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A B S T R A C T

The cleaning and physicochemical properties on tooth root biointerfaces are pivotal for periodontal healing.
Herein, this work investigated the impact of multi-treatment on the physicochemical features of tooth root
surfaces and the responsive behavior of human gingival fibroblasts (hGFs). It was found that the combination of
various mechanical treatments significantly affects the topographical pattern and size as well as wettability on
tooth root surfaces. Furthermore, biological experiments revealed that hGF behaviors (i.e., cell adhesion, shape,
spreading, arrangement, and viability) were regulated by the topography and wettability of tooth root surfaces.
Also, there was no significant difference in the protein expression of NLRP3 inflammasome and IL-1β in hGFs
among tooth root surfaces under various treatments. This study provides new insights to efficiently remove the
dental calculus and to understand the interaction between the tooth root interface and cell, which could guide
the clinical operation and thereby is more conducive to periodontal recovery.

1. Introduction

Oral diseases are the most prevalent human diseases mainly caused
by its open and complicated microenvironment extremely rich in bac-
teria [1,2]. Among them, dental calculus occurs in the majority of
adults worldwide, caused by large amounts of oral bacteria, proteins,
viruses, and food remnants as well as composed primarily of calcium
phosphate mineral salts (calcified dental plaque) [3]. It can damage
tooth enamel, result in tooth discoloration and resorption, gingivitis,
periodontal disease, and even tooth loss [3]. Therefore, removal of
dental calculus is of great importance and necessity. So far, several
strategies, such as high-intensity laser, chemical, and mechanical
treatments, are commonly used in dental calculus control. Lasers can
selectively remove dental calculus with high precision and minimize
damage to surrounding tissues [4]. However, this method is compli-
cated and makes the tooth surface rougher than that induced by con-
ventional removal. Chemical and mechanical methods are the earliest,
most straightforward, and simplest way to remove the dental calculus
[5]. However, chemical methods are less effective than mechanical
treatments (e.g., ultrasonic scaling, hand scaling, and sandblasting) [6].

The effect of individual mechanical treatment on the removal of dental
calculus was studied extensively [5–10]. However, the effect of the
multi-approach combination on the removal of dental calculus has not
been widely reported.

In addition, it is well-known that mechanical treatments can affect
the structure of a tooth surface [9–11]. However, the effect of the post-
treated root surface on periodontal recovery has not been investigated
yet. In periodontal connective tissues, gingival fibroblasts (hGFs) are
the predominant cell type interacting with the root and have distinct
functional activities in the repair of periodontal tissues as well as in
inflammatory periodontal diseases [12–15]. The gingival fibroblasts
attachment to the root surface plays a critical role in the generation of
an efficient mucosal seal. Therefore, human gingival fibroblasts (hGFs)
were chosen for this research.

Since cells adjacent to the biomaterials are significantly influenced
by the altered physicochemical cues [16–18], herein we hypothesize
that root surfaces with topographical structures would also be able to
mediate the cellular responses of hGFs. To test the hypothesis, roots
were treated by the mechanical approaches with different combinations
(i.e., group U (ultrasonic scaling), group U+H (ultrasonic
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scaling+hand scaling), group U+ S (ultrasonic scaling+ sand-
blasting), and group U+H+S (ultrasonic scaling+ hand
scaling+ sandblasting)). The morphology, surface roughness, and
wettability on root surfaces were systematically characterized by var-
ious techniques. Further, these roots with surface topographical fea-
tures were seeded with hGFs to study the effect of root surface struc-
tures on cellular responses, including cell adhesion, morphology,
proliferation, viability changes, expression of the inflammasome.

2. Materials and methods

2.1. Preparation of human root cementum

The present study was approved by the Ethics Committee of The
Affiliated Hospital of Qingdao University, China (approval no. QYFY-
WZLL25562). Group B (blank) are healthy teeth without dental calculus
as the control. Other teeth had dental calculus present on the ce-
mentum. Then, they were cleaned in distilled water and stored in
phosphate-buffered saline (PBS) (pH 7.4) at 37 °C until the mechanical
treatments were performed.

2.2. Mechanical treatments of specimens

All specimens were rinsed for 1min with 20mL of saline solution
and randomly treated by four methods, i.e., group U (ultrasonic scaling
device from P5XS, ACTEON, France), group U+H (ultrasonic
scaling+hand scaling device from Hu-Friedy, America), group U+ S
(ultrasonic scaling+ sandblasting device from AIR-FLOW, classic, EMS,
Switzerland with sodium bicarbonate powder), and group U+H+S
(ultrasonic scaling+ hand scaling+ sandblasting)) shown in Fig. 1. In
addition, treatment S was done with water. Then, the root blocks
(5× 5mm size with 1mm thickness) from the teeth above were cut
using a Low speed precision cutting instrument (DTQ-5, Weiyi, China),
soaked in PBS and dried overnight. All the instrumentations and
treatments of teeth were carried out by a single operator. The criteria
for adequate treatment were smooth, hard root surfaces, without clin-
ical evidence of calculus.

