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Abstract

By integrating constructs from the A-calculus and the m-calculus, in higher-order process calculi
exchanged values may contain processes. This paper studies the relative expressiveness of HOwr,
the higher-order m-calculus in which communications are governed by session types. Our main
discovery is that HO, a subcalculus of HO7 which lacks name-passing and recursion, can serve
as a new core calculus for session-typed higher-order concurrency. We show that HO can encode
HO~ fully abstractly (up to typed contextual equivalence) more precisely and efficiently than the
first-order session 7-calculus (7). Overall, under the discipline of session types, HO7, HO, and 7
are equally expressive; however, we show that HO7 is more tightly related to HO than to 7.

Keywords: Concurrency, Process Calculi, Behavioral Types, Session Types, Expressiveness

1. Introduction

Type-preserving compilations are important in the design of functional and object-oriented lan-
guages: type information has been used to, e.g., justify code optimizations and reason about pro-
grams [MWCG99, SA95, LST02]. In concurrency theory, a vast literature on expressiveness also
studies compilations (or encodings) [Pal03, Gor10b, FL10, LPSS10, PvG15]: they are used to trans-
fer reasoning techniques across calculi, and to implement complex programming abstractions using
simpler process constructs.

In this work, we study the relative expressiveness of HOm, a higher-order process language that
integrates message-passing concurrency (including recursion) with functional features. We consider
type-preserving encodings between source and target calculi coupled with session types [HVKO98]
denoting interaction protocols. Building on untyped frameworks for relative expressiveness [Gor10b],
we propose type preservation as a new criterion for precise encodings. We identify HO, a new core
calculus for higher-order session concurrency which lacks name passing and recursion. We show
that HO can encode HO precisely and efficiently. Requiring type preservation makes this encoding
far from trivial: we crucially exploit advances on session type duality [BDGK14, BP12] and recent
characterisations of typed contextual equivalence [KPY15, KPY17]. We develop a full hierarchy
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Figure 1 Encodability in Higher-Order Sessions. Precise encodings are defined in Def. 4.6.
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of variants of HO7 based on precise encodings: our encodings are type-preserving and fully ab-
stract up to typed behavioural equivalences. Fig. 1 illustrates this hierarchy; the variants of HO7 are
explained next.

Context. In session-based concurrency, interactions are organised into sessions, basic communi-
cation units. Interaction patterns can then be abstracted as session types [HVK9S8], against which
specifications may be checked. The session type 7(U); S (resp. (U);S) describes a protocol that
first receives (resp. sends) a value of type U and then continues as protocol S. Also, given an
index set I, types &{l; : S;}ier and &{l; : S;};cs define, respectively, external and internal choice
constructs for a labelled choice mechanism; types ut.S and end specify recursive and completed
protocols, respectively. By distinguishing between linear and shared names, session types for the
m-calculus describe the intended interactive behaviour of the names in a process [HVK9S].

Session-based concurrency has also been cast in higher-order process calculi which, by combin-
ing features from the A-calculus and the 7-calculus, enable the exchange of values that may contain
processes [MYO07, GV10]. The higher-order calculus with sessions studied here, called HOm, can
specify protocols involving code mobility: it includes constructs for synchronisation along shared
names, session communication (value passing, labelled choice) along linear names, recursion and
applications. Values in communications can be names but also first-order abstractions—functions
from name identifiers to processes. (In contrast, HO7 lacks higher-order abstractions—functions
from processes to processes—but these can be encoded, see below.) Abstractions can be linear or
shared, depending on whether they contain linear names or not; their types are denoted C'—o ¢ and
C — o, respectively (C denotes a name).

Expressiveness of HOm. We study the type-preserving, relative expressivity of HOw. As expected
from known literature in the untyped setting [San92b], the first-order session m-calculus [HVK9S]
(here denoted ) can encode the higher-order calculus HO7 preserving session types. In this paper,
our main discovery concerns the opposite direction: we show that HO7 without name-passing and
recursion can serve as a core calculus for higher-order session concurrency. We call this core calcu-
lus HO. We show that HO can encode HO7 more efficiently than 7. In addition, in the higher-order
session typed setting, HO offers more tractable bisimulation techniques than 7 (cf. § 3.3.2).

