Gene expression profiling of bronchial brushes is associated with the level of emphysema measured by computed tomography-based parametric response mapping

Rathnayake, Senani N H; Hoesein, Firdaus A A Mohamed; Galban, Craig J; Ten Hacken, Nick H T; Oliver, Brian G G; van den Berge, Maarten; Faiz, Alen

Published in: American Journal of Physiology - Lung Cellular and Molecular Physiology

DOI: 10.1152/ajplung.00051.2020

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date: 2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Gene expression profiling of bronchial brushes is associated with the level of emphysema measured by computed tomography-based parametric response mapping

Senani N. H. Rathnayake¹,‡*, Firdaus A. A. Mohamed Hoesein², Craig J. Galban³, Nick H. T. ten Hacken⁴,⁵, Brian G. G. Oliver⁶,⁷, Maarten Van den Berge⁴,⁵#, and Alen Faiz¹,⁴,⁵,⁶#

1. University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life Sciences, Sydney, Australia
2. Utrecht University, Division of Heart and Lungs, Department of Respiratory Medicine, University Medical center, Utrecht, The Netherlands
3. The University of Michigan, Department of Radiology, Ann Arbor, Michigan, USA
4. The University of Groningen, Groningen Research Institute for Asthma and COPD(GRIAC), University Medical center Groningen, Groningen, The Netherlands.
5. The University of Groningen, Department of Pulmonary Diseases, University Medical center Groningen, Groningen, The Netherlands
6. The University of Sydney, Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, Australia
7. The University of Technology Sydney, School of Life Sciences, Sydney, Australia

*= Corresponding author
#= These authors contributed equally to this manuscript

Correspondence address:
Senani N.H. Rathnayake
Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life Sciences, University of Technology Sydney, Thomas St, Ultimo NSW 2007

Email: senani.rathnayakemudiyan@uts.edu.au
Parametric response mapping (PRM) is a computed tomography (CT) based method to phenotype COPD patients. It is capable of differentiating emphysema related air trapping with non-emphysematous air trapping (small airway disease), which helps to identify the extent and localization of the disease. Most studies evaluating the gene expression in smokers and COPD patients related this to spirometric measurements, but none have investigated the relationship with CT-based measurements of lung structure. The current study aimed to examine gene expression profiles of brushed bronchial epithelial cells in association with the PRM-defined CT based measurements of emphysema (PRMEmph) and small airway disease (PRMISAD). Using the TIP study cohort (COPD = 12 and asymptomatic smokers = 32), we identified a gene expression signature of bronchial brushings, which was associated with PRMEmph in the lungs. One hundred thirty-three genes were identified to be associated with PRMEmph. Among the most significantly associated genes, CXCL11 is a potent chemokine involved with CD8+ T cell activation during inflammation in COPD, indicating that it may play an essential role in the development of emphysema. The PRMEmph signature was then replicated in two independent datasets. Pathway analysis showed that the PRMEmph signature is associated with proinflammatory and notch signaling pathways. Together these findings indicate that airway epithelium may play a role in the development of emphysema and/or may act as a biomarker for the presence of emphysema. In contrast, its role in relation to functional small airways disease is less clear.
Introduction

Chronic Obstructive Pulmonary Disease (COPD) is considered as one of the major non-communicable diseases in the world (20). The persistent airflow limitation is associated with inflammatory responses, which are initially to noxious particles (22). These factors together result in an accelerated decline in lung function (16). COPD is a heterogeneous disease in which fibrosis and loss of small airways and emphysema are two major pathological characteristics of the disease (17).

Current theories behind the development of the emphysematous phenotype of COPD include protease antiprotease imbalance, chronic airway inflammation, and dysregulation of oxidative stress (9, 35). These mechanisms are thought to cause the characteristic symptoms of emphysema, including abnormal inflammatory responses together with alveolar destruction, which leads to a reduction of the alveolar-capillary exchange area (29).

Parametric response mapping (PRM) is a novel computed tomography (CT) based method to phenotype lung diseases (23). Application of PRM to paired inhaled/exhaled CT scans is capable of differentiating emphysema from non-emphysematous air trapping due to functional small airway disease (14, 23, 24).

Gene expression signatures have been studied in different diseases to identify the underlying mechanisms and biological pathways associated with the disease of interest (25, 28). These gene expression profiles of bronchial brushes provide a global picture of the airways, and they can help understand the mechanisms involved in the development of emphysema (18, 29).

