

 University of Groningen

Evidences in the evolution of OS projects through Changelog Analyses
Capiluppi, Andrea; Lago, Patricia; Morisio, Maurizio

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Capiluppi, A., Lago, P., & Morisio, M. (2003). Evidences in the evolution of OS projects through Changelog
Analyses. 19-24. Paper presented at The 3rd Workshop on Open Source Software Engineering ICSE’03
International Conference on Software Engineering , Portland, Oregon, United States.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 28-04-2025

https://research.rug.nl/en/publications/38205913-7490-46a6-978f-a797b8a000eb

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Capiluppi, Andrea; Lago, Patricia; Morisio, Maurizio.
Title: Evidences in the evolution of OS projects through Changelog Analyses
Year of publication: 2003
Citation: Capiluppi, A., Lago, P., Morisio, M. (2003). ‘Evidences in the evolution of
OS projects through Changelog Analyses.’ in Feller, P., Fitzgerald, B., Hissam, B.
Lakhani, K. (eds.) Taking Stock of the Bazaar: Proceedings of the 3rd Workshop on
Open Source Software Engineering ICSE’03 International Conference on Software
Engineering Portland, Oregon May 3-11, 2003. pp.19-24.
Link to published version: http://opensource.ucc.ie/icse2003.

http://roar.uel.ac.uk/�
http://opensource.ucc.ie/icse2003�

19

Evidences in the evolution of OS projects through
Changelog Analyses

ABSTRACT
Most empirical studies about Open Source (OS) projects
or products are vertical and usually deal with the flag-
ship, successful projects. There is a substantial lack of
horizontal studies to shed light on the whole population of
projects, including failures. This paper presents a hori-
zontal study aimed at characterizing OS projects.
We analyze a sample of around 400 projects from a popu-
lar OS project repository. Each project is characterized
by a number of attributes. We analyze these attributes
statically and over time.
The main results show that few projects are capable of
attracting a meaningful community of developers. The
majority of projects is made by few (in many cases one)
person with a very slow pace of evolution.
We then try to observe how many projects count on a sub-
stantial number of developers, and analyze those projects
more deeply. The goal is to achieve a better insight in the
dynamics of open source development.
The initial results of this analysis, especially growth in
code size and tendency to stability in modularity, seem to
be in line with traditional close source development.

1. INTRODUCTION
The Open Source (OS) model of software development
has gained the attention of both the business, the practi-
tioners and the research communities. The OS process has
been described by the seminal paper by Eric Raymond 4
and . However, sound empirical studies are still very lim-
ited in number and mostly vertical, i.e. they deal with a
single, high impact project [3], [6], [9] and [10]
On the other hand, few are the preliminary horizontal
studies that have been performed on major OS reposito-
ries, like [9] and [14],but still they remain on the surface of
the data calculated by the administrators of the site them-
selves. In these cases, those data are parsed from the
HTML pages and used to perform descriptive statistics.
Our study uses a similar horizontal approach, but goes
deeper into data collection: besides readily available met-
rics that can be computed automatically, other project
attributes are extrapolated or computed by hand. Further,

we consider evolution of the projects. The measures are
computed at a point in time, then repeated some time
later. Our long term objective is to gain further under-
standing about OS project dynamics, and also to draw
useful lessons for software development in general. It
should be noted that the OS process provides open proc-
ess and product data, and therefore is a rare opportunity
for empirical research.
As an example of an open process-oriented issue, the lit-
erature studies the evolution of traditional (non OS) pro-
jects. As a result, evolution is organized in a significant
number of releases in a short time, and this is usually con-
sidered an instability factor [16], and [17]. On the con-
trary, in the OS community this type of evolution is an
evidence of vitality showing the commitment of the au-
thors, and the level of appreciation from users [18]
Koch and Schneider [9] study the GNOME project, espe-
cially at the level of size and programmers. Size and
number of programmers grow steadily, the study confirms
that an 'inner circle' of programmers gives most of the
contributions.
Among horizontal studies we are aware of the FLOSS
project, which is analyzing this topic from an Economic
as well as technological point of view [2].
Stamelos et al. [11] analyze the quality of source code of
five open source projects and conclude that the quality
level is not different from closed source projects.
In this study we concentrate on a very large sample (406
projects) selected randomly from an OS portal [20], and
give some descriptive statistics and an initial analysis of
evolution. The evolution aspect is considered since we
observe the attributes of the projects twice, with an inter-
val time of 6 months.
The vast majority of projects are 'solo' works (small size,
one developer and no users) and belong to horizontal ap-
plication domains (software used to produce other soft-
ware, such as operating system components, data bases
etc.). Many do not evolve (no change in version number,
no change in size) for months, suggesting that they are
'dead'. Few projects are 'alive' (several developers, growth
in size and developers). This suggests that, also in the OS

