Macrogliol diversity and its effect on myelination

Werkman, Inge

DOI:
10.33612/diss.113508108

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chapter 2

TLR3 agonists induce fibronectin aggregation by activated astrocytes: a role of pro-inflammatory cytokines and fibronectin splice variants

Inge Werkman¹,‡, Arend H. Sikkema¹,‡, Joris B. Versluijs¹, Jing Qin¹, Pascal de Boer¹, and Wia Baron³

¹ Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands

‡ contributed equally to this work

Abstract

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system which eventually results in axonal loss mainly due to failure of remyelination. Previously we have shown that the persistent presence of stable astrocyte-derived fibronectin aggregates in MS lesions impairs OPC differentiation, and thereby remyelination. Here we set out to discern whether and, if so, how inflammatory mediators as present in MS lesions trigger astrocytes to form fibronectin aggregates. Our findings revealed that in slice cultures only upon demyelination, the TLR3 agonist Poly(I:C) evoked astrocytes to form fibronectin aggregates. Consistently, pro-inflammatory cytokine-pretreated astrocytes were more susceptible to Poly(I:C)-induced fibronectin aggregation, indicating that astrocytes form fibronectin aggregates upon a double hit by inflammatory mediators. The underlying mechanism involves disrupted fibronectin fibrillogenesis at the cell surface as a result of a cytokine-induced increase in relative mRNA levels of EIIIA^{pos}-Fn over EIIIB^{pos}-Fn and a Poly(I:C)-mediated decrease in integrin affinity. Remarkably, fibronectin aggregation is exacerbated by white matter astrocytes compared to grey matter astrocytes, which may be a reflection of higher expression levels of EIIIA^{pos}-fibronectin in white matter astrocytes. Hence, interfering with alternative fibronectin splicing and/or TLR3-mediated signaling may prevent fibronectin aggregation and overcome remyelination failure in MS lesions.

Introduction

Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS) characterized by demyelination, inflammation and neurodegeneration in grey matter (gm) and white matter (wm). In the early stages of MS, remyelination restores axonal support and saltatory nerve conduction, while upon disease progression remyelination often fails, resulting in permanent axonal loss and disease progression. Studies in rodent models showed that efficient remyelination requires recruitment of oligodendrocyte progenitor cells (OPCs) into the lesion area, followed by differentiation into myelin-producing mature oligodendrocytes. In parallel, an orchestrated inflammatory response is initiated to remove remyelination-inhibiting myelin debris, ultimately resulting in a local microenvironment that favors the differentiation of recruited OPCs. Remarkably, remyelination is more efficient in gm lesions than in wm lesions, emphasizing an important role of the local cellular and molecular environment in remyelination efficiency.

CNS demyelination is accompanied by activation of astrocytes and microglia and the release of a myriad of pro-inflammatory cytokines, immuno-regulatory factors and extracellular matrix (ECM) molecules. ECM remodeling plays a significant role in the remyelination process. For example, the transient upregulation of fibronectin in demyelinated areas is beneficial for OPC recruitment, i.e., the early stages of remyelination, while its timely removal is required to allow OPC differentiation to proceed. Reactive astrocytes are the primary source of the transiently deposited fibronectin upon demyelination. In chronic demyelinated MS lesions and in lesions of an experimental model for MS, i.e., chronic relapsing experimental autoimmune encephalomyelitis (crEAE), fibronectin is not cleared and remains present in the form of stable aggregates. As dimeric fibronectin efficiently blocks myelin formation in vitro as well as remyelination in vivo, fibronectin aggregates efficiently prevent formation of stable aggregates. Similarly, fibronectin aggregates are not observed in lysolecithin-induced demyelination models and slice cultures. Hence, fibronectin aggregates are not formed upon demyelination by default.
The fibronectin molecule contains a multitude of variable regions generated by alternative splicing of a single gene, including domains EIIIA (EDA in human) and EIIIB (EDB in human) that are specific for cellular fibronectin and which may have various functions. For example, inclusion of either domain alters the conformation of fibronectin, thereby interfering with its integrin and cell binding properties. Organization of fibronectin is affected by several processes, including assembly into fibronectin fibrils, proteolytic turnover, and biochemical crosslinking and restructuring. Recently, we have shown that tissue transglutaminase 2 (TG2), when exogenously supplied, can cross-link astrocyte-deposited fibronectin on a laminin substrate. However, endogenously expressed TG2 does not contribute to astrocyte-mediated fibronectin aggregation, while being involved in fibronectin fibril formation. In addition, proteomic analysis revealed that TG2 is not present in fibronectin aggregates. Hence, the underlying mechanism of fibronectin aggregation by astrocytes is not yet known.

MS lesions contain more inflammatory mediators derived from infiltrated peripheral cells than toxin-induced lesions. For example, the pro-inflammatory cytokines IL1β, IFNγ and TNFα and endogenous Toll-like receptor (TLR) agonists are abundantly present in MS lesions. In addition, TLRs are upregulated within MS lesions and present on activated astrocytes. As astrocyte activity is induced in a context-dependent manner and regulated by, among others, pro-inflammatory cytokines and TLR-mediated signaling events, fibronectin aggregate formation may be evoked by local inflammatory mediators. Here, we aimed to clarify whether and how immune-modulating factors, known to be present in MS lesions, trigger astrocytes to produce stable fibronectin aggregates. Our findings indicate that astrocytes form fibronectin aggregates via a double hit mechanism that involves activation of astrocytes by a demyelinating event and/or exposure to pro-inflammatory cytokines by a mechanism that involves a cytokine-mediated alteration in the expression of fibronectin splice variants and a Poly(I:C)-induced decrease in fibronectin binding by astrocytes. In addition, while similar responsive to Poly(I:C), WM astrocytes formed more fibronectin aggregates than GM astrocytes in vitro. This may reflect the more prominent presence of fibronectin aggregates and the decreased remyelination capability in WM compared to GM MS lesions.

Results

TLR3 agonists induce extracellular fibronectin aggregate formation by astrocytes in vitro