Several studies have assessed gene expression in smokers and COPD patients and related this to spirometric measurements (18, 29-31). However, none have investigated the relationship with CT-based measurements of lung structure. In the present study, gene expression profiles of bronchial epithelial cells were investigated in association with the severity of PRM-defined emphysema (PRM$^{\text{Emph}}$) and functional small airway disease (PRM$^{\text{SAD}}$).
Methods

Study population

The study population was a subset of subjects included in the Top Institute Pharma (TIP) study (3) who underwent bronchoscopy. The TIP study was approved by the ethics committee of UMCG and registered under the National Clinical Trial (NCT) identifier: NCT00850863. All these selected subjects were >35 years of age and current or ex-smokers consist of 12 COPD subjects and 32 asymptomatic smokers who had provided written informed consent. The spirometric measurements were collected according to the international guidelines described in (21) and (37). The clinical characteristics of the current study population are described in table 1.

Bronchial brushes sample collection and processing

Bronchoscopically derived bronchial brushings were collected from the first, and second subsegmental branches of the left lower lobe and total RNA was extracted with the miRNeasy Mini Kit (Qiagen, Valencia, CA). From each sample, 100–200 ng total RNA was processed and examined with Affymetrix Gene Chip Human Gene 1.0 ST, as previously described (GSE97010) (3).

CT images acquisition for PRM

The inspiratory and expiratory low dose chest CT scans were taken using multi-detector CT scanners at full inspiration, and normal expiration. Then the CT image processing was done using PRM. Detail protocols used for CT scan acquisition and PRM processing were previously described in (15). PRM scores are presented as the percent volume of the total lung. PRM processing for inhaled and exhaled CT images of a single patient is illustrated in figure 1A.

Bioinformatic Analysis

Microarray data analyses were done using the Bioconductor-limma package in R software version 3.5.1. Gene expression of the bronchial brushings were correlated to different CT scan variables (PRM_{Emph} and PRM_{SAD} scores) and Forced Expiratory Volume in one second (FEV1) %predicted using the R package Limma (V3.38.3). Linear models were applied after corrected for gender and packyears. The False Discovery Rate (FDR) less than 0.05 considered as statistical significance.
Gene Set Enrichment Analysis (GSEA)

GSEA gives the quantification of the association of gene sets with the differential expression changes. In this study, GSEA was done using GSEA V.2.0.14 to compare the PRMEmph signature to the difference in bronchial brush gene expression between COPD and non-COPD individuals, using two previously published publicly available independent datasets. These datasets are accessible through following GEO Series accession numbers in the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO). (cohort one and cohort two as described below). Cohort one consists of current and ex-smokers with and without COPD (COPD=87, non-COPD =151) (GSE37147) (31). The cohort 2 composed of COPD and non-COPD subjects (COPD= 8, non-COPD =14) (GSE56342) (36).

Gene Set Variation Analysis (GSVA)

GSVA analysis allows us to explore the effect of genes associated with PRMEmph signature on each patient. The GSVA analysis was done using GSVA (1.34.0) package in R software version 3.5.1, by looking at the genes that were positively and negatively associated with PRMEmph signature separately.

Pathway analysis

Pathway analysis was done to identify the pathways related to significant genes associated with PRMEmph score. This analysis was done using the g: Profiler web base tool (26).
Results

Association of bronchial brush gene expression with PRM scores and FEV1 %predicted

Initially, we investigated the gene expression profiles of bronchial epithelial cells in relation to PRMEmph, PRMSAD, and the FEV1 % predicted. A total number of 133 genes were associated with PRMEmph scores, with 82 genes (61.65%) positively associated and 51 (38.35%) genes negatively associated (FDR < 0.05). In contrast, no genes were significantly associated with PRMSAD, and FEV1% predicted. The top 20 genes associated with PRMEmph were tabulated in table 2. A volcano plot present in figure 1B represents the differentially expressed genes in bronchial brushings related to emphysema (PRMEmph score), and the heatmap in figure 1C represents the significant genes associated with PRMEmph score, respectively.