Andrea Capiluppi
andrea.capiluppi@polito.it

Patricia Lago
patricia.lago@polito.it

Maurizio Morisio
maurizio.morisio@polito.it

Dip. Automatica e Informatica

Politecnico di Torino
Italy

20

community, the competition for attracting developers is
harsh, successful projects are a minority and mortality is
high. Examples from flagship projects like Linux and
Apache should not be taken as the rule for all OS projects.
Next, we observe 12 'alive' projects from the initial set of
406. We reformulate some attributes defined for the first
phase (modularity is defined, and modularity level is dis-
carded), while some others are no more considered. We
analyze the evolution of these projects in more detail,
through a smaller set of project attributes (modularity,
size, developers) computed at each release. The goal is to
understand if there are common trends, and if there are
key differences from closed source development.
We define three clusters of projects: ‘large’ projects as
long as they are based on more than 1000 KB (40 KLOC),
‘medium’ projects (between 100 and 1000 KB), and
‘small’ projects (up to 100 KB).
First results demonstrate that there’s substantially small
differences between close and open software develop-
ment.

2. DEFINITIONS
We formulate several project attributes. Here we report
their definitions only: in we show the values of the attrib-
utes for the 12 chosen projects

2.1 Age
Age of the project (evaluated in days). As a proxy we use
the date of first posting of the project on the portal, defined
by portal owners. We calculated the time buckets based on
that.

2.2 Application domain
Main domain covered by the application. As examples,
Scientific, Security, Database, etc.Their definition is up to
the portal owners.

2.3 Programming language
Programming language used to develop the application. As
examples, C, C++, Java, etc. They are selected by the pro-
ject and reported by the portal owners.

2.4 Code Size
Size of the source code of an instance of the product de-
veloped by the project. We analyzed the projects in order
to purge the code from auxiliary files (html, documenta-
tion, images, etc.) and legacy code (developed by some-
body else and included as library in the code). For the sake
of automation, we formulate sizes in Kbytes.

2.5 Number of developers, stable developers,
transient developers

A developer is a person who contributes isolated code
patches, as well as a continued contribution of code. Bug
reporting or contribution of ideas are not considered as
development. Developers are further divided into transient
and stable. We therefore define as stable those developers
submitting more than one isolated patch: this definition

holds as long as patches are submitted in different ver-
sions, or through different modules.

2.6 Number of users
A user uses the application developed by the project. The
number of subscribers to a project is used as a proxy of
number of users. This metric is calculated by the portal
owner and it’s publicly available.

2.7 Modularity level
Degree of modularity of the source code. As a proxy of
modularity we use the number of directories the source
code is divided into. The possible values of this attribute
are one directory (dirLev 1), two (dirLev 2), more than two
(dirLev 3).

2.8 Modularity
When analyzing the evolution of the 12 chosen projects,
we refine the above definition as follows: modularity is the
number of modules (as a proxy we use the number of di-
rectories the source code is split into). We further define
the average size of module (= code size/number of mod-
ules).

2.9 Documentation level
Level of documentation of a project (source code, APIs).
We define three documentation levels: comments in the
source code (docLev 1), a README file or a Unix-like
MAN page (docLev 2), availability of a user manual or
API specification (docLev 3).

2.10 Popularity
Defined by portal owners as follows:

- U stands for the count of visits to the project home page
- R is the number of visits to the project on FreshMeat
pages
- S is the subscribers number
2.11 Status

Stage of development of a project. This attribute is coded
in six different values (Planning, Pre-alpha, Alpha, Beta,
Stable, Mature), and it’s value is selected by the project
and reported by the portal owners.

