On Proportionally Fair Solutions for the Divorced-Parents Problem

January 2020

Nicky van Foreest
Jacob Wijngaard
SOM is the research institute of the Faculty of Economics & Business at the University of Groningen. SOM has six programmes:
- Economics, Econometrics and Finance
- Global Economics & Management
- Innovation & Organization
- Marketing
- Operations Management & Operations Research
- Organizational Behaviour

Research Institute SOM
Faculty of Economics & Business
University of Groningen

Visiting address:
Nettelbosje 2
9747 AE Groningen
The Netherlands

Postal address:
P.O. Box 800
9700 AV Groningen
The Netherlands

T +31 50 363 9090/7068/3815

www.rug.nl/feb/research
On Proportionally Fair Solutions for the Divorced-Parents Problem

Nicky van Foreest
University of Groningen, Faculty of Economics and Business, Department of Operations
n.d.van.foreest@rug.nl

Jacob Wijngaard
University of Groningen, Faculty of Economics and Business, Department of Operations
On proportionally fair solutions for the divorced-parents problem

Nicky van Foreest, Jacob Wijngaard

January 20, 2020

Abstract

When parents divorce and have common children, the parents have to agree on how much each parent should contribute to cover the expenses of common children. We call this the divorced-parents problem. When parents cannot reach an agreement, they can start a law case. In many cases the situation can be easily settled by a judge, but finding a solution for complicated situations with parents having multiple children from different partners is considerably more difficult. In fact, it is observed that judges lack methods to find a good and consistent solutions. As a result, it occurs that in similar situations, the outcomes of the court cases are different, thereby leading to inequalities in law. In yet other cases, outcomes are even in direct conflict with the decisions of the Dutch supreme court.

In this note we develop an algorithm to find the unique proportionally fair distribution for the divorced-parents problem. Such a proportionally fair distribution has at least three advantages. The existence of a unique solution may prevent parents to resettle the distribution via court procedures, which are (very) costly for parents and society. Second, it can be computed efficiently so it can easily cope with changes in income, schooling costs, and so on. Third, the solution generalizes the proportional rule that is currently applied to simple two-parents-one-child networks to larger networks.

1 Introduction

When two Dutch parents divorce and have common children, they both have a financial responsibility to cover the monthly expenses of the children, for housing, schooling, and so on. The legal process to determine the financial contribution of each parent to each child works roughly as follows. First, a mediator, or a judge, establishes a network that formalizes which parent is financially responsible for which child; this is not always easy, for instance, in the presence of step parents. Next, the mediator uses rules to determine the financial need of each child and the financial capacity of each parent. These rules are partly based on (case) law and partly on specific circumstances such as income, schooling costs, and so on. Once the network of responsibilities, capacities and needs is specified, it remains to determine a distribution of contributions of the parents to the children. Henceforth we refer to this problem as the divorced-parents problem.

Based on an analysis of multiple law cases, Jonker et al. [2020] establish the following rules that Dutch judges strive to use to solve the divorced-parents problem:

1. Parental capacity is meant to be ‘used’ for its purpose, in other words, a child cannot have a shortage unless both its parents already spent their full capacity.
2. When two parents of one (or multiple common) child have an overage, distribute the overage of the parents relative to the capacity that each parent has available for the child.

3. Children of one parent should be treated equally, for instance, children born in later marriages should have the same rights as children born in earlier marriages.

4. The capacities of all parents should be taken into account, to the extent possible. In other words, if a parent has obligations towards multiple children, the old and new partners should also take responsibility for the children of the parent.

In the sequel we say that a distribution, or a solution, is proportionally fair when it satisfies these rules.