Association of identified PRMEmph signature with other clinical parameters and independent datasets

We next compared the overlap between the identified signatures using GSEA and GSVA analysis. The GSEA results for genes significantly associated with FEV1 % predicted, and PRMSAD are illustrated in Figure 1D & E. These results show a high overlap between genes associated with PRMEmph score, FEV1% predicted and PRMSAD. This is reflected with the high correlation between FEV1% predicted with PRMEmph scores ($r = -0.508$, p-value = 0.000507, n= 44), and PRMEmph with PRMSAD scores ($r = 0.852$, p-value = 2.2e-16, n= 44).

We then compared the gene expression signature of PRMEmph with an independent dataset of COPD status signature (GSE37147). Those genes positively associated with PRMEmph scores were enriched among genes expressed in bronchial brushings of the COPD cohort (Figure 1F). The PRMEmph signature was then compared with another independent dataset, consisting of gene expression profiles of COPD status in small airway epithelium (GSE56342). The resulted GSEA plot in Figure 1G shows a similar pattern as in our dataset, further confirming the identified gene expression signature of PRMEmph replicated in different independent cohorts. The GSVA results further confirm that there is a continuous relationship in the change of gene expression patterns associated with PRMEmph scores (figure 2A and B).

Pathways associated with PRMEmph signature

Pathway analysis shows that the PRMEmph score is associated with cytokine-mediated signalling pathways, interferon pathways and NOTCH signalling pathways. Both cytokine-
mediated signalling and interferon signalling pathways got increased. In contrast, extracellular metric, collagen and NOTCH signalling related pathways got decreased associated with PRM signature (FDR<0.05) (table 3).
Discussion

The current study examines gene expression profiles of bronchial brushings in association with PRM-defined CT measurements of emphysema and small airway disease. The CXCL11 gene, which is produced by the airway epithelium (13), and it is known for its role as a prominent chemokine in CD8+ T cell activation during inflammation in COPD, was found as one of the most significantly associated genes with PRM^{Emph} scores, indicating that CXCL11 may play an essential role in the development of emphysema. The identified PRM^{Emph} signature was then replicated in two independent datasets, providing evidence that the airway epithelium may play a role in the development of emphysema and/or may act as a biomarker for the presence of emphysema.

The top five genes differentially expressed in bronchial brushes related to PRM^{Emph} scores include SLCO1B3, SPRR1A, FKBP5, CXCL11, and CLEC4E. CXCL11 is a T-cell chemoattractant and one of the most effective ligands of CXCR3 on CD8+ T cell and CD4+ T cells (5). CD8+ T cell activation has previously been associated with the development of emphysema by inducing alveolar cell apoptosis (2) via producing perforins and granzyme B (6, 12). In addition, the CXCL11 gene was previously identified as a highly expressed gene in the sputum of COPD patients (8). FKBP5 is a negative regulator of the glucocorticoid receptor and therefore regulates corticosteroid anti-inflammatory functions (11, 27). This gene has previously been found as corticosteroid sensitive gene, and its upregulation with PRM^{Emph} may be due to a higher dose of corticosteroid use in patients with a high level of emphysema; thus, it could be more of a treatment effect rather than disease effect (27). The SLCO1B3 gene, which encodes a transmembrane receptor that mediates the sodium-independent uptake of endogenous and xenobiotic compounds, mainly in the liver (32), while the CLEC4E gene encodes a protein which belongs to C-type lectin domain family 4 (7), but for these two genes roles related to COPD, is yet to be explained.

The GSEA results, which show the association of PRM^{Emph} gene expression signature with FEV1% predicted and PRM^{SAD} on the gene set level, show a similar overlapping pattern with the PRM^{Emph} signature, indicating possible similar mechanisms associated with these measurements of the lung (18, 29, 31).

The PRM^{Emph} associated signature was shown to be associated with COPD in two independent datasets from the upper and lower airways. This result follows the theory of
“united airway field of injury,” providing evidence that this signature may common throughout the compartments of the lung (4, 31).

The pathway analysis revealed top pathways associated with \(\text{PRM}^\text{Emph} \) score include cytokine-mediated signalling pathways and NOTCH signalling pathways which are well known for their role in COPD (2). Cytokine-mediated signalling pathways are responsible for the increased inflammation in COPD. In contrast, NOTCH signalling pathway plays a significant role in lung epithelial morphogenesis, and it is found to be downregulated in COPD patients and cause the lung epithelial metaplasia which leads to mucosal hyperplasia (1, 2, 10, 19, 33, 34).