2.12 Vitality
Defined by portal owners as follows:

L
ARV *

- R is the number of releases in a certain period (t)
- A is the age of project (in days)

- L stands for the number of releases in t

2.13 Version Number
Identifier of an instance of the product developed by the
project, in the form 1.1, 1.2 and similar. They’re selected

3
3

)1(** SRUP

21

by the project owner. Rather than by the absolute number,
we’re interested in analyzing the relative changes in ver-
sion numbers and the rate of their changing.

2.14 Date of version
Date a version was released. This measure is used to ana-
lyze the rate of activity per period (month, age, and so
forth).

3. HORIZONTAL ANALYSIS
Size of projects is typically small (Figure 1), GPL the most
popular license. Horizontal application domains (applica-
tions used to build other software, the end user is required
to program and is, likely, a software professional) prevail
(66%).
Most used languages are C, C++, PERL. Surprisingly,
Java comes after those.
Number of developers is typically low: 57% have one or
two developers. Only 15% of them have more than 10
developers. We believe for the latter category only the
issue of chaotic vs. organized development becomes mean-
ingful. For this category, a core team of coordinators ex-
ists, and the ratio of coordinators to developers is, on aver-
age, 1 to 4 (Figure 3 and Figure 4).
Number of subscribers (a proxy of users of the application
developed by a project) is also low. 80% of projects have
less than 11 subscribers, 1% has more than 100. Surpris-
ingly, the number of subscribers does not appear to grow
with the age of a project, nor with its size. 72% of projects
with more than 10 subscribers belong to a horizontal do-
main. To us, this confirms that successful OS software is
developed by experts for experts.
As for evolution of projects, another striking fact is that,
over six months, 97% of projects did not change size or
changed less than 1% (Figure 2).
These data suggest that, despite the huge number of OS
projects listed on OS portals, the overall effort put in OS
projects (and the pool of developers) is a scarce resource
that concentrates on very few projects. Very successful OS
projects such as Linux and Apache are probably not the
'average' OS project.
While some validity threats must be considered to interpret
these results correctly (especially the use of portals as an
advertising means that inflates the number of single devel-
oper projects with no chance of success), we believe that
this analysis can bring useful insight in the debate about
the Open Source movement.

4. VERTICAL ANALYSIS
An initial observation of the projects in our sample sug-
gests that they cluster around both the number of authors
and size (Figure 5): two projects have more than 15 au-
thors, six have between 2 and 4, and four have one author.
In all projects we have analyzed there are some common
behaviors: size grows, authors and contributors grow over
time (Figure 6, Figure 7 and Figure 8, where we report the

evolution of two projects only, ARLA and MUTT, which
we consider as large projects). Both behaviors indicate
that a project is alive, with a community of developers
that work on it and let it evolve. This finding is not sur-
prising, since we selected the projects with the aim of
isolating especially alive projects. However, the result
was not warranted, since we selected projects with a static
indicator like total number of developers > 10. In this
sense we can say that a large number of developers (au-
thors + contributors) may be a good predictor of alive
projects.
A constant growing size may be an implication of Leh-
man's and Belady laws on software evolution [6], [7], and
 [12]. In this sense we can hypothesize that Lehman's laws
apply to alive OS projects, or, in other words, OS projects
could behave in the same way as closed source ones under
this point of view.
On the other hand a growing number of contributors, and
(for large and medium projects) of authors is a typical OS
characteristics, usually unmatched by closed source en-
deavors. Contributors grow with a linear-wise trend. (Fig-
ure 6 and 8) While there is no warranty that contributors
always grow, a growing pattern indicates a healthy pro-
ject. Knowing why certain projects attract contributors
(alive projects) and others don't would be extremely bene-
ficial. Unfortunately the data we have does not allow us to
answer to this question. Similarly we are in no position to
tell if and when the evolution of a project stops, and in
case it stops if this is due to a status of maturity achieved
or to end of interest from the community (Figure 7).
In large and medium projects authors grow too, but the
growth rate is much more limited. New authors were al-
ways contributors, contributing to a project seems to be
the preferred way to access the core group. The number of
authors is always limited, in medium and large projects
the limit is set by an overall reduced number of contribu-
tors, in large projects with a very large number of con-
tributors (such as Mutt) the ceiling could be set by organ-
izational issues. In Mutt the ceiling is at around 20 authors
(Figure 6).
In large and medium projects the number of modules
grows, probably due to the parallel code growth and inter-
nal reorganizations. An intriguing observation is that,
while the size of modules changes considerably from pro-
ject to project, in all of them it tends to evolve to a stable
value (Figure 7).
In large and medium projects parallel distributions (i.e.
parallel versions of the product, with enhanced or limited
functionality or with variations in internal design) are
sometimes used, and eventually merge in a single version.
We are not aware if a similar behavior happens in closed
source too. In small projects the number of modules tends
to be one, the issue of reorganizations and redesign is
probably premature for the state of the project.