In the simple case of two parents and one child (or multiple ‘equal’ and common children), the law cases directly apply the above rules to distribute parental overages, and it is easy to see that this distribution is unique. However, most situations that are brought to court are considerably more complicated. For instance, one case mentions one woman having five children from four different partners, and the partners’ jobs and incomes vary on a nearly monthly basis. In these more difficult cases, Jonker et al. [2020] show that judges attempt to find a proportionally fair solution, but have to settle on approximations due to the complexities of computations. These approximations, however, have significant drawbacks. First, for more or less similar situations, the distributions can differ significantly, thereby leading to legal inequalities between cases. Second, as the manual computation of even approximately fair distributions is (very) time-consuming, the contributions of the parents are not updated even when there are significant changes in income, newly born children, and so on. These problems give rise to additional conflicts between ex-spouses when they perceive the settlements as ‘unfair’ or ‘arbitrary’; these conflicts sometimes lead again to new (costly and lengthy) court cases.

In this paper we prove that a unique proportionally fair solution exists for the divorced-parent problem for networks of arbitrary size, and we provide an algorithm to compute this distribution. The existence of a solution was earlier proved by Moulin and Sethuraman [2013] but they do not provide an algorithm to actually compute the solution.

2 Model and Proof

Parents and children are represented as nodes in a directed bi-partite graph. Parents have (financial) capacities \(d = (d_1, \ldots, d_M)\) to cover the (financial) needs \(b = (b_1, \ldots, b_N)\) of the children. The children for whom a parent is (financially) responsible are represented by directed arcs from the parent to the children. We use the \(\delta\) function to represent the parent-child relations; \(\delta_{ij} = 1\) when parent \(i\) is responsible for child \(j\), otherwise \(\delta_{ij} = 0\). Note that these relations can also be enforced by setting the transportation cost \(c_{ij} = (1 - \delta_{ij})/\delta_{ij}\) from node \(i\) to node \(j\).

Parent \(i\) pays a (care) contribution \(x_{ij} \geq 0\) to child \(j\); of course, \(x_{ij} = 0\) when \(\delta_{ij} = 0\). For a given set of contributions \(x = \{x_{ij}\}\) we define the overage, or surplus, of parent \(i\) as

\[
y_i = d_i - \sum_{j=1}^{N} \delta_{ij} x_{ij},
\]

and the budget that parent \(i\) has available for child \(j\) after meeting all its obligations to all
other children for whom s/he is responsible as

\[y_i + x_{ij} = d_i - \sum_{k \neq i} \delta_{ik} x_{ik}. \]

(2)

Analogously, define the shortage of child \(j \) as

\[z_j = b_j - \sum_{i=1}^{M} \delta_{ij} x_{ij}. \]

We write \(y = (y_1, \ldots, y_M) \) and \(z = (z_1, \ldots, z_N) \). Note that \(y \) and \(z \) depend on the payments matrix \(x = \{x_{ij}\} \).

The max-flow problem is equivalent to finding a solution for Rule 1 of the Introduction, and can be written as the linear program (LP)

\[\min_x \left\{ \sum_j z_j ; x \geq 0, y \geq 0, z \geq 0 \right\}. \]

(3)

The constraints are evident: the parental contributions \(x \) cannot be negative; parents pay at most their capacity, hence \(y \geq 0 \); and children receive at most their need, hence \(z \geq 0 \). (The inequality \(y \geq 0 \) means \(y_i \geq 0 \) for each term.)

In case the solution lies on a corner of the feasible set, this LP suffices to find the optimal solution. However, when multiple solutions exist, we can Rule 2 of the Introduction to distribute any overages and shortages in a fair way. For this, we first assume that we deal with a network in which all parents have an overages, hence \(y > 0 \) and \(z = 0 \). Then we discuss general networks.