Previously, we have shown that fibronectin aggregates are formed at the relapse phase in crEAE, but not in toxin-induced models, indicating that inflammation may contribute to fibronectin aggregation. To assess whether inflammatory mediators that are abundantly present in MS lesions contribute to fibronectin aggregation, we applied a reductionist approach and exposed primary rat astrocytes to pro-inflammatory cytokines IL1β, IFNγ and TNFα, and TLR2, TLR3, and TLR4 agonists zymosan, Poly(I:C), and LPS, respectively. Previous characterization of fibronectin aggregates indicated their insolubility in the ionic detergent sodium deoxycholate (DOC), while remaining in the stacking gel of SDS-PAGE gels. Accordingly, a 48-hour incubation with the inflammatory cytokines, extracellular deposits were extracted in DOC buffer and the extent of fibronectin aggregation was assessed by Western blot. Exposure to the TLR3 agonist and viral dsRNA mimetic Poly(I:C) significantly induced fibronectin aggregate formation (Fig. 1a,b, ins Fn, Wilcoxon Signed Rank Test p<0.001, n=16). Also, exposure to LPS, a bacterial membrane component that activates TLR4, reproducibly enhanced fibronectin aggregation, although to a lesser extent than Poly(I:C) (Fig. 1a,b, ins Fn, Wilcoxon Signed Rank Test p=0.016, n=7). In contrast, fibronectin aggregation was unchanged upon exposure to the TLR2 agonist zymosan and the pro-inflammatory cytokines IL1β, IFNγ and TNFα (Fig. 1a,b, ins Fn). Total cellular fibronectin expression was similar at all conditions (Fig. 1a,c, lysates). For all treatments, GFAP expression was increased compared to untreated astrocytes (Fig. 1a), indicating that astrocytes were activated. In addition, expression of iNOS, known to be differentially upregulated in astrocytes in response to inflammatory mediators, was uncorrelated with the extent of fibronectin aggregation (Fig. 1a). Thus, Poly(I:C)-induced fibronectin aggregation is not a reflection of enhanced astrocyte activation. Exposure to the endogenous TLR3-agonist protein statmin also increased the amount of DOC-insoluble fibronectin aggregates in deposits compared to untreated astrocytes (Fig. 1d,e, statmin p=0.017, n=5), while no significant alterations in overall fibronectin expression were detected (Fig. 1d,f). The more selective TLR3 agonist Poly(A:U) also reproducibly, but not significantly, increased aggregation of fibronectin (Fig. 1d,e, Poly(A:U) p=0.144, ns,
Fibronectin aggregation induced by a double inflammatory hit

Chapter 2

Hence, our findings indicate that TLR3 agonists, and to a lesser extent a TLR4 agonist, induced extracellular fibronectin aggregate formation by astrocytes.

Figure 1. TLR3 agonists induce extracellular fibronectin aggregate formation by astrocytes. Western blot analysis of fibronectin (Fn) in DOC-soluble (sol, fibronectin dimers) and DOC-insoluble (ins, fibronectin aggregates) extracellular deposits (a,b,d,e) and Fn, GFAP and iNOS in total cell lysates (a,c,d,f) of primary rat astrocytes treated for 48 hours with pro-inflammatory cytokines IFNγ (500 units/mL), IL1β (10 ng/mL) or TNFα (10 ng/mL), or with TLR2 agonists zymosan (zym, 10 μg/mL), TLR3 agonists Poly(I:C) (50 μg/mL), Poly(A:U) (50 μg/mL), stathmin (0.5 μg/mL) and TLR4 agonist LPS (200 ng/mL). Representative blots of 3-16 independent experiments are shown in (a,d), quantification of DOC-insoluble fibronectin aggregates in deposits in (b,e), and quantification of fibronectin in total cell lysates in (c,f). Actin serves as a loading control for cell lysates; equal amounts of protein (12 μg) are subjected to DOC-(in)solubility analysis. Note that TLR3 agonists, and to a lesser extent TLR4 agonist LPS, induce fibronectin aggregation (Poly(I:C) p<0.001; Poly(A:U) p=0.114, ns; stathmin p=0.018, LPS p=0.016). Bars represent mean relative to their respective untreated control (ctrl), which was set at 1 in each independent experiment (horizontal line). Error bars show the standard error of the mean. Statistical analyses were performed using a Wilcoxon Signed Rank Test (Poly(I:C) and LPS in (a), failed Shapiro-Wilk normality test) or a one-sample t-test to test for differences between treatments and their respective control (*p < 0.05, **p < 0.01).

TLR3 agonist Poly(I:C) decreases astrocyte adhesion to fibronectin

In most cell types, fibronectin is assembled into a fibrillar matrix. This process initiates at the cell surface primarily via binding to integrin α5β1, and is supported by binding to integrin αvβ3.[329,339–343] Upon exposure to Poly(I:C), i.e., at fibronectin aggregating conditions, fibronectin assembled at the cell surface of astrocytes in a clustered manner, forming large, elongated structures (Fig. 2a). In contrast, untreated astrocytes showed a more diffuse staining and smaller, punctuated structures of
Fibronectin aggregation induced by a double inflammatory hit

Chapter 2

Fibronectin aggregation induced by a double inflammatory hit

Chapter 2

fibronectin at the cell surface (Fig. 2a,b, small p=0.006, n=3; large p=0.048, n=3). Moreover, Poly(I:C) reduced the adhesion of astrocytes to fibronectin in the presence of Mn²⁺, a known enhancer of integrin affinity (Fig. 2c, Poly(I:C) + Mn²⁺ versus Mn²⁺ p=0.011, n=3). This indicates that Poly(I:C) interfered with binding of fibronectin to integrins, its main receptors at the cell surface. An adhesion assay in the presence of integrin-specific blocking antibodies showed that astrocytes primarily adhered to fibronectin via integrin β1 (Fig. 2d, β1 p=0.006, n=4). Selective blocking of integrin β3 and integrin β5 did not significantly affect adhesion of astrocytes to fibronectin (Fig. 2d). Cell surface biotinylation of untreated and Poly(I:C)-treated astrocytes, followed by immunoprecipitation of integrin β1, β3 or β5 and visualization of surface integrins by Western blotting and streptavidin detection revealed that surface expression of integrin β1, β3 and β5 was virtually similar in untreated and Poly(I:C)-treated cells (Fig. 2e,f). Hence, Poly(I:C) interfered not with the cell surface levels of integrin β1, β3 and β5, but rather modulated integrin affinity that may result in more localized and large fibril-like structures at the cell surface.

White matter astrocytes generate more fibronectin aggregates than grey matter astrocytes

Fibronectin aggregates have been examined in wm MS lesions, while the above experiments were performed with cortical, i.e., gm-derived, astrocytes. Given the reported functional differences between gm and wm astrocytes, we next examined whether wm astrocytes also form fibronectin aggregates in response to TLR3 agonist Poly(I:C). Fibronectin aggregation was enhanced by approximately 2-fold upon Poly(I:C) exposure in both wm and gm astrocytes (Fig. 3a,b, wm + Poly(I:C), Wilcoxon Signed Rank Test p<0.001, n=12; gm + Poly(I:C) versus gm untreated, Mann Whitney test p=0.012, n=11), while cellular fibronectin levels were comparable (Fig. 3a,c). Intriguingly, wm astrocytes generated twice as much fibronectin aggregates than their gm counterparts (Fig. 3a,b, Wilcoxon Signed Rank Test p<0.001, n=11). As the cellular EIIIA- and EIIIB-fibronectin splice variants have been implicated in fibronectin fibril formation at the cell surface, we next examined the expression levels of these splice variants in gm and wm astrocytes. Western blot analysis revealed that in vitro gm astrocytes expressed a lower proportion of EIIIA⁰⁻fibronectin than wm astrocytes (Fig. 3d,e gm p=0.013, n=4). Unfortunately, no suitable antibody to detect fibronectin that contains EIIIB is available. Hence, these findings showed that wm astrocytes generated more fibronectin aggregates than gm astrocytes, which may relate to elevated levels of EIIIA⁰⁻fibronectin in wm astrocytes, while the susceptibility of either astrocyte to Poly(I:C)-induced fibronectin aggregation was similar.
Fibronectin aggregation induced by a double inflammatory hit

Chapter 2

Figure 4. TLR3 agonist Poly(I:C) induces fibronectin aggregation in organotypic cerebellar slice cultures only after demyelination, and inhibits remyelination.