The limitation of this study is the small number of patients tested in the discovery cohort, however despite these low number of patients the identified signature was able to be observed in two independent datasets of bronchial brushes from COPD, indicating the robustness of the \(\text{PRM}^\text{Emph} \) signature. The lack of significance in \(\text{PRM}^\text{fSAD} \) may be due to its variability within the GOLD status of COPD and possible multifactorial causes for the development of small airways disease. In addition, the bronchial brushes were collected from the 1st and second subsegmental branches of the left lower lobe of the lung which may not accurately reflect the transcriptomic changes occurring in the peripheral small airways, which are inaccessible to bronchoscopy. Furthermore, our replication study was conducted on COPD status and not PRM, as this data is currently not available for airway gene expression datasets.

In conclusion, we have identified a gene expression signature of bronchial brushings, which is associated with \(\text{PRM}^\text{Emph} \) signature in the lungs. In contrast, we did not find gene expression levels to be significantly associated with \(\text{PRM}^\text{fSAD} \). These findings indicate that airway epithelium may play a role in the development of emphysema and/or may act as a biomarker for the presence of emphysema, but not or to a lesser extent for functional small airways disease.
References

Figure Legends

Figure 1: Gene expression and GSEA results of bronchial brushings associated with emphysema score. A) Parametric response mapping of one patient CT scans. Lung tissue inspiration and expiration CT scans, small airway disease in yellow (PRM^{ISAD}), and emphysematous lung tissue in red (PRM^{Emph}). B) Volcano plot of differential gene expression in bronchial brushings related to emphysema (PRM^{Emph}) score. C) Heatmap shows genes significantly altered associated with the PRM^{Emph} score. The red and blue colours in the heat map representing up and down-regulated gene-expression levels, respectively. Samples with COPD are clustered under red, and non-COPD are under green. Samples grouped related to PRM^{Emph} score range from high to low represented in black to light grey colour gradient, respectively. FEV1 % predicted value less than 50 represented in yellow and FEV1 % predicted value range from 50 to 80 and 80 to 133 were grouped under light blue and Purple, respectively. Gene set enrichment analysis (GSEA) of genes significantly associated with PRM^{Emph} score related to D) FEV1% predicted E) PRM^{ISAD} score associated genes in this study, and related to COPD status in F) replicate data set 1(GSE37147) and G) replicate data set 2 (GSE56342). In each GSEA plot, the colored bars represent the ranked t-values of the association of bronchial gene expression. The red colour represents a positive association, whereas blue represents a negative association with the signature. The black vertical lines each represent a significantly differentially expressed gene.

Abbreviations: logFC -Log2 fold change, n_{Emph}- normalized emphysema score, FEV1_{P_predicted}- Forced Expiratory Volume in one-second Percentage predicted, PRM^{Emph}- Parametric Response Mapping derived scores of emphysema, PRM^{ISAD}- Parametric Response Mapping derived scores of small airway disease.

Figure 2: GSVA results of the top 10genes associated with PRM^{Emph} scores. A) genes negatively associated with PRM^{Emph} scores B) genes positively associated with PRM^{Emph} score. The samples colored with red and black in the plot represent 32 asymptomatic “party” smokers and 12 COPD patients, respectively.

Abbreviations: r=Spearman correlation value
Genes downregulated with PRM^Emph score (p<0.05)

Genes upregulated with PRM^Emph score (p<0.05)

Gene Expression in bronchial brushings

Genes decreased in COPD

Genes increased in COPD

Genes downregulated with PRM^Emph score

Genes upregulated with PRM^Emph score

Gene Expression in bronchial brushings

Genes decreased in PRM^SAD

Genes increased in PRM^SAD

Downloaded from journals.physiology.org/journal/ajplung at University of Groningen (129.125.058.149) on May 8, 2020.
Asymptomatic "party" smokers

A

Emphysema score vs Positive enrichment score

COPD
Asymptomatic "party" smokers

Positive enrichment score

Emphysema score

r = 0.3738
P. value = 0.0124

B

Emphysema score vs Negative enrichment score

COPD
Asymptomatic "party" smokers

Negative enrichment score

Emphysema score

r = -0.3129
P. value = 0.0386
Table 1. Clinical characteristics of the current study population