2.1 A network with overages

In a proportional distribution, the overages for parents \(i \) and \(k \) that are both responsible for child \(j \) should be such that the relative overages of both parents are the same. Recalling (1) and (2), we mean by this that \(x \) and \(y \) must be such that

\[\frac{y_i}{y_i + x_{ij}} = \frac{y_k}{y_k + x_{kj}}, \]

(4)

where \(y_i/(y_i + x_{ij}) \) has the interpretation of the overage of parent \(i \) relative to the total budget that parent \(i \) has at its disposal to meet the needs of child \(j \). From (1) and (2) we see that \(y_i = y_i + x_{ij} - x_{ij} \), so that the above relation can be rewritten to

\[\frac{x_{ij}}{y_i + x_{ij}} = \frac{x_{kj}}{y_k + x_{kj}}. \]

(5)

In words, instead of proportionally distributing the relative overages we can just as well distribute the relative payments of the parents.

Now observe that (5) together with the assumption \(y > 0 \) imply that \(x_{ij}/y_i = x_{kj}/y_k \), which in turn implies that there exists a proportionality factor \(\beta_j \) such that \(x_{ij} = \beta_j y_i \). Observe that \(x_{ij} > 0 \) since \(y_i > 0 \) by assumption. When parent \(y_i \) is not responsible for child \(x_j \) we have that \(\delta_{ij} = 0 \). Thus, we have established that

\[x_{ij} = \delta_{ij} y_i \beta_j. \]

(6)
Next, as we are dealing with a network with overages, we can impose the condition that \(z = 0 \), i.e., all needs are satisfied. In particular, for child \(j \) this means that
\[
 z_j = 0 \iff \sum_i \delta_{ij} x_{ij} = b_j. \tag{7}
\]

Substitute the expression (6) for \(x_{ij} \) into this equation to see that \(\beta_j \) must satisfy \(\beta_j \sum_k \delta_{kj} \gamma_k = b_j \). From \(\gamma_k > 0 \) it follows that \(\sum_k \delta_{kj} \gamma_k > 0 \) for each child \(j \), thereby allowing us to write \(\beta_j = b_j / \sum_k \delta_{kj} \gamma_k \). Let us substitute this into (6) to obtain
\[
x_{ij} = \delta_{ij} \frac{y_j}{\sum_k \delta_{kj} \gamma_k} b_j \tag{8}
\]
Finally, using this in (2), it follows that \(y \) has to satisfy the equality
\[
y_i \left(1 + \sum_j \delta_{ij} \frac{b_j}{\sum_k \delta_{kj} \gamma_k} \right) = d_i \tag{9}
\]
Thus, suppose we can find a vector of overages \(y > 0 \) that solves (9). Then, with (8), we can find a set of parental contributions \(x \geq 0 \). It is clear from the construction that \(x \) satisfies Rule 1, namely by (7). Moreover, Rule 2 is simultaneously satisfied via (5) and (4).

In fact, we can compute a unique solution for (9) with recursion, thereby proving the existence of a unique solution for the divorced parents problem. To this end, define the \(i \)th component of the (vector) function \(f \) as
\[
f_i(v) = 1 + \sum_j \delta_{ij} \frac{b_j}{\sum_k \delta_{kj} \gamma_k},
\]
for a set \(v > 0 \) of overages. Observe that with this, (9) reduces to \(y_i f_i(y) = d_i \).

Lemma 2.1. Suppose that there is a vector \(v > 0 \) such that \(v_k f_k(v) \geq d_k \) for all its components \(v_k \), and \(v_i f_i(v) > d_i \) for the \(i \)th component. Take
\[
v_i' = d_i / f_i(v).
\]
Then we have that i. \(0 < v_i' < v_i \), and ii. \(v_i' f(v') > d_i \).

Proof. i.) Observe that \(v_i f_i(v) > d_i \iff v_i > d_i / f_i(v) = v_i' \). Next, \(v > 0 \implies f(v) > 0 \), hence \(v' > 0 \).

ii.) Use the definition \(v_i' = d_i / f_i(v) \) to reduce the inequality \(v_i' f_i(v') > d_i \) to the inequality \(f_i(v') > f_i(v) \). But this latter inequality directly follows from the definition of \(f \) and observing that, by i., \(v'_i < v_i \) and \(v'_k \leq v_k \).