(a) Schematic representation of treatments and analysis. Organotypic cerebellar slice cultures obtained from newborn rats were cultured for 3 weeks to allow for myelination. At day 0, demyelination was induced by lysolecithin. At 2 days post lysolecithin (DPL), demyelinated slices were left untreated or treated with the TLR3 agonist Poly(I:C) (50 μg/mL) for 48 hours after which slices were washed and new medium was added. Remyelination was allowed until 21 DPL. (b-f) Western blot analysis of fibronectin (Fn), MBP (myelin marker) and TuJ1 (neuronal marker) in demyelinated slices 5 DPL (b-d) and remyelinated slices 21 DPL (e,f). Representative blots of 3-8 independent experiments are shown in (b,e) and quantification in (c,d,f). Actin was used as a loading control. (g,h) Immunohistochemistry for myelin (MBP, green) and axons (neurofilament, NF-H, red) at 5 and 21 DPL. Representative images of 3-6 independent experiments are shown in (g), quantification of the % myelinated axons in (h) relative to 5 DPL control. Bars represent mean relative

to untreated myelinated control (ctrl), which was set at 1 for each independent experiment (horizontal line). Error bars show the standard error of the mean. Statistical analyses were performed using a one-sample t-test to test for differences with control slices (*p<0.05, **p<0.01), and a one-way ANOVA with a Šidák multiple comparisons post-test was used to test for differences in remyelination on 21 DPL between lysolecithin and lysolecithin + Poly(I:C)-treated slices (# p<0.05). Scale bar is 50 μm.

Poly(I:C) induces fibronectin aggregation only after demyelination in ex vivo organotypic cerebellar slice cultures

To more closely mimic demyelination conditions, we next examined whether TLR3 agonist Poly(I:C) also induces fibronectin aggregation in ex vivo organotypic cerebellar slice cultures. To prevent that Poly(I:C) interferes with the initial events of demyelination, myelinated organotypic cerebellar slice cultures were first subjected to lysolecithin-induced demyelination and allowed to recover for 2 days. The demyelinated slice cultures were subsequently exposed to Poly(I:C) for another 2 days (Fig. 4a). Western blot analysis demonstrated that sequential treatment with lysolecithin and Poly(I:C) significantly increased fibronectin aggregation compared to control and lysolecithin-treated cerebellar slice cultures (Fig. 4b,c, lysolecithin + Poly(I:C) p=0.003, n=8). Poly(I:C) treatment of myelinated cultures, thus without prior demyelination, did not result in increased fibronectin aggregation (Fig. 4b,c). Total levels of fibronectin were not significantly altered (Fig. 4b,d). Notably, while the expression of a major myelin-specific protein myelin basic protein (MBP) was decreased upon lysolecithin treatment, MBP expression levels in Poly(I:C)-treated myelinated cerebellar slice cultures were similar to MBP levels in untreated myelinated cerebellar slice cultures (Fig. 4b). This indicates that transient exposure to Poly(I:C) alone did not induce demyelination. Expression of neuron-specific class III beta-tubulin, a neuronal marker recognized by the TuJ1 antibody, was unaffected in all conditions (Fig. 4b). In this slice culture model, spontaneous remyelination is observed approximately three weeks after lysolecithin-induced demyelination\(^{328,330,346}\).

To assess whether Poly(I:C)-induced fibronectin aggregation interfered with OPC maturation, as observed upon intralesional injection of fibronectin aggregates in toxin-induced demyelinated lesions in vivo\(^{46,318}\), the extent of OPC maturation was assessed upon injection of Poly(I:C) aggregates into myelinated cerebellar slice cultures (Fig. 4a). Western blot analysis revealed that MBP levels in lysolecithin-treated cerebellar slice cultures almost returned to the levels of untreated slice cultures (Fig. 4e,f).
In contrast, MBP expression in lysolecithin and Poly(I:C)-treated cerebellar slice cultures remained significantly decreased (Fig. 4e,f, lysolecithin + Poly(I:C) p=0.014, n=6). Exposure of myelinated slice cultures to Poly(I:C) had no effect on MBP expression levels after 21 days (Fig. 4e,f). Double labelling of MBP with the axonal marker neurofilament (NF-H) revealed that addition of Poly(I:C) to lysolecithin-demyelinated cerebellar slice cultures significantly decreased the percentage of myelinated axons at 21 DPL compared to the percentage of myelinated axons in lysolecithin-treated slices (Fig. 4g,h, lysolecithin + Poly(I:C) n=3, versus lysolecithin n=6, p=0.047). Thus, exposure to Poly(I:C) induced fibronectin aggregation only after demyelination, which resulted in impaired MBP re-expression and remyelination. As these findings showed that in slice cultures only activated astrocytes were susceptible to Poly(I:C)-induced fibronectin aggregate formation, we next examined whether pre-incubation with pro-inflammatory cytokines makes astrocytes more prone to Poly(I:C)-induced fibronectin aggregation.

Pre-incubation with pro-inflammatory cytokines potentiates Poly(I:C)-induced fibronectin aggregation

To assess a putative role of cytokines in fibronectin aggregation, gm and wm astrocytes were pre-exposed to a mixture of pro-inflammatory cytokines IFNγ, IL1β and TNFα for 24 hours, followed by stimulation with Poly(I:C) for 48 hours (Fig. 5a). Pre-incubation of gm astrocytes with pro-inflammatory cytokines increased the level of fibronectin aggregates generated upon Poly(I:C) treatment compared to untreated astrocytes (Fig 5b,c, gm-control versus gm + cytokines + Poly(I:C) p=0.005, n=4). However, the amount of fibronectin aggregates generated upon cytokines + Poly(I:C) treatment by gm astrocytes were still considerably less than of Poly(I:C)-treated wm astrocytes that were not pre-exposed to cytokines (Fig. 5b,c). The extent of Poly(I:C)-induced fibronectin aggregation was similar for cytokine-treated and untreated wm astrocytes (Fig. 5b,c). Fibronectin aggregation was not enhanced upon treatment with a mixture of pro-inflammatory cytokines alone in either type of astrocyte (Fig. 5b,c), which is in line with exposure to the single cytokines (Fig. 1a,b). Notably,
cytokine treatment appeared to decrease the total amount of deposited fibronectin (Fig. 5b). As Poly(I:C) treatment reduced the binding of gm astrocytes to fibronectin (Fig. 2), next was examined whether cytokines affect cell adhesion. Exposure to pro-inflammatory cytokines alone did not affect adhesion of gm and wm astrocytes to fibronectin, however, pre-incubation with cytokines followed by Poly(I:C) treatment resulted in a significant decrease in astrocyte adhesion to fibronectin of both wm and gm astrocytes (Fig. 5d wm + cytokines + Poly(I:C) p=0.008; gm + cytokines + Poly(I:C) p=0.022, n=3), which was more prominent in the presence of Mn²⁺ (Fig. 5g, wm + cytokines + Poly(I:C) p=0.048; gm + cytokines + Poly(I:C) p=0.002, n=3). Thus, pre-incubation with pro-inflammatory cytokines may enhance fibronectin aggregation by potentiating the negative effect of Poly(I:C) on astrocyte adhesion to fibronectin.