<table>
<thead>
<tr>
<th>Character</th>
<th>Asymptomatic smokers</th>
<th>COPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>32</td>
<td>12</td>
</tr>
<tr>
<td>Male subjects no. (%)</td>
<td>28(87.5)</td>
<td>12(100)</td>
</tr>
<tr>
<td>Current smoking, no. (%)</td>
<td>30(93.8)</td>
<td>10(83.3)</td>
</tr>
<tr>
<td>Age, mean (SD)</td>
<td>51.28(11)</td>
<td>65.42(7)</td>
</tr>
<tr>
<td>PRM<sup>Emph</sup> score, mean (SD)</td>
<td>1.23(1.25)</td>
<td>13.58(9.95)</td>
</tr>
<tr>
<td>FEV<sub>1</sub>% predicted, mean (SD)</td>
<td>107.94(12.29)</td>
<td>55.29(12.43)</td>
</tr>
<tr>
<td>PRM<sup>SAD</sup> score, mean (SD)</td>
<td>10.62(10.97)</td>
<td>32.56(6.97)</td>
</tr>
</tbody>
</table>

Abbreviations: SD = standard deviation, PRM^{Emph} - Parametric Response Mapping derived scores of emphysema, FEV₁% predicted = Forced Expiratory Volume in one-second percentage predicted, PRM^{SAD} - Parametric Response Mapping derived scores of small airway disease
Table 2. Statistical results of top significant genes found in bronchial brushings of party smokers and COPD patients associated with emphysema scores

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Log FC</th>
<th>t</th>
<th>P.Value</th>
<th>adj.P.Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLCO1B3</td>
<td>0.127806024</td>
<td>6.519990726</td>
<td>5.67E-08</td>
<td>5.89E-04</td>
</tr>
<tr>
<td>SPRR1A</td>
<td>0.063278543</td>
<td>6.413278613</td>
<td>8.15E-08</td>
<td>5.89E-04</td>
</tr>
<tr>
<td>FKBP5</td>
<td>0.06591885</td>
<td>6.3851007</td>
<td>8.96E-08</td>
<td>5.89E-04</td>
</tr>
<tr>
<td>CXCL11</td>
<td>0.066597346</td>
<td>6.16666158</td>
<td>1.88E-07</td>
<td>9.28E-04</td>
</tr>
<tr>
<td>CLEC4E</td>
<td>0.0693752</td>
<td>5.756387466</td>
<td>7.56E-07</td>
<td>0.002497</td>
</tr>
<tr>
<td>CLU</td>
<td>-0.03213479</td>
<td>-5.656230211</td>
<td>1.06E-06</td>
<td>0.002497</td>
</tr>
<tr>
<td>SNTG2</td>
<td>0.031901105</td>
<td>5.655277552</td>
<td>1.06E-06</td>
<td>0.002497</td>
</tr>
<tr>
<td>CDH2</td>
<td>-0.043848573</td>
<td>-5.644123872</td>
<td>1.11E-06</td>
<td>0.002497</td>
</tr>
<tr>
<td>DQX1</td>
<td>0.031684446</td>
<td>5.615244924</td>
<td>1.22E-06</td>
<td>0.002497</td>
</tr>
<tr>
<td>C12orf36</td>
<td>0.052959543</td>
<td>5.603764761</td>
<td>1.27E-06</td>
<td>0.002497</td>
</tr>
<tr>
<td>MYO3A</td>
<td>0.037012707</td>
<td>5.409838752</td>
<td>2.43E-06</td>
<td>0.004359</td>
</tr>
<tr>
<td>ANKRD22</td>
<td>0.047548353</td>
<td>5.334362512</td>
<td>3.13E-06</td>
<td>0.004704</td>
</tr>
<tr>
<td>THSD4</td>
<td>-0.046401359</td>
<td>-5.333727566</td>
<td>3.14E-06</td>
<td>0.004704</td>
</tr>
<tr>
<td>DKK1</td>
<td>0.050502428</td>
<td>5.315200317</td>
<td>3.34E-06</td>
<td>0.004704</td>
</tr>
<tr>
<td>SLC22A10</td>
<td>0.021988434</td>
<td>5.215854455</td>
<td>4.65E-06</td>
<td>0.006119</td>
</tr>
<tr>
<td>GUCY1B3</td>
<td>0.025796036</td>
<td>5.192145133</td>
<td>5.04E-06</td>
<td>0.006208</td>
</tr>
<tr>
<td>CEP55</td>
<td>0.020556219</td>
<td>5.095856166</td>
<td>6.94E-06</td>
<td>0.007431</td>
</tr>
<tr>
<td>GATM</td>
<td>-0.051271784</td>
<td>-5.090310071</td>
<td>7.07E-06</td>
<td>0.007431</td>
</tr>
<tr>
<td>EFEMP2</td>
<td>-0.02109123</td>
<td>-5.082125381</td>
<td>7.26E-06</td>
<td>0.007431</td>
</tr>
<tr>
<td>CES1</td>
<td>-0.046758077</td>
<td>-5.069659040</td>
<td>7.57E-06</td>
<td>0.007431</td>
</tr>
</tbody>
</table>