The solution \(y \) now follows straightaway computed from recursion. Take \(v^0 = d > 0 \); the argument being that the overages can never exceed the capacities. From the definition of \(f \), we see that \(f(v^0) > 1 \), so that \(v^0_i f_i(v^0) > d_i \) for all \(i \). Next, define \(v^1_i = d_i / f_i(v^0) \). By the above lemma, \(v^1 < v \) and again \(v^1_i f_i(v^1) > d_i \). Thus, we can apply this lemma again to \(v^1 \) to obtain \(v^2 = d_i / f_i(v^1) < v^1_i \), and so on. Clearly, this recursive procedure yields a monotone decreasing set of vectors \(v^n \) that is bounded from below since \(v^n > 0 \) for all \(n \). Then, by the theorem of Weierstrass, it follows that \(v^n \) converges to a unique limit point \(y \). This limit point \(y \) must satisfy (9), for if \(y_i f_i(y) > 0 \) for some \(i \), we can use the lemma to find a smaller vector.
2.2 General networks

In the previous section we assume that there was an overage, i.e., \(y > 0 \). Let us show how we can apply the same method to a general network. For this we need to split the network into two sub networks, one in which parents have an overage, and the other part in which children have a shortage. Thus, the overage and shortage networks are complementary: each parent (child) must belong to either the overage or the shortage network. The LP (3) proves a highly device to split the network.

In more detail, we associate a Lagrange multiplier \(\lambda \) with the constraint \(y \geq 0 \), and \(\mu \) with \(z \geq 0 \). In the optimal solution, when \(y_i > 0 \), it is clear that parent \(i \) should be assigned to the overage network. Next, by complementary slackness, when \(\lambda_i > 0 \) for parent \(i \), \(y_i = 0 \). Hence, any marginal increase in the capacity of parent \(i \) can be used to reduce the shortage of a child. Thus, such a parent \(i \) must necessarily belong to the shortage network. By analogy, when \(z_j > 0 \) \((\mu_j > 0)\) child \(j \) belongs to the shortage (overage) network.

It may happen that the solution is degenerate such that \(y_i = \lambda_i = 0 \) for parent \(i \). To find out to which sub-network we should assign this parent, we propose to add an extra constraint \(y_i > 1 \) with multiplier \(\nu_i \) and solve this augmented LP. With complementary slackness the assignment can follow the same reasoning as earlier, and similar for children with \(z_j = \mu_j = 0 \).

Another method would be to solve the initial LP (3) into a non-linear optimization problem with objective

\[
\sum_i z_i + \epsilon \sum_i y_i^2 + \epsilon \sum_j z_j^2,
\]

with \(\epsilon \ll 1 \). The solution of this satisfies our requirements. To see this, observe that in a degenerate solution of the LP, it is possible to 'move money' from one parent to another without affecting the value of the objective (3) of the LP. However, in the non-linear objective, it is optimal to keep the largest \(y_i \) as small as possible so that, as a consequence, the smallest overage will be as large as possible, as long as this does not affect the objective of the LP. Likewise reasoning applies to the shortages \(z \).

With the algorithm of the previous section we can divide overages in an overage network proportionally over the parents. Interestingly, the same algorithm can be used to proportionally distribute the shortages of children in a shortage network. For this, consider the transpose of the shortage network. In other words, we swap the roles of the parents and the children, and we obtain a network in which there is a 'surplus of needs'. Then we apply the algorithm to proportionally distribute these 'surplus of needs'.

Thus, by applying the algorithm first to the overage network and then to the transpose of the shortage network we find a solution for the entire network.