Pro-inflammatory cytokines enhance the EIIIA^{pos} to EIIIB^{pos}-Fn mRNA ratio

As an increased level of EIIIA^{pos}-fibronectin in wm astrocytes correlated with increased fibronectin aggregation (Fig. 3a,b,d,e), and EIIIA^{pos}-fibronectin is involved in cell adhesion^{39,130,131,135}, the effect of pro-inflammatory cytokines on EIIIA^{pos}-fibronectin levels was examined next. Astrocytes were treated for 24 hours with pro-inflammatory cytokines, and cultured for another 24 hours (Fig. 6a). Exposure to pro-inflammatory cytokines reproducibly, but not significantly, increased the proportion of EIIIA^{pos}-fibronectin in wm astrocytes, but not in gm astrocytes (Fig. 6b,c, wm + cytokines p=0.100, ns, n=4), while total fibronectin levels substantially decreased upon cytokine treatment in wm astrocytes (Fig. 6b,d, wm + cytokines p=0.125, ns, n=4) and significantly decreased in gm astrocytes (Fig. 6b,d, gm + cytokines p=0.046, n=4). As to the best of our knowledge, an antibody for EIIIB that is suitable for Western blotting is not available, the mRNA expression of alternatively spliced EIIIA^{pos}-Fn and EIIIB^{pos}-Fn was examined. To this end, a semi-quantitative RT-PCR using primers that span each of the alternatively spliced Fn exons was performed. Using this method, primer pairs produce two different products, i.e., a larger product when the alternatively spliced Fn exon was included and a smaller product.
product if it was spliced out (Fig. 6e). When normalized to total Fn mRNA levels, i.e., $EIIIA^{pos}$-Fn + $EIIIB^{neg}$-Fn, a considerable increase in $EIIIA^{pos}$-Fn mRNA levels was observed upon exposure to cytokines, alone or in combination with Poly(I:C) treatment in wm astrocytes (Fig. 6e,f, wm + cytokines $p=0.148$, ns; wm + cytokines + Poly(I:C) $p=0.082$, ns; n=5), which is consistent with the substantial increase in protein expression shown by Western blot analysis (Fig. 6b,c). In contrast, the mRNA levels of $EIIIB^{neg}$-Fn decreased in both wm and gm astrocytes upon cytokine pre-incubation and remained decreased following stimulation with Poly(I:C) (Fig. 6e,g, wm + cytokines $p=0.043$, n=4; wm + cytokines + Poly(I:C) $p=0.031$, n=4; gm + cytokines $p=0.003$, n=5; gm + cytokines + Poly(I:C) $p=0.094$, ns; n=5). This resulted in a significantly enhanced $EIIIA^{neg}/EIIIB^{neg}$-Fn mRNA ratio in Poly(I:C)-stimulated cytokine-pretreated wm astrocytes, while the ratio was reproducibly increased in cytokine-treated wm astrocytes (Fig. 6e,h, wm + cytokines $p=0.104$, ns; n=4; wm + cytokines + Poly(I:C) $p=0.034$, n=4). A similar trend was observed with gm astrocytes (Fig. 6e,h, gm + cytokines $p=0.075$, ns; n=5, gm + cytokines + Poly(I:C) $p=0.102$, ns; n=5). The $EIIIA^{neg}/EIIIB^{neg}$-Fn mRNA ratio moderately, but significantly, increased upon Poly(I:C) treatment alone in wm astrocytes (Fig. 6e,h, wm + Poly(I:C) $p=0.044$, n=4), which in contrast to pre-incubation with cytokines was not a result of decreased $EIIIB^{neg}$-Fn. Thus, upon pre-incubation with cytokines of gm and wm astrocytes, and upon Poly(I:C) treatment of wm astrocytes, the relative mRNA levels of $EIIIA^{neg}$-Fn compared to the $EIIIB^{neg}$-Fn mRNA levels were increased. As the cellular fibronectin molecule contains either the EIIIA or the EIIIB domain, or both combined, this indicates there is a relative increase of fibronectin containing solely the EIIIA domain. To visualize fibronectin splice variants at the astrocyte surface and/or in extracellular aggregates, non-permeabilized cells were co-labelled with an antibody that recognizes fibronectin that lacks EIIIB and an antibody that recognizes total fibronectin. Upon pre-incubation with cytokines and subsequent exposure to Poly(I:C), thus at conditions where fibronectin aggregates were generated (Fig. 5b,c), large extracellular structures located in between cells showed clear immunoreactivity to both EIIIBneg-fibronectin and total fibronectin (Suppl. Fig. S1a,b, arrows), while EIIIBneg-fibronectin was hardly visible at the cell surface. Similar extracellular structures that were enriched for EIIIBneg-fibronectin were visible upon exposure to Poly(I:C) alone, but to a lesser extent than Poly(I:C)-treated cytokine-pre-incubated astrocytes. Thus, the extracellular fibronectin aggregates that were not attached to the cell surface likely contained fibronectin that lacks the EIIIB domain and/or may have undergone a conformational change that increased the accessibility for the anti-EIIIBneg-fibronectin antibody.

Enhanced EDA^{pos}-FN to EDB^{pos}-FN mRNA ratio in cultured MS astrocytes

Our previous findings demonstrated that cultured wm astrocytes obtained from MS patients (MS astrocytes), but not wm astrocytes obtained from healthy subjects (control astrocytes), possessed the ability to form fibronectin aggregates without prior exposure to cytokines and in the absence of Poly(I:C) treatment63. Given that an enhanced presence of $EIIIA^{pos}$ fibronectin over $EIIIB^{pos}$ fibronectin correlated with fibronectin aggregation, the EDA^{pos}-fibronectin protein levels and EDA^{pos}/EDB^{pos}-FN mRNA ratio in MS astrocytes were examined next. Western blot analysis revealed that...