Abbreviations: log FC -Log2 fold change, adj.P. Val-Adjusted P-value
Table 3. Top pathways linked with genes significantly associated with PRM^{Emph} signature in bronchial brushings of party smokers and COPD patients

<table>
<thead>
<tr>
<th>Name of the pathway</th>
<th>Term_id</th>
<th>Adj.P. Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positively associated pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytokine-mediated signalling pathway</td>
<td>GO:0019221</td>
<td>1.55E-07</td>
</tr>
<tr>
<td>Cellular response to cytokine stimulus</td>
<td>GO:0071345</td>
<td>1.53829E-06</td>
</tr>
<tr>
<td>Response to cytokine</td>
<td>GO:0034097</td>
<td>7.14025E-06</td>
</tr>
<tr>
<td>Defence response to virus</td>
<td>GO:0051607</td>
<td>0.000202424</td>
</tr>
<tr>
<td>Response to virus</td>
<td>GO:0009615</td>
<td>0.000341767</td>
</tr>
<tr>
<td>Defence response</td>
<td>GO:0006952</td>
<td>0.001182</td>
</tr>
<tr>
<td>Immune response</td>
<td>GO:0006955</td>
<td>0.002424</td>
</tr>
<tr>
<td>Immune system process</td>
<td>GO:0002376</td>
<td>0.005083</td>
</tr>
<tr>
<td>Cellular response to type I interferon</td>
<td>GO:0071357</td>
<td>0.007262</td>
</tr>
<tr>
<td>Type I interferon signalling pathway</td>
<td>GO:0060337</td>
<td>0.007262</td>
</tr>
<tr>
<td>Response to type I interferon</td>
<td>GO:0034340</td>
<td>0.00924</td>
</tr>
<tr>
<td>Negative regulation of multi-organism process</td>
<td>GO:0043901</td>
<td>0.012274</td>
</tr>
<tr>
<td>Defence response to another organism</td>
<td>GO:0098542</td>
<td>0.017913</td>
</tr>
<tr>
<td>Cornification</td>
<td>GO:0070268</td>
<td>0.018896</td>
</tr>
<tr>
<td>Bile acid and bile salt transport</td>
<td>GO:0015721</td>
<td>0.023652</td>
</tr>
<tr>
<td>Bile acid and bile salt transport</td>
<td>GO:0015721</td>
<td>0.023652</td>
</tr>
<tr>
<td>Response to other organism</td>
<td>GO:0051707</td>
<td>0.034207</td>
</tr>
<tr>
<td>Response to external biotic stimulus</td>
<td>GO:0043207</td>
<td>0.034903</td>
</tr>
<tr>
<td>Immune effector process</td>
<td>GO:0002252</td>
<td>0.040605</td>
</tr>
<tr>
<td>Response to biotic stimulus</td>
<td>GO:0009607</td>
<td>0.043063</td>
</tr>
<tr>
<td>Negatively associated pathways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extracellular matrix</td>
<td>GO:0031012</td>
<td>0.008048</td>
</tr>
<tr>
<td>Collagen-containing extracellular matrix</td>
<td>GO:0062023</td>
<td>0.011341</td>
</tr>
<tr>
<td>Constitutive Signalling by NOTCH1 t(7;9) (NOTCH1:M1580_K2555) Translocation Mutant</td>
<td>REAC:R-HSA-2660826</td>
<td>0.039409</td>
</tr>
<tr>
<td>Signalling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant</td>
<td>REAC:R-HSA-2660825</td>
<td>0.039409</td>
</tr>
</tbody>
</table>

Abbreviations: adj.P. Val - Adjusted P-value