References

List of research reports

15001-EEF: Bao, T., X. Tian, X. Yu, Dictator Game with Indivisibility of Money

15003-EEF: Allers, M., B. van Ommeren, and B. Geertsema, Does intermunicipal cooperation create inefficiency? A comparison of interest rates paid by intermunicipal organizations, amalgamated municipalities and not recently amalgamated municipalities

15004-EEF: Dijkstra, P.T., M.A. Haan, and M. Mulder, Design of Yardstick Competition and Consumer Prices: Experimental Evidence

15005-EEF: Dijkstra, P.T., Price Leadership and Unequal Market Sharing: Collusion in Experimental Markets

15006-EEF: Anufriev, M., T. Bao, A. Sutin, and J. Tuinstra, Fee Structure, Return Chasing and Mutual Fund Choice: An Experiment

15007-EEF: Lamers, M., Depositor Discipline and Bank Failures in Local Markets During the Financial Crisis

15008-EEF: Oosterhaven, J., On de Doubtful Usability of the Inoperability IO Model

15014-EEF: Siekman, W.H., Directed Consumer Search

15015-GEM: Hoorn, A.A.J. van, Organizational Culture in the Financial Sector: Evidence from a Cross-Industry Analysis of Employee Personal Values and Career Success

15016-EEF: Te Bao, and C. Hommes, When Speculators Meet Constructors: Positive and Negative Feedback in Experimental Housing Markets

15017-EEF: Te Bao, and Xiaohua Yu, Memory and Discounting: Theory and Evidence

15019-EEF: Bijlsma, M., J. Boone, and G. Zwart, Community Rating in Health Insurance: Trade-off between Coverage and Selection

15020-EEF: Mulder, M., and B. Scholtens, A Plant-level Analysis of the Spill-over Effects of the German *Energiewende*

15021-GEM: Samarina, A., L. Zhang, and D. Bezemer, Mortgages and Credit Cycle Divergence in Eurozone Economies

16001-GEM: Hoorn, A. van, How Are Migrant Employees Manages? An Integrated Analysis

16003-GEM: Bouwmeerster, M.C., and J. Oosterhaven, Economic Impacts of Natural Gas Flow Disruptions

16004-MARK: Holtrop, N., J.E. Wieringa, M.J. Gijsenberg, and P. Stern, Competitive Reactions to Personal Selling: The Difference between Strategic and Tactical Actions

16006-GEM: Hoorn, A. van, Trust and Signals in Workplace Organization: Evidence from Job Autonomy Differentials between Immigrant Groups

16007-EEF: Willems, B. and G. Zwart, Regulatory Holidays and Optimal Network Expansion

16008-GEF: Hoorn, A. van, Reliability and Validity of the Happiness Approach to Measuring Preferences

16010-EEF: Bekker, P.A., A Generalized Dynamic Arbitrage Free Yield Model

16011-EEF: Mierau, J.A., and M. Mink, A Descriptive Model of Banking and Aggregate Demand

16012-EEF: Mulder, M. and B. Willems, Competition in Retail Electricity Markets: An Assessment of Ten Year Dutch Experience

16013-GEM: Rozite, K., D.J. Bezemer, and J.P.A.M. Jacobs, Towards a Financial Cycle for the US, 1873-2014

16014-EEF: Neuteleers, S., M. Mulder, and F. Hindriks, Assessing Fairness of Dynamic Grid Tariffs

16016-HRM&OB: Meer, P.H. van der, and R. Wielers, Happiness, Unemployment and Self-esteem

16019-EEF: Ma, Yiqun, Demand Response Potential of Electricity End-users Facing Real Time Pricing

16020-GEM: Bezemer, D., and A. Samarina, Debt Shift, Financial Development and Income Inequality in Europe

16022-GEM: Gerritse, M., Does Trade Cause Institutional Change? Evidence from Countries South of the Suez Canal

17001-EEF: Trinks, A., B. Scholtens, M. Mulder, and L. Dam, Divesting Fossil Fuels: The Implications for Investment Portfolios

17002-EEF: Angelini, V., and J.O. Mierau, Late-life Health Effects of Teenage Motherhood

17003-EEF: Jong-A-Pin, R., M. Laméris, and H. Garretsen, Political Preferences of (Un)happy Voters: Evidence Based on New Ideological Measures