Figure 7. Increased EDA^{pos}-FN to EDB^{pos}-FN mRNA ratio in MS astrocytes. Western blot analysis of total fibronectin and EDA^{pos}-fibronectin in total cell lysates (a,b) of control (5 healthy subjects) and MS (4 MS donors) astrocytes cultures. Blot is shown in (a), quantification of EDA^{pos}-fibronectin of total fibronectin in (b). (c-e), qPCR analysis of EDA^{pos}/total FN (c), EDB^{pos}/total FN (d), and EDA^{pos}/EDB^{pos}-FN mRNA (e) ratios in control (6 healthy subjects) and MS (5 MS donors) astrocytes cultures. Note that the $EIIIB^{neg}$-FN mRNA levels of total FN mRNA levels are decreased in MS astrocytes ($p=0.0046$), resulting in an enhanced $EIIIA^{neg}$-FN to $EIIIB^{neg}$-FN mRNA ratio ($p=0.015$). Bars represent means (c−e) or means relative to the average ratio of astrocytes obtained from postmortem tissue of healthy subjects, which was set at 1 (b). Error bars show the standard error of the mean. Statistical analyses were performed with a two-sided t-test to test for differences between control and MS astrocytes (b-e) (* $p<0.05$, ** $p<0.01$).
Fibronectin aggregation induced by a double inflammatory hit

with the exception of astrocytes derived from one healthy subject, the proportion of EDApos-fibronectin of total fibronectin in MS astrocytes was substantially increased compared to control astrocytes (Fig. 7a,b, ctrl n=5 versus MS p=0.012, ns, n=8). In addition, qPCR analysis showed that while the EDApos-FN mRNA levels over total FN were virtually similar (Fig. 7c), EDBpos-FN mRNA levels were significantly decreased in MS astrocytes compared to control astrocytes (Fig. 7d, MS versus control p=0.005, n=6). As a consequence, the EDApos/EDBpos-FN mRNA ratio was higher in MS astrocytes than in control astrocytes (Fig. 7e, MS n=5 versus control p=0.015, n=6). Thus, similar to pro-inflammatory cytokine-treated rat astrocytes, the relative EDBneg-FN mRNA levels were decreased in MS astrocytes compared to control astrocytes, indicating that as in primary rat astrocytes, an increase in EIIIApos/EIIIBpos-FN mRNA ratio correlated with enhanced fibronectin aggregation.

Discussion

Persistent ECM deposition in demyelinated MS lesions impedes remyelination6,29,30,33. This includes reactive astrocytes that form fibronectin aggregates which persist in MS lesions and impairs OPC maturation46. Our present findings indicate that sequential activation of primary astrocytes by respectively a mixture of pro-inflammatory cytokines and TLR3 agonist Poly(I:C), increased fibronectin aggregation. Similarly, in organotypic cerebellar slice cultures, Poly(I:C) only induced fibronectin aggregation upon demyelination. Poly(I:C) treatment induced fibronectin aggregation to a similar extent by both primary gm and wm astrocytes, while wm astrocytes form a higher absolute amount of fibronectin aggregates. Pro-inflammatory cytokines increased the relative mRNA levels of the alternatively spliced EIIIApos-Fn over EIIIBpos-Fn, which, together with subsequent Poly(I:C) exposure, decreased the binding of fibronectin to the surface of astrocytes. Consistently, fibronectin aggregate-forming MS astrocytes had a higher EDApos/EDBneg-Fn mRNA ratio than control astrocytes. Hence, both in vitro and ex vivo, fibronectin aggregates are formed by a double hit, i.e., first a pro-inflammatory cytokine-mediated activation of astrocytes followed by exposure to TLR3 agonists, which in vivo includes protein agonist stathmin347. This respectively interferes with alternative fibronectin splicing and fibronectin cell surface binding, making astrocytes more prone to form fibronectin aggregates.

While fibronectin aggregates are not formed upon lyssolecithin-induced demyelination in vivo46,32,34 and in cerebellar slice cultures, Poly(I:C) treatment of demyelinated, but not myelinated, cerebellar slice cultures, induced fibronectin aggregation. Likely, in toxin-induced demyelinated lesions the activated astrocytes may not encounter a TLR3 agonist during the transient period of fibronectin deposition, and therefore do not form fibronectin aggregates. In MS lesions, the prolonged presence of fibronectin as a consequence of a decreased ability to clear fibronectin by the lack of fibronectin (aggregate) clearing matrix metalloproteinases, such as MMP7301, may increase the chance of encountering a TLR3 agonist as a double hit. In addition, due to inefficient removal of myelin debris, activated astrocytes may encounter endogenous TLR3 protein agonist stathmin, an otherwise intracellular myelin protein. Stathmin indeed induced fibronectin aggregate formation in vitro, is abundantly present in MS lesions, and mostly found in inflamed areas34,347. Moreover, TLR3 expression on the surface of astrocytes is enhanced29, and co-localizes with
Fibronectin aggregation induced by a double inflammatory hit

Chapter 2

2

Fibronectin aggregation induced by a double inflammatory hit

Notably, TLR3 recognizes dsRNA, and although some viruses are implicated in MS pathogenesis, these are mainly ssRNA viruses, and thus it is not likely that these viruses are involved in fibronectin aggregation. Therefore, increased accessibility of the endogenous TLR3 protein agonist stathmin in myelin debris combined with the prolonged presence of fibronectin, increases the change of a double hit, likely resulting in fibronectin aggregation in MS lesions. It remains however to be determined whether other cells in the cerebellar slice cultures may have contributed to fibronectin aggregation and/or remyelination failure, as microglia and oligodendrocytes also recognize Poly(I:C) via TLR3. Of relevance in this respect, Poly(I:C) did not induce fibronectin aggregation and/or demyelination in myelinated slice cultures.

Our present findings indicate that dysregulated fibronectin fibrillogenesis may underlie fibronectin aggregation. In a cell-dependent manner, deposited fibronectin can be assembled into a branched, fibrillar network or matrix that plays an active role in providing environmental information to cells that encounter it, among others, by functioning as a scaffold for other bioactive signaling proteins. Fibronectin matrix assembly is a complex multistep process, initiated upon binding of soluble dimeric fibronectin to activated cell surface integrin α5β1 (Fig. 8a) followed by unfolding, self-association of different fibronectin dimers and other ECM proteins into linear multimeric fibrils. Importantly, the binding strength of integrins to fibronectin is an essential part for the initiation and propagation of fibril formation. Both alternatively spliced domains EIIIA and EIIIB, although not essential, have been implicated in the level and stability of fibronectin fibril formation. More specifically, inclusion of the EIIIA domain enhances binding to integrin receptor α5β1, whereas EIIIB inclusion enhances cell adhesion to fibronectin via binding of integrin αvβ3.