22

5.REFERENCES
[1] Capiluppi A., Lago P., Morisio M., 2002, “Characteristics
of Open Source Projects”, on the Proceedings of the 7th Euro-
pean Conference on Software Maintenance and Reengineering,
March 2003
[2] FLOSS (Free/Libre and Open Source Software),
http://www.infonomics.nl/FLOSS/outline.htm
[3] Mockus, R.T. Fielding, J.D. Herbsleb (2002): “Two Case
Studies of Open Source Development: Apache and Mozilla”.
ACM Transactions on Software Engineering and Methodology
Vol.11, No. 3, 2002, 309-346.
[4] B. Behlendorf, 1998, “Open Source as a Business Strategy”
contained in DiBona C., Ockman S., Stone M., “Open Source:
Voices From the Open Source Revolution”. Sebastopol, Califor-
nia. O’Reilly & Associates, and available on-line at
http://www.oreilly.com/catalog/opensources/book/brian.html.
[5] Raymond, E., “The Cathedral and the Bazaar”, FirstMon-
day, Vol.3 N.3 - March 2nd. 1998, on line at
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
[6] Lehman MM, Perry DE, Ramil JF, Turski WM and Wernick
PD, Metrics and Laws of Software Evolution – The Nineties
View, Proc. Metrics '97, IEEE - CS Albuquerque, NM, 5 - 7
November 1997, pp. 20 – 32
[7] Belady LA and Lehman MM, "An Introduction to Program
Growth Dynamics", in Statistical Computer Performance
Evaluation, W. Freiburger (ed.), Academic Press, NY, 1972, pp.
503 - 511
[8] Raymond, E., “Homesteading the Noosphere”, FirstMon-
day, Vol. 3 N. 10 - October 5th. 1998.
[9] Stefan Koch, Georg Schneider, Results from Software En-
gineering Research into Open Source Development Projects
Using Public Data, in Diskussionspapiere zum Tätigkeitsfeld

Informationsverarbeitung und Informationswirtschaft, Hans R.
Hansen und Wolfgang H. Janko (Hrsg.), Nr. 22, Wirtschaftsuni-
versität Wien, 2000.
[10] Mockus A., Fielding R., Herbsleb J., Two Case Studies of
Open Source Software Development: Apache and Mozilla, ACM
Trans. On Software Engineering and Methodology, 11, 3,
(2002), 309-346.
[11] Stamelos, I., Angelis, L., Oikonomou, A., Bleris, G.L.,
‘Code Quality Analysis in Open-Source Software Development’,
Information Systems Journal, 2nd Special Issue on OS Software,
12(1), January 2002, pp. 43-60.
[12] Lehman M.M., Ramil J.F.,, 2002, "Software Evolution and
Software Evolution Processes", Annals Of Software Engineer-
ing, Vol. 14, pp. 275-309
[13] Fenton A., (1994), “Software Measurement: A Nec-essary
Scientific Basis”. IEEE Transactions on Software Engineering,
Vol.20, No.3, Pagg. 199-206
[14] Kienzle, R., 2001, “Sourceforge Preliminary Project Analy-
sis”, available on-line at http://www.osstrategy.com/sfreport/
[15] Fuggetta A., (2002), OS software: an evaluation,
web.cefriel.it/~alfonso/documents/ Papers/opensource.pdf
[16] Bezroukov, N., “OS Software Development as a Spe-cial
Type of Academic Research”, FirstMonday, Vol. 4 N. 10 - Octo-
ber 4th. 1999.
[17] Bezroukov, N., “A Second Look at the Cathedral and the
Bazaar”, FirstMonday, Vol. 4 N. 12 - December 6th 1999.
[18] Tirole J., Lerner J., “Some Simple Economics of OS”, Jour-
nal of Industrial Economics, N. 52, July 2001.
[19] Kienzle, R., 2001, “Sourceforge Preliminary Project Analy-
sis”, available on-line at http://www.osstrategy.com/sfreport/
[20] FreshMeat portal, http://freshmeat.net

