the plant’s node is from the
reference’s), and an intrinsic decay −λai ensuring that the values of
ai remain bounded.

Remark 6. The adaptation rule (14) is not obtained by letting
ui = aix

c in Proposition 2. In such a case, one would obtain

dai

dt
=

1

xc

(

ai

dxc

dt
− τ(−λaix

c + kx̃i)

)

. (15)
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FIG. 7. Simulation of (11) with (14) where the plant and the reference have different network topologies. At the top of the figure, we show on the left the reference’s graph,
and on the right the plant’s graph for n = 4, notice that they are indeed different. The second and third rows show the time series of X1 (solid) and xi (dashed) and the
adaptive weights ai for n = 4 nodes, while (a) shows the corresponding error in logarithmic scale. (b) shows a similar simulation but for n = 100 nodes. In all simulations,
we first show the system in open-loop for t ∈ [0, 300). At t = 300, the controller is turned on, and we see how the error decreases. For t ∈ [500, 550], a random constant
disturbance is added to each node of the plant, hence the observed increase in the error. After t = 550, we see how the error again decreases, showcasing the recovery
from the added disturbance.

While the term ai
dxc

dt
in (15) can be interpreted as a “predictive”

term, we encounter, again, the nuance of dividing by xc. Of course,
one could opt to propose a similar discontinuous approach as in
the previous case, but this would turn out to be difficult to jus-
tify implementation-wise. In addition, (15) lacks an intrinsic term
guaranteeing boundedness, which is important in the present context.

A more sensible perspective is to recall that (10) effectively
induces the feedback ui = kx̃i into the error system. If now ui is con-

sidered ui = aix
c, then the ideal value of ai would be ai =

kx̃i
xc , again

introducing the division by xc. In our heuristic implementation, we
consider xc a scaling, or gain, being its sign its most important aspect
leading to (14). Naturally, since xc crosses zero, each time xc = 0, the
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FIG. 8. Simulation of (11) with (12) and (13) where the plant and the reference have different network topologies with time-varying weights. The first and second rows show
the time series of X1 (solid) and xi (dashed) and the adaptive weights ai for n = 4 nodes, while (a) shows the corresponding error in logarithmic scale. (b) shows a similar
simulation but for n = 100 nodes. In all simulations, we first show the system in open-loop for t ∈ [0, 300). At t = 300, the controller is turned on, and we see how the error
decreases. For t ∈ [500, 550], a random constant disturbance is added to each node of the plant, hence the observed increase in the error. After t = 550, we see how the
error again decreases, showcasing the recovery from the added disturbance.

“learned” value of ai will be forgotten. This is, indeed, visible in the
simulations presented below.

In Subsecs. III A–III C, we present the simulations of (11), and
we compare through different application scenarios, the adaptation
rules given by (12) and (13) and (14). In addition to the general con-
siderations for our numerical simulations described in Sec. II A, we
add the following: in the time interval t ∈ (500, 550), we add a con-
stant random disturbance, taking values in the interval (−1, 1), to
each node, different for each node and independent of the node. We
do this to numerically test how the controlled plant recovers from a
perturbed state.

To avoid repetitions, we mention here once that in our numer-
ical simulations of (11) with the adaptive implementation given by
(12) and (13) (specifically, Figs. 4, 6, and 8), we have used δ = 1

100
and τc = 100. Regarding the adaptive implementation given by (14)
(specifically Figs. 5, 7, and 9), we have used τc = 100, k = 100 and
λ = 1. We have kept these values the same across the different
simulations for comparison purposes; of course, the performance of

the adaptation rules can be improved if one tunes such parameters
adequately.

A. Synchronization

In this section, we consider the problem of synchronization of
the plant with respect to a provided reference. For this, the reference
network has one node (X1, Y1), and the errors are thus defined by

x̃i = X1 − xi, ỹi = Y1 − yi.