17004-EEF: Jiang, X., N. Hermes, and A. Meesters, Financial Liberalization, the Institutional Environment and Bank Efficiency

17005-EEF: Kwaak, C. van der, Financial Fragility and Unconventional Central Bank Lending Operations

17007-EEF: Ommeren, B.J.F. van, M.A. Allers, and M.H. Vellekoop, Choosing the Optimal Moment to Arrange a Loan

17008-EEF: Bekker, P.A., and K.E. Bouwman, A Unified Approach to Dynamic Mean-Variance Analysis in Discrete and Continuous Time

17009-EEF: Bekker, P.A., Interpretable Parsimonious Arbitrage-free Modeling of the Yield Curve

17010-GEM: Schasfoort, J., A. Godin, D. Bezemer, A. Caiani, and S. Kinsella, Monetary Policy Transmission in a Macroeconomic Agent-Based Model
17011-I&O: Bogt, H. ter, Accountability, Transparency and Control of Outsourced Public Sector Activities

17013-EEF: Boer, W.I.J. de, R.H. Koning, and J.O. Mierau, Ex-ante and Ex-post Willingness-to-pay for Hosting a Major Cycling Event

17014-OPERA: Laan, N. van der, W. Romeijnders, and M.H. van der Vlerk, Higher-order Total Variation Bounds for Expectations of Periodic Functions and Simple Integer Recourse Approximations

17015-GEM: Oosterhaven, J., Key Sector Analysis: A Note on the Other Side of the Coin

17018-GEM: Qian, X. and A. Steiner, The Reinforcement Effect of International Reserves for Financial Stability

2018002-EEF: Soetevent, A.R. and S. Adikyan, The Impact of Short-Term Goals on Long-Term Objectives: Evidence from Running Data

2018003-MARK: Gijsenberg, M.J. and P.C. Verhoef, Moving Forward: The Role of Marketing in Fostering Public Transport Usage

2018004-MARK: Gijsenberg, M.J. and V.R. Nijs, Advertising Timing: In-Phase or Out-of-Phase with Competitors?

2018007-EEF: Durán, N. and J.P. Elhorst, A Spatio-temporal-similarity and Common Factor Approach of Individual Housing Prices: The Impact of Many Small Earthquakes in the North of Netherlands

2018010-OPERA: Prak, D., R.H. Teunter, M.Z. Babai, A.A. Syntetos, and J.E. Boylan, Forecasting and Inventory Control with Compound Poisson Demand Using Periodic Demand Data

2018011-EEF: Brock, B. de, Converting a Non-trivial Use Case into an SSD: An Exercise

2018013-OPERA: Romeijnders, W., and N. van der Laan, Inexact cutting planes for two-stage mixed-integer stochastic programs

2018014-EEF: Green, C.P., and S. Homroy, Bringing Connections Onboard: The Value of Political Influence

2018015-OPERA: Laan, N. van der, and W. Romeijnders, Generalized alpha-approximations for two-stage mixed-integer recourse models

2018016-GEM: Rozite, K., Financial and Real Integration between Mexico and the United States

2019002-EEF: Brock, E.O. de, On Incremental and Agile Development of (Information) Systems

2019004-EEF: Dijk, H., and J. Mierau, Mental Health over the Life Course: Evidence for a U-Shape?

2019008-EEF: Keller, J.T. G.H. Kuper, and M. Mulder, Competition under Regulation: Do Regulated Gas Transmission System Operators in Merged Markets Compete on Network Tariffs?

2019009-EEF: Hulshof, D. and M. Mulder, Renewable Energy Use as Environmental CSR Behavior and the Impact on Firm Profit

2019010-EEF: Boot, T., Confidence Regions for Averaging Estimators
2020001-OPERA: Foreest, N.D. van, and J. Wijngaard. On Proportionally Fair Solutions for the Divorced-Parents Problem