Thus, under normal circumstances, fibronectin binds to astrocytes via integrin αvβ3, and likely also via integrin αvβ3, which supports the formation of fibronectin fibrils (Fig. 8a,b). Our data demonstrated that in pro-inflammatory cytokine-activated astrocytes, the relative EIIIA/Fn over EIIIB/Fn mRNA levels were increased, which may strengthen the binding of fibronectin to integrin α5β1, and reduce binding to integrin αvβ3 (Fig. 8c). In addition, fibronectin without EIIIB is less able to make fibrils, resulting in impartial refolding (Fig. 8c,d). Integrins transmit signals bidirectionally, i.e., via outside-in and inside-out signaling. The observed inability of Mn2+ to increase the integrin affinity of Poly(I:C)-treated astrocytes may be caused by a loss of inside-out activation of integrins upon exposure to Poly(I:C). This is consistent with a previous study that reports that Poly(I:C) decreases cell adhesion to fibronectin by a loss of inside-out signaling of active integrin β1. Thus, exposure
to TLR3 agonist Poly(I:C) reduced the binding of astrocytes to fibronectin (Fig. 8d). Remarkably, pre-incubation with cytokines potentiated the Poly(I:C)-mediated loss of cell adhesion to fibronectin, likely as fibronectin binding to the surface of cytokine-activated astrocytes rely more on integrin α5β1, due to a decrease in EIIIB-fibronectin isoforms. In Poly(I:C)-treated cytokine-pre- incubated astrocytes, non-cell associated fibronectin aggregates were visualized by an antibody that recognizes fibronectin that lacks EIIIB, while EIIIB-fibronectin was not recognized at the cell surface. Hence, as a consequence of Poly(I:C)-mediated loss of integrin affinity, the formed fibronectin fibrils may be released from the surface (Fig. 8d, 1), refold and form aggregates (Fig. 8d, 2). Indeed, unfolded non-cell associated fibronectin is prone to form aggregates. Additionally, inclusion of EIIIB makes fibronectin more sensitive to proteolysis, indicating that a slower degradation and prolonged presence of fibronectin due to the lack of EIIIB may increase the change of a double hit activation-induced aggregate formation. Also, EIIIB-fibronectin in aggregates are more stable and less vulnerable to extracellular proteases. Whether the detached fibronectin fibrils or multimers may act as seeds for further self-association of fibronectin and other ECM molecules and ultimately form aggregates remains to be determined.

Astrocytes adopt distinct phenotypes in response to their environment, and it should be taken into account that astrocyte responses to inflammatory mediators are regionally heterogeneous. We show that Poly(I:C) treatment induced a 2-fold increase in fibronectin aggregation by both cultured gm and wm astrocytes, while also exposure to cytokines increased the EIIIA+/EIIIB−/Fn mRNA in both gm and wm astrocytes. However, while the response to inflammatory mediators appeared similar, wm astrocytes formed a higher absolute amount of fibronectin aggregates than gm astrocytes. In fact, Poly(I:C)-treated wm astrocytes do not require a pre-incubation with cytokines to produce a maximum amount of aggregates in vitro. This may be partly due to the higher relative endogenous EIIIA+/EIIIB−/fibronectin levels in wm astrocytes than in gm astrocytes, and that the maximum amount of fibronectin aggregates had been reached. Also, Poly(I:C) treatment without cytokine pre-incubation modestly favored EIIIA+/Fn over EIIIB−/Fn splicing by wm astrocytes but not gm astrocytes. To what extent differences in regional fibronectin aggregation are responsible for the differences in remyelination capability in gm and wm MS lesions remains to be clarified. Cortical gm lesions occur without significant infiltration of haematogenous leukocytes and show less astrocyte reactivity compared to wm MS lesions. This is primarily visible in type 1 leukocortical lesions. In these gm and wm spanning lesions, the gm area shows greater remyelination efficiency, which may be a reflection of lower astrocyte reactivity, higher number of cells of the oligodendrocyte lineage, regional heterogeneity of OPCs, and decreased intralesional ECM deposition. The presence of fibronectin aggregates in gm MS lesions remains to be determined, but based on the less inflammatory character of gm lesions, the absence of fibronectin immunoreactivity in marmoset gm EAE lesions and our present findings, it is tempting to hypothesize that in gm MS lesions less remyelination-impairing fibronectin aggregates are formed than in (chronic) wm MS lesions.

Remarkably, post-mortem-derived MS wm astrocytes form fibronectin aggregates in the absence of cytokines and TLR3 agonists. MS astrocytes have been exposed to the pathological environment and have encountered pro-inflammatory cytokines that may have altered their fibronectin splicing as well as TLR3 agonists, which may explain their ability to form fibronectin aggregates in vitro in the absence of TLR3 agonists. Alternatively, an inherent difference in alternative fibronectin splicing between control and MS astrocytes, as for example observed for cultured gm and wm astrocytes, cannot be excluded. Following this reasoning, it would be interesting to examine whether control and MS gm astrocytes differ in alternative fibronectin splicing and aggregate formation. Intriguingly, as in cytokine-activated primary rat astrocytes, the EDA+/EBB−/FN mRNA ratio was higher in MS astrocytes than in control astrocytes, as a consequence of reduced EDB−/FN mRNA levels. Upon toxin-induced demyelination, astrocytes are also exposed to pro-inflammatory cytokines, while fibronectin aggregates are not detected in vivo. Our previous findings revealed that Fn mRNA levels, including EIIIA+/− and EIIIB+/−Fn transcripts, are increased in lyssolecithin-induced demyelinated lesions at 5 DPL compared to unlesioned control. Additional analysis of these data revealed that the mRNA ratio of EIIIA+/−/EIIIB+/−Fn rather decreased than increased upon lyssolecithin-induced demyelination compared to unlesioned controls at 5 DPL (0.52±0.02, p=0.01, n=4), which is still evident at 14 DPL (0.57±0.04, p=0.046, n=3), i.e., at remyelinating conditions. This may explain why astrocytes in lyssolecithin-induced lesions are less...
susceptible to from fibronectin aggregates.

Taken together, we propose a double-hit model for fibronectin aggregation involving an initial activation in response to pro-inflammatory cytokines (first hit), which interferes with alternative fibronectin splicing, followed by a response to TLR3 agonists (second hit) that decreases integrin affinity (Fig. 8). Regional heterogeneity is reflected by the increased amounts of fibronectin aggregates formed by wm astrocytes compared to gm astrocytes. Preventing fibronectin aggregate formation may prove beneficial as an approach for remyelination enhancing-based treatment of MS. Thus, factors that interfere with alternative fibronectin splicing and TLR3-mediated signaling, and/or factors that prevent the decreased fibronectin-integrin binding aid to proper fibril formation, thereby precluding aggregation, are potential targets to aid efficient remyelination in MS. As remyelination following demyelination is essential for axonal survival and restoration of saltatory conduction4,5,7,324, restoring remyelination in MS may be an effective treatment in halting disease progression and reversing disability.

Data availability
All data generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
and cultured in millicell cell culture inserts as described328,346. After 3 weeks, slices were left untreated or exposed to lysolecithin (0.5 mg/mL) for 17 hours to induce demyelination (day 0). At 2 days post lysolecithin (DPL) treatment, control and demyelinated slices were left untreated or exposed to Poly(I:C) (50 μg/mL) for 48 hours. At 5 DPL, the tissue slices were either fixed in 4% paraformaldehyde (PFA) or homogenized in TE-buffer (10 mM Tris, 2 mM EDTA, pH 7.4) containing 0.25 M sucrose and a mix of protease inhibitors (Complete Mini) on ice, or left to examine remyelination until 21 DPL.