Figure 4 shows a simulation of (11) with the adaptation rule
given by (12) and (13). The observed spikes in the weight ai are due
to the discontinuous form of the adaptation and are modulated by δ

in (13). In contrast, Fig. 5 shows a simulation of (11) with the adap-
tation rule given by (14). For this case, we do not see anymore the
aforementioned spiking behavior since ai is smooth. However, we
observe that the error tends to increase periodically, and this coin-
cides with xc crossing zero; as for xc = 0, the system is in open-loop.
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FIG. 9. Simulation of (11) with (14) where the plant and the reference have different network topologies with time-varying weights. The first and second rows show the time
series of X1 (solid) and xi (dashed) and the adaptive weights ai for n = 4 nodes, while (a) shows the corresponding error in logarithmic scale. (b) shows a similar simulation
but for n = 100 nodes. In all simulations, we first show the system in open-loop for t ∈ [0, 300). At t = 300, the controller is turned on, and we see how the error decreases.
For t ∈ [500, 550], a random constant disturbance is added to each node of the plant, hence the observed increase in the error. After t = 550, we see how the error again
decreases, showcasing the recovery from the added disturbance.

This issue is barely noticeable in the time series, though. We more-
over notice that on both adaptation rules, the closed-loop systems
recover well enough after the added disturbance in t ∈ [500, 550].

Remark 7. While our main exposition has considered that the
reference and the plant have the same number of nodes, it is clear that,
as in this section, such a consideration is not necessary. If the plant has
n ≥ 1 nodes and the reference has m ≥ 1 nodes, one simply needs to
define n errors x̃i = Xj − xi for i = 1, . . . , n and j ∈ {1, . . . , m}.

B. Arbitrary network topologies

To highlight the fact that our approach does not depend on the
particular topologies of the reference’s and plant’s adjacency matri-
ces, in this section, we present simulations with explicitly different
adjacency matrices. Figure 6 shows a simulation of (12) and (13),
where for n = 4, we have included the graphs of the reference and of

the plant, which are different. As in the simulations of Sec. III A, the
spikes in the time series of ai are due to the discontinuous implemen-
tation (12) and are modulated by δ in (12). For comparison, Fig. 7
shows a simulation of (11). Both simulations follow the same over-
all format we have used so far: for t ∈ [0, 300], the controller is off,
and hence, we see the open-loop response; at t = 300, the controller
is turned on, and we see how the plant follows the reference, while
for t ∈ [500, 550], a constant random disturbance is added to each
node. We notice from the time series that the performance of both
controllers is reasonably good.

C. Time-varying adjacency matrices

As a final application and comparison setup, we consider here
that the adjacency matrices of both the reference and the plant are
time-varying. We do this similar to what was presented in Sec. II.
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More precisely, for the simulations of this section, each entry A•
ij

(for both the plant and the reference) of the adjacency matrices
is of the form A•

ij = A•
ij(t) = Ā•

ij(1 + 1
5 sin(ωijt)), where ωij is some

random frequency within the interval (0, 1) and Ā• is a random
rhythmic matrix, meaning that the underlying topologies of each
network are also different. While we do not perform formal anal-
ysis under this setup, both adaptation approaches seem suitable to
handle this scenario. On the one hand, we have that adaptation rules
(11) and (12) use the full knowledge of the adjacency matrices. On
the other hand, the adaptive rule (11) accounts for the time-varying
adjacency matrices from the fact that ai is regulated by the error.
Figure 8 corresponds to (10) with (11) and (12), while Fig. 9 uses
(14). The description of the results is similar to Secs. III A and III B.
In both cases, we can observe that, despite the adjacency matrices
being time-varying, both adaptation rules perform well.

IV. CONCLUSION AND DISCUSSION

This paper has explored co-evolutionary control approaches
to render a desired oscillatory pattern stable for a particular class
of dynamic networks, keeping their internal properties fixed. We
have developed two kinds of controllers: one that uses the full infor-
mation from the reference and another that only requires local
error information. From our analysis, both controllers seem to
perform reasonably well. Their main difference is their potential
implementation. While the first controller (see Proposition 1) per-
forms observably well, it is hardly implementable not only because it
requires full information about the plant but also because of its par-
ticular form [see (6)]. In contrast, the second controller (see Propo-
sition 2) requires only local error information. We have also imple-
mented such controllers as co-evolutionary rules in an extended
dynamic network and tested their performance in three relevant
scenarios. In all cases, again, the controllers perform reasonably well.

An immediate open problem to consider in the future is to
extend our approach to more general coupled systems. As a concrete
example, one may want to explore ideas similar to those devel-
oped here, but for coupled spiking neurons, whose models also have
mixed-feedback loops. A challenge for these models is that the non-
linearity is not bounded, in contrast to (2). Another possibility is
to consider that the reference and the plant are not of the same
type. Hence, even if a system cannot inherently produce and sustain
specific oscillations, a controller may impose them.
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