Catalytic Hydrogenations with Cationic Heteroleptic Copper(I)/N-Heterocyclic Carbene Complexes
Thiel, Niklas O.; Brechmann, Lea T.; Teichert, Johannes F.

Published in:
Synlett

DOI:
10.1055/s-0037-1612302

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Catalytic Hydrogenations with Cationic Heteroleptic Copper(I)/N-Heterocyclic Carbene Complexes

Niklas O. Thiel1 Lea T. Brechmann Johannes F. Teichert*
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany johannes.teichert@chem.tu-berlin.de
Published as part of the Special Section 10th EuCheMS Organic Division Young Investigator Workshop

Abstract A new heteroleptic cationic copper(I) complex bearing two N-heterocyclic carbene (NHC) ligands has been prepared. In situ, a Cu–O bond can be generated which enables the complex to catalytically activate H2. The resulting complex shows activity in catalytic chemo- and stereoselective alkyne semihydrogenations as well as conjugate reductions of enones.

Key words copper, NHC ligands, hydrogenation, homogeneous catalysis, alkynes, enones

Well-defined copper(I) complexes bearing N-heterocyclic carbene (NHC) ligands have emerged as powerful catalysts for a variety of transformations.2 While the vast majority of the complexes reported bear one NHC ligand (leading to Cu(NHC)X complexes, where X is an additional anionic ligand), also the corresponding cationic complexes of the general formula Cu(NHC)2+ have been investigated as catalysts, albeit to a much lesser extent.3,4 Our group and others have identified copper(I)/NHC complexes bearing a Cu–O bond as useful catalysts for the activation of H2 and subsequent hydrogenations or other reductive transformations.5–7 For catalytic chemo- and stereoselective alkyne semihydrogenations, two general types of complexes have been disclosed: i) copper(I) complexes such as 1 based on bidentate (‘tethered’) NHC ligands bearing additional heteroatom tethers6a,e,8 that were generated in situ from the corresponding imidazol(in)ium salts and a suitable copper(I) precursor (Scheme 1, bottom left); ii) the simple and preactivated copper(I) hydroxide complex [IPrCuOH]9 (2, Scheme 1, bottom right).6b,d Both catalysts lead to a variety of Z-alkenes from internal alkynes in a highly stereoselective manner and are characterized by their negligible tendency for overreduction to the corresponding alkanes. For a systematic optimization, however, both catalysts pose particular challenges: Complexes of the type 1 with a tethered ligand have so far not been isolated due to their tendency to oxidize to the corresponding (inactive) copper(II) counterparts.6a In addition, this catalyst requires high H2 pressure (generally 50–100 bar), which impedes the practicability of the overall catalytic hydrogenation. However, this catalyst type is modular and can easily be varied both structurally as well as electronically through a variety of substituents.6c While the second type of catalyst (2) is air-stable and can therefore be operated without special precautions, it shares the limitation of being active only at elevated H2 pressure.6b,d In addition, with the exception of one closely related complex,10 copper(I) hydroxide/NHC complexes based on other NHC ligands are highly unstable, which hampers their use and systematic optimization.
We therefore decided to investigate cationic copper(I)/NHC complexes 3 (Figure 1), with the aim to take advantage of a possible air stability while maintaining viable pathways for derivatizations. Such a setup, with two different NHC ligands coordinated to one copper(I) atom (heteroleptic complex), could serve as ideal platform for rapid and systematic optimization of catalysts for a catalytic transformation of choice. At the same time, at least one of the NHC moieties would have to be bidentate, with an additional alkoxide moiety available for the generation of a Cu–O bond required for H₂ activation.

We decided to take advantage of the high basicity of the [IPrCuOH] complex (2) for the preparation of the envisaged cationic copper(I) complexes, and therefore anticipated that 2 could itself deprotonate an imidazolinium salt such as 4 to generate the desired complex 5 (Scheme 2). Indeed, when [IPrCuOH] (2) and imidazolinium salt 4 were reacted in THF at room temperature, we were able to isolate the new heteroleptic cationic copper(I) complex 5 in 52% yield. We did not detect any copper(I) alkoxide complex which could form through direct deprotonation of the alcohol moiety of ligand precursor 4. Heteroleptic cationic copper(I) complex 5 was susceptible to X-ray crystal-structure analysis (Figure 2). The C–Cu–C angle was found to be 175°, and no interaction between the copper and the oxygen atom was found. The new cationic copper(I) complex was found to be bench-stable under air for months.

For catalytic activity with H₂, the formation of a Cu–O bond emanating from complex 5 was necessary. We therefore decided to deprotonate 5 with n-butyllithium as in our earlier protocol. While full conversion of 5 was detected after 5 minutes, the new complex 6 turned out to be too reactive to be isolated (Scheme 3). When polymethylhydrosiloxane (PMHS) was added to the reaction mixture at room temperature, a fast appearance of a yellow color, indicative of a possible (most probably dimeric) copper(I) hydride complex 7, could be observed. Copper(I) hydrides are known to be formed from complexes bearing a Cu–O bond in the presence of hydrosilanes. At present, the structure and bonding situation of the intermediately formed complex 6 are unknown. The unknown intermediate 6 could possess a Cu–O bond in a possible T-shape or trigonal coordination mode.
case with 3% alkane detected in the reaction mixture. Cationic complex 5 therefore shows the known characteristics of a copper(I)/NHC complex in catalytic alkyne semihydrogenations (high chemo- and stereoselectivity). When comparing the present catalyst 5 with the parent complex 2 under similar conditions, two features of 5 become clear: i) complex 5 is comparatively less reactive than 2 (as evident from the significantly higher conversion of 8 under all conditions). ii) complex 5 becomes active after a substantial initiation period (of at least 8 hours). One reasonable explanation for these results could be that one of the NHC ligands on the cationic complex 5 acts as a ‘sacrificial’ ligand, which is lost prior to the actual catalysis, leading to an active catalyst. The observed induction period supports such an explanation.18

In summary, we have demonstrated that cationic, heteroleptic copper(I) complexes bearing two NHC ligands can be employed as catalysts for H2 activation and alkyne semihydrogenations as well as conjugate reductions. The new complex presented herein serves as an ideal platform for further systematic development of well-defined copper(I)/NHC catalysts, as it offers several advantages: The catalyst precursor is air-stable and does not require special handling and additionally bears a multitude of sites for systematic variation of electronic and steric parameters of the resulting catalysts. This variation could stem from different NHC backbones, N-substituents, and/or the alkoxide tether.

Acknowledgment

Dr. Elisabeth Irran is thanked for elucidation of the crystal structure. Prof. Dr. Martin Oestreich (all TU Berlin) is kindly thanked for generous support.
Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1612302.

References and Notes

(1) Present address: Stratingh Institute for Chemistry, Rijksuniversiteit Groningen, The Netherlands.

(3) For a review, see: Lazreg, F.; Nahra, F.; Cazin, C. S. J.

(4) For selected examples, see: (a) Díez-González, S.; Stevens, E. D.; Scott, N. M.; Petersen, J. L.; Nolan, S. P.

(9) For another example of catalyst activation by loss of one NHC ligand from a cationic copper(I) complex, see ref. 4b.