Biochemical analysis

Western bloting

Cells were lysed in TNE-lysis buffer containing 150 mM NaCl, 50 mM Tris-HCl and 5 mM EDTA (pH 7.4) supplemented with 1% Triton X-100, and protease inhibitors. Extracellular deposits were obtained by lysing the cells in water for 2h at 37°C and scraping the remaining deposits in deoxycholate (DOC)-containing buffer (2% DOC, 2 mM EDTA, 5 mM Tris, pH 8.0). Following 30 minutes of incubation in lysis buffer (cells) or DOC-buffer (deposits) on ice, protein concentrations were determined by a BioRad DC-protein assay using bovine serum albumin (BSA) as a standard. To separate DOC-soluble (fibronectin dimers) and -insoluble (fibronectin aggregates) proteins, equal amounts of protein of DOC-extracts were centrifuged at 16,000g for 30 minutes at 16°C. Samples were subjected to SDS-PAGE under reducing (cells, 20 µg) or non-reducing conditions (deposits, 12 µg) to detect total fibronectin monomers or structural states of fibronectin, including aggregates and dimers, respectively. After transfer of the proteins to a PVDF membrane (Immobilon-FL) and blocking with 50% Odyssey blocking buffer in phosphate buffered saline (PBS) the membranes were incubated overnight at 4°C with the indicated primary antibodies (Suppl. Table S1). Appropriate secondary IRDye-conjugated antibodies were applied for 1 hour at room temperature followed by detection on the Odyssey Infrared Imaging system. Membrane washing between antibody incubations was performed with PBS supplemented with 0.05% Tween-20. Quantification was performed with FUJI ImageJ software.

Immunoprecipitation

Astrocytes were washed with ice-cold PBS and incubated in ice-cold sulfo-NHS-LC-biotin (0.1 mg/mL) for 1 hour on ice to biotinylate cell surface proteins. After three washes in cell wash buffer (65 mM Tris, 150 mM NaCl, 1 mM CaCl\textsubscript{2}, 1 mM MgCl\textsubscript{2}, pH 7.5), and two washes in PBS, the cells were incubated in TNE lysis buffer followed by sonication. Lysates (100 µg) were pre-cleared by incubating lysates with rabbit Ig (rabbit gamma globulin 11.1 mg/mL), or mouse Ig (mouse gamma globulin 11.0 mg/mL), and 20 µl Protein A/G Plus-agarose beads for 1 hour at 4°C. Pre-cleared lysates were incubated overnight with anti-integrin antibodies (Suppl. Table S1) at 4°C. Hamster-anti-β1 integrin was first linked to rabbit-anti-hamster for 30 minutes at room temperature. The samples were incubated with Protein A/G Plus-agarose beads for 3 hours at 4°C. The beads were precipitated for 5 minutes at 600g, washed four times with immunoprecipitation wash buffer (cell wash buffer supplemented with 350 mM NaCl and 1% NP-40) and resuspended in non-reducing sample buffer. The samples were heated to 95°C for 3 minutes, centrifuged for 5 minutes at 600g, followed by Western blotting and detection of surface integrins using IR-dye-800-conjugated streptavidin.

Adhesion assay

Adhesion assays were performed as described256. For integrin blocking experiments, cells were incubated with the indicated anti-integrin antibodies for 30 minutes at 37°C. For cytokine pre-incubation experiments, cells were left untreated or pre-treated for 1 hour with cytokine mixture at 37°C, followed by plating and stimulation with Poly(I:C) and/or MnCl\textsubscript{2} (1 mM). Astrocytes were seeded at a density of 50,000 cells per well and left to adhere for 2 hours at 37°C. Adhesion is expressed as percentage of the corresponding untreated cells or relative to MnCl\textsubscript{2}-treated cells.

Immunohistochemistry

Immunohistochemistry

Cerebellar slices were fixed for 1 hour in 4% PFA. After two washes with PBS the slices were blocked for 3 hours in Hanks Balanced Salt Solution supplemented with 1 mM HEPES, 10% heat inactivated normal goat serum, 2% heat inactivated horse serum, 1% BSA and 0.25% Triton X-100. Slices were incubated with the indicated primary
antibodies in blocking solution for 48 hours at 4°C (Table S1), washed three times in PBS supplemented with 0.05% Tween for 1 hour and incubated with appropriate Alexa Fluor® secondary antibodies (1:500) overnight at 4°C. After three washes the slices were mounted on glass slides using mounting medium to prevent image fading. Imaging were performed on a Leica TCS SP2 AOBS confocal microscope. The percentage of myelinated axons was calculated using MATLAB software as described328.

Immunocytochemistry

For live cell stainings, cells were blocked for 10 minutes with 4% BSA and incubated with anti-fibronectin antibodies (Suppl. Table S1) for 30 minutes on ice. After three washes in PBS, cells were incubated with the appropriate Alexa Fluor® secondary antibodies for 20 minutes on ice. Cells were fixed with 4% PFA and incubated with DAPI (1 μg/mL) for 15 minutes at room temperature. For staining of fixed cells, cells were first fixed sequentially with 2% and 4% PFA for 15 minutes each, and subjected to the indicated primary and secondary antibodies as described for live staining. Analysis and imaging were performed on a conventional Leica DMI 6000 B immunofluorescence microscope. Astrocytes were scored based on their cellular surface extracellular fibronectin expression and subdivided into two categories, i.e., diffuse fibronectin staining in small, punctuated structures and fibronectin in large, elongated structures. Between 100-175 cells were counted per condition.

Polymerase chain reaction

Cells were scraped in RNA protect (Qiagen) and mRNA was isolated using an mRNA-isolation kit (Isolate II RNA Micro Kit; Bioline) according to manufacturer’s instructions. Total RNA (1 μg) was reverse transcribed in the presence of oligo(dT)12–18 and dNTPs with M-MLV reverse transcriptase according to manufacturer's instructions. Primer sequences are shown in Supplementary Table S2.

RT-PCR

cDNA was amplified using indicated primer sets and GoTaq Green Master Mix (Promega) according to manufacturer's instructions, and subjected to a 1.5% agarose gel. The EIIIA- and EIIIB-fibronectin primers generate two products: a band that includes the alternatively spliced domain (526 bp for EIIIApos-Fn, 640 bp for EIIIBpos-Fn) and another band when the respective domain is spliced out (256 bp for EIIIAneg-Fn, 367 bp for EIIIBneg-Fn364,365). Quantification was performed with FUJI ImageJ software. Relative expression of EIIIApos - and EIIIBpos-Fn is expressed as percentage of total Fn (positive and negative bands combined).

qPCR

Gene expression levels were measured by real-time quantitative RT-PCR using ABsolute QPCR SYBR Green Master Mix in a Step-One Plus Real-Time PCR machine. Measurements were performed in triplicate and amplification data was processed using LinRegPCR software366.