23

Table 1 – Attribute values for the 12 chosen projects

Name Function Size
[Kbytes] Modules

Average
module

size
[KBytes]

Authors Contribu-
tors

Arla cache manager for the
AFS file system 4290 71 105 16 29

Gnuparted Manipulates logical
disks partition 927 23 40.3 4 10

Mutt e-mail client 2134 4 533.5 23 101

Weasel Reads electronic con-
tents on a palm pilot 482 2 241 3 10

Bubblemon
displays system's load
with a graphical inter-

face
66.1 2 33 2 9

Calamaris gets statistical data out
of parsed documents 111 1 111 1 16

Dailystrips searches cartoon strips
over the web 42 1 42 1 10

disc-cover Searches disc covers
over the web 83 2 41.5 2 16

Edna Mp3 file server 52.4 4 13.1 1 12

Motion detects motion in a
video device 160 1 160 3 24

Rblcheck Email monitoring and
protection 20 6 3.33 1 9

Xautolock Monitors console activ-
ity 70 2 35 2 14

24

157143

4

68

28

0

20

40

60

80

100

120

140

160

180

[0-10] (10-100] (100-1000] (1000-
10000]

>10000
Clusters [KB]

Fr
eq

ue
nc

y

0

10

20

30

40

50

60

70

80

0 1 2 10 20 50 100 More

Developers

Pe
rc

en
ta

ge
 o

f P
ro

je
ct

s

Stable developers

Transient developers

Stable + transient

59%

22%
15%

5%
0%

20%

40%

60%

80%

0% (0%-10%] (10%-50%] >50%
Range of variation

Fr
eq

ue
nc

y
[%

]

438

1867

2543

3223

0

500

1000

1500

2000

2500

3000

3500

[1-3] [4-10] [11-20] more than 20Stable developers

C
od

e
si

ze
 [k

B
]

Figure 2 - Dynamic Variation of Code Sizes

Figure 3 - Distribution of stable developers over projects

Figure 4 - Distribution of developers over projects

Figure 1 - Distribution of Code Sizes Figure 5 - Scatterplot of authors vs. code size (KB)

Mutt

0

20

40

60

80

100

120

140

10
/0

7/
19

98

10
/1

0/
19

98

10
/0

1/
19

99

10
/0

4/
19

99

10
/0

7/
19

99

10
/1

0/
19

99

10
/0

1/
20

00

10
/0

4/
20

00

10
/0

7/
20

00

10
/1

0/
20

00

10
/0

1/
20

01

10
/0

4/
20

01

10
/0

7/
20

01

10
/1

0/
20

01

10
/0

1/
20

02

10
/0

4/
20

02

10
/0

7/
20

02

10
/1

0/
20

02

time

au
, c

on
, d

ev

authors
contributors
developers

Authors vs. Size

0
5

10
15
20
25

0 1000 2000 3000 4000 5000

Size [KBytes]

A
ut

ho
rs

Figure 8 - Authors, Contributors and Developers in the
ARLA project

Figure 7 - Code Size, Modules and Module Size in the
Arla project

Figure 6 - Authors, Contributors and Developers in the
MUTT project

ARLA

0
5

10
15
20
25
30
35
40
45
50

23
/2/

98

15
/4/

98

31
/7/

98

31
/1/

99

30
/5/

99

20
/11

/99
2/5

/00
6/6

/01

time

authors

contributors

developers

ARLA

0
500

1.000
1.500
2.000
2.500
3.000
3.500
4.000
4.500
5.000

fe
b-

98

ag
o-

98

fe
b-

99

ag
o-

99

fe
b-

00

ag
o-

00

fe
b-

01

ag
o-

01

fe
b-

02

ag
o-

02

time

C
od

e
Si

ze

0
20
40
60
80
100
120
140
160
180
200

M
od

ul
es

, M
od

ul
e

Si
ze

 [K
B

]
Code Size

Modules

Module Size

	3rd WS 19cs
	1_pdfsam_5_pdfsam_15_pdfsam_3rd-WS-on-OSS-Engineering

