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Introduction

The central nervous system (CNS) contains neurons, microglia and macroglia, the 

latter comprising astrocytes (ASTRs) and oligodendroglial cells. Oligodendrocytes 

(OLGs) mature from oligodendrocyte progenitor cells (OPCs) and ensheath axons 

with myelin, which is a stack of several lipid bilayers that facilitates saltatory 

conduction and provides metabolic axonal support1,2. In the demyelinating 

disease multiple sclerosis (MS), OLGs and myelin are lost, which is accompanied 

by inflammation, astrogliosis and neurodegeneration, and leads to progressive 

neurological disability3–5. Remyelination is a natural process following demyelination 

and requires the generation of new myelin sheaths, which is essential for functional 

recovery and preventing irreversible neurological symptoms4. Unfortunately, 

remyelination in MS is often limited and ultimately fails as the disease progresses4,6–8. 

In experimental models it is shown that remyelination is a multistep process that 

involves the sequential activation of adjacent OPCs, recruitment of OPCs towards 

the demyelinated area, and OPC maturation within the demyelinated area4,9–11. While 

in robust rodent models remyelination is performed by newly-formed OLGs4, in MS 

OPCs are relatively quiescent12,13, and remyelination is performed by pre-existing, 

mature OLGs14. Whether remyelination by pre-existing OLGs is an adaptation of the 

inability of OPCs to mature to OLGs, or a natural process remains to be determined. 

The process of remyelination is orchestrated among others by transient signaling 

from ASTRs. Upon injury, such as upon OLG loss and demyelination, ASTRs become 

reactive, which involves ASTR proliferation, upregulation of specific proteins, 

including filament proteins GFAP and vimentin, and the elaboration of a dense 

network of processes15–20. Two subtypes of reactive ASTRs have been described, 

anti-inflammatory A2-ASTRs and pro-inflammatory A1-ASTRs. Mild activation of 

ASTRs may induce a pro-reparative A2 phenotype, while reactive A1-ASTRs, which 

are observed in MS21, inhibit OPC proliferation, migration and differentiation, and 

are in addition toxic to mature OLGs21–24. Moreover, in MS, reactive ASTRs form an 

astroglial scar around inflammatory WM lesions, among others by the generation 

of a dense network of extracellular matrix proteins, which is considered detrimental 

for remyelination25. ASTR reactivity is regulated by pro-inflammatory cytokines and 

Toll-like receptor (TLR)-mediated signaling events, as well as myelin debris23,26–29. Of 

importance, pro-inflammatory cytokines, including IL1β, IFNγ and TNFα30–32, and 

endogenous TLR agonists33–36 are abundantly present in MS lesions, and TLR3 and 

TLR4 are upregulated on reactive ASTRs within MS lesions29. 

Remarkably, in MS as well as in experimental models remyelination is more robust in 

grey matter (GM) areas than in white matter (WM) areas17,18,37,38. Of special interest in 

this regard are leukocortical lesions in MS, which span both the GM and WM. These 

lesions are thought to have the same pathological age and background. Within these 

lesions, more remyelination is observed in the GM area of the lesion compared to the 

WM area of the lesion37. Differences in regional remyelination can be caused by both 

intrinsic differences in OPCs, OLGs and/or differences in extrinsic signals derived 

from, among others, ASTRs. For example, in experimental demyelination models, 

ASTR reactivity is more prominent in the corpus callosum, a WM area, than in the 

cortex, a GM area15–17,39. Indeed, macroglia form distinct populations across different 

brain regions12,40,41. Whereas particularly OLGs appear to form a heterogeneous 

group of cells based on their transcriptional profile42, ASTR are morphologically 

diverse, especially in GM and WM areas, and have a high functional plasticity when 

adapting to the specific needs of the local micro-environment43,44. This may result 

in subsequent ASTR regional diversity due to adaptation to the demands of cells in 

the region. Of importance, heterogeneity and plasticity of macroglia will affect the 

response to injury and affect recovery, thus contributing to the pathology. Notably, 

most therapies for MS do not directly aim at promoting remyelination, but rely on 

disease-modifying treatments, involving an alteration of the immune response 

and a diminishment of the number and severity of attacks45. Hence, elucidation of 

macroglial diversity in GM versus WM, and its alleged contribution to the observed 

differences between GM and WM with regard to remyelination efficiency may open 

novel therapeutic avenues aimed at enhancing remyelination in MS.