Statistics

Data are expressed as mean±standard error of the mean (SEM) of at least three independent experiments. A Shapiro-Wilk normality test was first applied to test the normal distribution of the data. When normality failed, a Wilcoxon Signed Rank test or Mann Whitney test was used to test for statistical significance where indicated. When normality passed, statistical analysis was performed with a one-sample t-test when relative values of groups were compared with control by setting the untreated control values at 1 in each independent experiment. When values between two treatment groups were compared, statistical significance was assessed using a paired two sided t-test or a one way ANOVA with a Šidák multiple comparisons post-test when comparing more than two groups. When gm and wm astrocytes were compared, wm astrocyte control values were set at 1. Here, statistical significance compared to wm control was performed using a one sample t-test (*), and a one-way ANOVA with a Dunnett post-test was used to compare between gm samples and gm control (#). In case of human astrocyte cultures, arbitrary measured values were normalized to control values, with an arbitrary average control value of 1. Statistics were performed using GraphPad Prism 6.0. In all cases p-values of <0.05, <0.01, and <0.001 were considered significant and indicated with *, **, *** or #, ##, ###, respectively.
TLR3 agonists induce fibronectin aggregation by activated astrocytes: a role of pro-inflammatory cytokines and fibronectin splice variants

Inge Werkman†, Arend H. Sikkema†, Joris B. Versluijs, Jing Qin, Pascal de Boer, and Wia Baron*‡

† Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
‡ These authors contributed equally to this work

Contents

Supplementary Tables
Table S1 - primary antibodies used
Table S2 - primer sequences used

Supplementary Figure
Figure S1
Figure S2 – full scans of immunoblots
Figure S3 – full scans of immunoblots
Figure S4 – full scans of agarose gels

Table S1. Primary antibodies used during western blotting, immunoprecipitation, immunohistochemistry and immunocytochemistry

<table>
<thead>
<tr>
<th>protein</th>
<th>dilution</th>
<th>catalog #</th>
<th>manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>actin</td>
<td>1:1000</td>
<td>A5441</td>
<td>Sigma</td>
</tr>
<tr>
<td>EIIIA%/EDA%/fibronectin</td>
<td>1:500</td>
<td>IIIE2/F6140</td>
<td>Sigma</td>
</tr>
<tr>
<td>EIIIB%-fibronectin</td>
<td>5 µg/ml</td>
<td>IST6/S-FNB</td>
<td>Sirius Biotech</td>
</tr>
<tr>
<td>fibronectin</td>
<td>1:100/1.500</td>
<td>AB2033</td>
<td>Millipore</td>
</tr>
<tr>
<td>GFAP</td>
<td>1:5000</td>
<td>Z033430</td>
<td>DAKO</td>
</tr>
<tr>
<td>iNOS</td>
<td>1:250</td>
<td>610329</td>
<td>BD biosciences</td>
</tr>
<tr>
<td>MBP (immunohistochemistry)</td>
<td>1:250</td>
<td>MCA4095</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>MBP (western blot)</td>
<td>1:200</td>
<td>MAB386</td>
<td>BD Biosciences,</td>
</tr>
<tr>
<td>neurofilament</td>
<td>1:5000</td>
<td>CPA-6-H</td>
<td>Encor Biotechnology Inc.</td>
</tr>
<tr>
<td>TuJ1</td>
<td>1:1000</td>
<td>kind gift of Dr. A. Frankfurter</td>
<td>University of Virginia</td>
</tr>
<tr>
<td>β1 integrin</td>
<td>1:125</td>
<td>555003</td>
<td>BD Biosciences,</td>
</tr>
<tr>
<td>β3 integrin</td>
<td>1:125</td>
<td>554951</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>β5 integrin</td>
<td>1:125</td>
<td>MAB1961</td>
<td>Millipore</td>
</tr>
</tbody>
</table>

Table S2. Primer sequences used for RT-PCR and qPCR

<table>
<thead>
<tr>
<th>gene</th>
<th>species</th>
<th>forward primer</th>
<th>reverse primer</th>
<th>product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIIIA</td>
<td>rat</td>
<td>5'-AACGAGAATGACCATGGAGGTGTTG-3'</td>
<td>5'-TTGTGCTTCTTCATGGCATGCTT-3'</td>
<td>pos 526</td>
</tr>
<tr>
<td>Fn1</td>
<td>rat</td>
<td>5'-TTACACTCTGCAAAAGATGACAAGGAAA-3'</td>
<td>5'-CCAGGAAGTTGGTTAAATCAATGG-3'</td>
<td>neg 256</td>
</tr>
<tr>
<td>EIIIB</td>
<td>rat</td>
<td>5'-TTACACTCTGCAAAAGATGACAAGGAAA-3'</td>
<td>5'-CCAGGAAGTTGGTTAAATCAATGG-3'</td>
<td>pos 641</td>
</tr>
<tr>
<td>Fn1</td>
<td>rat</td>
<td>5'-TTACACTCTGCAAAAGATGACAAGGAAA-3'</td>
<td>5'-CCAGGAAGTTGGTTAAATCAATGG-3'</td>
<td>neg 368</td>
</tr>
<tr>
<td>EDA-FN1</td>
<td>human</td>
<td>5'-AGTACCCAAACATGTGACGCC-3'</td>
<td>5'-CTCTTCTCTCTCTCTCTCTCTCTC-3'</td>
<td>pos 526</td>
</tr>
<tr>
<td>EDA-FN1</td>
<td>human</td>
<td>5'-AGTACCCAAACATGTGACGCC-3'</td>
<td>5'-CTCTTCTCTCTCTCTCTCTCTCTC-3'</td>
<td>neg 256</td>
</tr>
<tr>
<td>EDB-FN1</td>
<td>human</td>
<td>5'-AGTACCCAAACATGTGACGCC-3'</td>
<td>5'-CTCTTCTCTCTCTCTCTCTCTCTC-3'</td>
<td>pos 641</td>
</tr>
<tr>
<td>EDB-FN1</td>
<td>human</td>
<td>5'-AGTACCCAAACATGTGACGCC-3'</td>
<td>5'-CTCTTCTCTCTCTCTCTCTCTCTC-3'</td>
<td>neg 368</td>
</tr>
</tbody>
</table>
Fibronectin aggregation induced by a double inflammatory hit

Chapter 2

Figure S1. Fibronectin aggregates contain EIIIB\(^{\text{neg}}\)-fibronectin. a,b Immunocytochemistry of fixed, unpermeabilized grey matter (gm) and white matter (wm) rat astrocytes. Cells were pre-incubated for 24 hours with a mixture of IFN\(\gamma\) (500 units/mL), IL1\(\beta\) (10 ng/mL) and TNF\(\alpha\) (10 ng/mL), followed by Poly(I:C) (50 μg/mL) treatment for 48 hours. Cells were stained for total fibronectin (tFn, red) and EIIIB\(^{\text{neg}}\)-fibronectin (EIIIB\(^{\text{neg}}\)-Fn, green). Note the extracellular EIIIB\(^{\text{neg}}\)-fibronectin-containing structures in between cells that were pre-incubated with cytokines and treated with Poly(I:C) (arrows), while EIIIB\(^{\text{neg}}\)-fibronectin is hardly observed at the cells surface. Scale bar is 75 μm (a), or 25 μm (b).

Figure S2. Full scans of indicated immunoblots. The boxed areas are presented in the indicated figures.
Chapter 2

Fig. 6b

insoluble Fn soluble Fn EIIIA total Fn actin

Fig. 7a

EIIIA total Fn

Figure S3. Full scans of indicated immunoblots. The boxed areas are presented in the indicated figures.

Figure S4. Full scans of indicated agarose gels. The boxed areas are presented in the indicated figures.