2.3. Root surface roughness and morphology

The discs in each group (n=3) were analyzed at 3 sites (scanning
area= 400 μm) using 3D surface optical profilometer (ZETA-20, Zeta
Instruments, USA) and an average for each group was calculated.

Morphology of the root blocks was observed by scanning electron mi-
croscopy (SEM) (VEGA3, TESCAN, China). Prior to imaging, samples
were sputter-coated with gold to increase conductivity. The false color
in SEM images was obtained using Adobe Photoshop CS6 by opening
the image, selecting RGB mode in image mode, creating a new layer
(multiply), selecting the foreground color and coloring it with the brush
tool.

2.4. Saliva contact angle

To test wettability of the root blocks, the saliva contact angle (SCA)
measurement was performed using the drop method by using a video-
enabled goniometer (Theta, Biolin, Sweden). Saliva used here is natu-
rally from a single person. The projected images of the droplets were
automatically analyzed by the software. All measurements were re-
peated at least three times, and the results were averaged.

2.5. Cell culture and identification

Primary human gingival fibroblasts (hGFs) used in this study were
derived from adolescent gingival tissues obtained from the alveolar
surgery at the department of periodontology, the Affiliated Hospital of
Qingdao University. The present study with the patients’ informed
consent has been approved by the Ethics Committee of the Affiliated
Hospital of Qingdao University, China. The cells were cultured in α-
MEM (Biological Industries, Israel) supplemented with 10 % fetal bo-
vine serum (Biological Industries, Israel) and 1 % penicillin/strepto-
mycin (Biological Industries, Israel), in a humidified incubator of 5 %
CO2 at 37 °C. The cells were harvested at approximately 80− 90 %
confluency from culture flasks by trypsin for 3− 5min at 37 °C for
further subcultures. hGFs between passages 5 and 7 were used in the
following analysis. HGFs were identified by immunofluorescence
staining with anti-vimentin (proteintech, America), anti-FSP1 (fibro-
blast-specific protein 1) (abcam, Britain) and anti-cytokeratin anti-
bodies (CST, China).

2.6. Cell adhesion and morphology

All tooth roots were sterilized in an autoclave and placed in 48-wells
microtiter plates. Afterward, hGFs were seeded onto the samples in 48-
well plates at a density of 4× 104 cells/well for cell adhesion. All plates
were stored in an incubator at 37 °C and 5 % CO2 for 1 day. The hGFs
were fixated with 4 % glutaraldehyde (Tianjin beilian fine chemicals

Fig. 1. Schematic diagram of different mechanical treatments. (A) Ultrasonic scaling, (B) hand scaling, (C) sand blasting.
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development co. LTD, China) in PBS for 2 h at room temperature and
subsequently washed 3 times with PBS. Afterward, the samples were
dehydrated in graded ethanol (30, 50, 70, 90, and 100 %), followed by
critical-point-dried. Then, the morphology of cells was observed by
SEM. Prior to imaging, samples were sputter-coated with gold to in-
crease conductivity.

2.7. Cell viability

The hGFs were seeded on the samples in 24-well plates at a density
of 4×104 cells per well and cultured one and four days. Three samples
per test group were used for the cell viability. The media was changed
every two days during the cell culture. The samples were incubated in
400 μL of α-MEM with a supplement of 50 μL of CCK-8 solution (Absin
Bioscience Inc., China) for 2 h. Culture medium served as a negative
control. The collected solution was transferred to a 96-well plate with
100 μL per well. The CCK-8 assay was used, and optical density (OD
values) at 450 nm were analyzed (SynergyH1/H1M, BioTek, China).
The OD value of cells on each sample was calculated following the
equation ODcell = OD(cell+medium) – ODmedium. The viability of hGFs was
determined by the OD values.

2.8. NAcht Leucine-rich repeat Protein 3 (NLRP3) inflammasome
activation and interleukin-1β (IL-1β) production

The hGFs were seeded on the samples in 24-well plates at a density
of 4×104 cells per well and cultured seven days. Three samples per
test group were used for the inflammasome activation test. The media
was changed every two days during the cell culture. Total proteins from
hGFs were lysed in (5×) Laemmli SDS buffer containing 0.01 % bro-
mophenol blue, 1 % β-mercaptoethanol, and protease inhibitor cocktail
(Roche). Then, equal amounts of protein were separated by SDS-PAGE
gels and transferred onto PVDF membranes. After blocking with 5 %
fat-free milk, the membranes were washed with TBST and incubated
with primary and secondary antibodies according to the manufacturers’
instructions. Primary antibodies against NLRP3 (1:1000), apoptosis-
associated speck-like protein containing CARD (ASC, 1:1000), caspase-
1 (1:1000), IL-1β (1:1000) are from Cell Signaling Technology.
Secondary Horseradish Peroxidase (HRP)-linked antibodies from a
rabbit-against human IgG (1:8000) and anti-GAPDH (1:5000) are from
Elabscience. The protein was analyzed by an enhanced chemilumines-
cence kit (Beijing Biocoen Biotechnology CO.Ltd, China).