Scope of thesis

The aim of the work described in this thesis was to explore potential differences in 

macroglia in GM and WM, and if so, whether and how this affects (re)myelination. 

To address the issue whether regional macroglia differ in their ability to modulate 

processes that are relevant for (re)myelination, primary ASTRs and OLGs are used, 

as well as an in vitro myelinating culture system that depends on a feeding layer of 
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ASTRs. In chapter 1, current knowledge of macroglia diversity in CNS GM and WM is 

reviewed and discussed in the context of whether and how pre-existing heterogeneity 

and plasticity contribute to successful and failed remyelination, the latter being a 

major cause of disease progression in MS. This literature overview highlights several 

issues that are discussed in the context of the work presented in this thesis, including 

the importance of macroglia interactions in remyelination. In chapters 2, 3, and 
4, heterogeneity and plasticity between gmASTRs and wmASTRs and differences in 

their potential to modulate OPC behavior and in vitro myelination, are investigated. 
A previously identified extracellular matrix protein, fibronectin, forms aggregates 

which persist in MS lesions and inhibit remyelination46. Therefore, chapter 2 focusses 

on the underlying mechanism of the formation of these remyelination-inhibiting 

fibronectin aggregates by ASTRs. Using primary neonatal rat ASTRs the role of pro-

inflammatory cytokines, TLR agonists and fibronectin splice variants on fibronectin 

aggregate formation was examined, taking into account potential differences 

between gmASTRs and wmASTRs. In chapter 3, we first determined whether 

primary neonatal gmASTRs and wmASTRs differ in their capacity to modulate 

in vitro myelination. Cholesterol is an essential, major integral lipid of myelin 

membranes47. Presumably, during development and likely also upon demyelinating 

injury, cholesterol is supplied to myelinating OLGs by ASTRs and subsequently 

incorporated into the myelin membrane48. Therefore, potential differences in 

cholesterol production and influx into wmASTR versus gmASTRs were examined 

and whether such differences could distinctly modulate myelination. In addition, 

the effects of pro-inflammatory cytokines and TLR agonists on astrocyte-mediated 

cholesterol efflux were investigated, as well as the identification of the cholesterol 

transporters that contribute to the lipid’s efflux. In chapter 4, a 3’-RNA-sequencing 

study was carried out to clarify whether cultured adult gmASTRs and wmASTRs 

were heterogeneous cell populations that distinctly modulate in vitro myelination. 

To reveal transcriptionally different regulatory mechanisms between gmASTRs and 

wmASTRs that may translate to differences in their modulation of myelination, a 

weighted gene network co-expression analysis of the obtained sequencing data was 

performed. In addition, the effects of secreted soluble factors and potential deposits 

of extracellular matrix proteins on primary OPCs were investigated, and if so, whether 

and how these effects were affected upon TLR agonist treatment of ASTRs. In addition 

to ASTRs, also OPCs in the GM and WM may differ in their ability to myelinate, and 

thus contribute to differences in remyelination in GM and WM, which is explored in 

chapter 5. Here, differences between gmOPCs and wmOPCs were studied in terms 

of proliferation, migration, differentiation and myelin membrane formation, as 

well as their sensitivity to pro-inflammatory cytokines. Chapter 6 summarizes and 

discusses the work presented in this thesis in light of its relevance to MS pathology 

and the development of remyelination-based therapies in MS.


	Title and contents