2.9. Statistical analysis

All data are presented as mean values ± standard deviation
(mean ± SD). Three independent validity studies were conducted, and
at least three samples per group were selected for statistical analysis.
Statistical analysis between groups was analyzed via one-way analysis
of variance (ANOVA) with Tukey’s test to determine differences. A
value of p < 0.05 was considered statistically significant.

3. Results and discussion

3.1. Root surface morphology

The root surface morphology and roughness were first characterized
using 3D surface optical profilometer. As shown in Fig. 2A–E, the root
surfaces under various mechanical treatments are relatively smooth.
Further, the roughness of root surfaces was determined by quantitative
analysis. As shown in Fig. 2F, a varied surface roughness for the group
B, U, U+H, U+S, and U+H+S was 5.76 ± 0.93, 4.55 ± 0.51,
8.92 ± 2.89, 5.75 ± 1.29 and 6.11 ± 0.93 μm, respectively. How-
ever, there was no statistically significant difference among them (p＞
0.05).

Although 3D surface optical profilometer can select a larger scan
area to give a better overall description of root morphology, this
characterization technique has limited resolution. To further observe
the detailed morphology on the root surfaces, root specimens were
analyzed by SEM (Fig. 3). SEM images showed a notable change on the
root surface morphology from different mechanical treatments. Inter-
estingly, the root surface under U+H treatment is rough and has
aligned topographical structure due to the directional hand scaling si-
milar to the clinic treatment. Root surfaces without any treatment as
the control (group B) as well as under U and U+H+S treatments were
irregular and rough. Also, the root surface under the U treatment had
lots of pits and cracks. Sand blasting further smoothed the root surface
treated by hand scaling treatment, which could result in the loss of
orientation structure. The root surface with U+S treatment was
greatly smoother than the surface treated by U+H+S due to different
initial roughness treated by U and U+H.

3.2. Root surface wettability

Surface structures have a significant influence on material wett-
ability [19,20]. Wettability is usually characterized by measuring the

Fig. 2. 3D optical images of (A) group B: healthy root without any treatment, (B–E) root surfaces under U, U+H, U+ S, and U+H+S, respectively. (F) The
roughness of root surfaces determined from optical images (n=3).
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water contact angle sample surfaces. Here, we used saliva instead of
water, because teeth always contact with saliva in the mouth. Also,
dynamic contact angle analysis was performed to investigate time-de-
pendent wettability changes of root surfaces. As shown in Fig. 4A, al-
though hydrophilicity of the root surfaces was examined by contact
angle analysis with saliva, the SCAs were significantly different on the
root surfaces under various treatments. The initial SCAs on the root
surfaces under different treatments were 54.68° (group B), 33.09°
(Group U), 40.71° (Group U+H), 43.12° (Group U+S), 55.76° (Group
U+H+S), respectively. It is well-known that lower SCA corresponds to

higher hydrophilicity or wettability of the root surface.
As shown in Fig. 4B, the SCAs on all root surfaces initially decreased

until the fourth second and then remained stable until the sixth second.
There is no significant difference between group B and group U+H+S
(p＞0.05) as well as between group U+H and group U+S (p＞0.05).
However, the SCAs of group B and U+H+S were significantly higher
than those on group U+H and U+S (p＜0.05). Also, the SCAs of group
U+H and U+S were higher compared to that on the group U (p＜
0.05). The SCA results indicated that the surface wettability of root
samples depended on different treatments, but they retained a

Fig. 3. SEM images of root surfaces under various mechanical treatments observed by different magnifications.
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Fig. 4. (A) The initial SCA images on the root surfaces under different treatments. (B) Dynamic contact angles from 1−6 s on the root surfaces under different
treatments.

Fig. 5. The staining of specific proteins for cell identification. (A) Vimentin. (B) Fspi. (C) Cytokeration.
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Fig. 6. SEM images of cell adhesion on the root surfaces under different treatments.
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hydrophilic character (< 90°).

3.3. Identification of hGFs and their adhesion on root surfaces

The physicochemical properties on biointerfaces contribute sig-
nificantly to regulating cell responses [16]. Therefore, it is necessary to
investigate how root biointerfaces affect the gingival recovery. Here,
hGFs were chosen for the following research.

To verify whether the isolated cells were gingival fibroblasts, we
observed cell morphology and detected the expression of specific pro-
tein markers. Fig. S1A shows that the cells still maintained a spindle-
shaped morphology after passage, which is a typical morphology for
gingival fibroblasts [21,22]. Immunofluorescent results indicated that
the expression of vimentin and FSP1 in cells was found (Fig. 5AB) while
the expression of cytokeratin was undetected (Fig. 5C). The cytokeratin
measurement can be further used to exclude epithelial cells. These re-
sults further suggest that the isolated cells from human gingival tissues
were gingival fibroblasts [23–27].

Cells becoming adjacent to the biomaterials is the first and crucial
step for cell responses, which precedes all other cellular events, such as
spreading, migration, proliferation, and differentiation [20,28,29].
Fig. 6 displays that hGFs could adhere to the root surfaces, and their
morphology was affected greatly by alterations to the root surface to-
pographies. The morphology of hGFs on group B, U, U+H and U+H+S
was similar and elongated. The elongation of cells on group B and U+H
was more than those on the group U and U+H+S. Interestingly, the
morphology of cells on the group U+H was aligned due to the contact
guidance of oriented topography generated by the H treatment (Fig. 3).

It has been reported that anisotropic topography (groove, wrinkle,
aligned nanowire, etc.) that replicate the natural anisotropic ECM in
vivo, can elicit cell alignment by way of directional elongation [30–32].
Also, the dimensions of aligned topography can greatly affect cell or-
ientation [17]. Cells in the group U+ S spread very well, probably
because of the combined effects of better wettability and smoother
surface compared to other samples. It was reported that surface
roughness and/or pattern can affect ligand distribution and the for-
mation of focal adhesions, which further regulates cell adhesion and
morphology [33].

3.4. hGF viability and their inflammatory response on the root surfaces

Cell viability was measured using the CCK-8 assay and showed in
Fig. 7. Polystyrene tissue culture plates (TCP) were used as positive
control. On day 1, cells remained viable, and no significant difference
was found on either surface (p > 0.05), which indicates that there
were no cytotoxic effects from the root surfaces under different

treatments. On day 4, higher cell viability was observed in treated
samples compared to the group B. Also, samples treated by U and U+H
+S even displayed a significant effect of improvement compared to
others. There was no statistical difference between the absorbance va-
lues of group U and group U+H+S.

The NLRP3 inflammasome is an important regulator of inflamma-
tion and immunity [25,34,35]. To examine the inflammation response
of hGFs, cells were cultured onto the root surfaces under various
treatments and analyzed using the western blot. From Fig. 2S, it was
found that NLRP3, ASC, Caspase-1, and IL-1β on root surfaces under
different treatments had no significant difference as compared to the
control (group B). This indicates that although there are various cell
morphology and viability on root surfaces, this does not affect the
protein expression of NLRP3 inflammasome and IL-1β. Probably, root
surfaces treated by different mechanical methods could avoid causing
periodontitis related to the host immune response.

It is well-documented that cell responses (e.g., cell adhesion, via-
bility, and inflammatory response) onto materials play a critical role on
tissue repair and regeneration [16,36]. In our study, it was found that
cell adhesion and morphology on root surfaces treated by U+H+S are
closer to those on root surfaces of healthy teeth. After 4 days, cell
viability on root surfaces treated by U+H+S was higher compared to
that on samples from group B, U+H, and U+ S. There was no in-
flammatory response on root surfaces treated by U+H+S. Taken to-
gether, the U+H+S treatment could be the optimal strategy for clinical
operations.

4. Conclusions

In summary, various mechanical strategies greatly influenced the
physical properties of root surfaces, including the topographical pat-
tern, roughness, and hydrophilicity. Particularly, the aligned topo-
graphy on the root surface was generated under the U+H treatment.
The root surface under the U+S treatment is mostly smooth.
Furthermore, biological results indicate that hGF behaviors (i.e., cell
attachment, morphology, alignment, and viability) were affected by the
topography and wettability of root surfaces. Specifically, cells spread
better on the smoother surface with better wettability compared to
other samples. Oriented cells were induced by aligned topographical
surfaces. Higher cell viability was observed on treated samples com-
pared to the control. In addition, the root biointerfaces under various
treatments did not induce the protein expression of NLRP3 inflamma-
some and IL-1β. This study demonstrated that the combination of U+H
+S multi-treatment could efficiently remove the dental calculus and
regulate cell responses, which may promote periodontal healing.

Fig. 7. hGF viability cultured on TCP and root samples under different treatments for 1 and 4 days (n=3). ** p < 0.01 vs group B. ## p<0.01 vs group U+H &
U+S.
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