Challenges and Contributions. We assess the relative expressiveness of HOx, HO, and 7 as de-
lineated by session types. We introduce the notion of type-preserving encodings: type information
is used to define encodings and to retain the semantics of session protocols. Indeed, not only we
require well-typed source processes are encoded into well-typed target processes; we also demand
that session type constructs (input, output, branching, select) used to type the source process are



preserved by the typing of the target process. This criterion is included in our notion of precise en-
coding (Def. 4.6), which extends encodability criteria for untyped processes with full abstraction.
Full abstraction results are stated up to two behavioural equivalences that characterise barbed con-
gruence: characteristic bisimilarity (=, introduced in [KPY15]) and higher-order bisimilarity (=%,
introduced in [KPY16] and developed in [KPY17]). Using precise encodings we establish strong
correspondences between HO7 and its variants—see below.

Our contributions can be divided in two parts. First, we develop a precise encoding of HOx
into HO (§5.1). Since HO lacks both name-passing and recursion, this encoding involves two key
challenges:

a. In known (typed) encodings of name-passing into process-passing [SWO01] only the output ca-
pability of names can be sent—a received name cannot be used in later inputs. This is far too
limiting in HO7, where session names may be passed around (delegation) and types describe
interaction structures, rather than “loose” name capabilities.

b. Known encodings of recursion in untyped higher-order calculi do not carry over to session typed
calculi such as HO7r, because linear abstractions cannot be copied/duplicated. Hence, the disci-
pline of session types limits the possibilities for representing infinite behaviours—this holds for
even simple forms, such as input-guarded replication.

Our encoding overcomes these two obstacles, as we discuss in § 2.
In the second part, we offer additional technical contributions, which include:

(i) the encodability of HO into 7 (§5.2);

(i1) a non encodability result showing that shared names strictly add expressive power to session
calculi (§5.4).

(iii) extensions of our encodability results to richer settings (§ 6);

In essence, (i) extends known results for untyped processes [San92b] to the session typed setting.
Concerning (iii), we develop extensions of our encodings to

- The extension of HO7 with higher-order abstractions (HOm™);
- The extension of HO7 with polyadic name passing and abstraction (HO 7);

- The super-calculus of HO7™ and HO 7 (denoted HO 7 1), equivalent to the calculus in [MYO07].

Fig. 1 summarises our encodability results. They connect HOx with existing higher-order pro-
cess calculi [MYO07], and highlight the status of HO as the core calculus for session concurrency.
Finally, to our knowledge we are the first to prove the non encodability result (ii), exploiting session
determinacy and typed equivalences.

Outline. §?2 overviews key ideas of the precise encoding of HOx into 7. §3 collects background
material: §3.1 presents HO7 and its subcalculi (HO and 7); § 3.2 summarises their session type
system; § 3.3 presents behavioural equalities for HO7 from [KPY 15, KPY17]: barbed congruence,
characteristic bisimilarity, and higher-order bisimilarity. § 4 defines precise encodings by extending
encodability criteria for untyped processes. § 5 gives precise encodings of HO7 into HO and into 7



(Thms. 5.1 and 5.2). Mutual encodings between 7 and HO are derivable; all these calculi are thus
equally expressive. Via empirical and formal comparisons between these two precise encodings, in
§5.3 we establish that HOx and HO are more tightly related than HOx and 7 (Thm. 5.3). Moreover,
we prove the impossibility of encoding communication along shared names using linear names
(Thm. 5.4). In §6 we show encodings of HO7™ and HO 7 into HO7 (Thms. 6.1 and 6.2). §7
reviews related works and § 8 concludes. Omitted definitions and proofs are in the Appendices
(Appendix A and Appendix B).

This paper is an extended and revised version of the homonymous conference paper that ap-
peared in the Proceedings of ESOP’16 [KPY16]. With respect to [KPY16], the current paper pro-
vides extended discussions, additional examples, and full technical details. Moreover, it offers a
sharper focus on relative expressiveness: a detailed treatment of higher-order bisimilarity (first in-
troduced in [KPY16]) can now be found in our paper [KPY17] (which corresponds to the journal
version of [KPY15]).

2. Overview: Encoding Name Passing Into Process Passing

A Precise Encoding of Name-Passing into Process-Passing. As mentioned above, our encoding
of HOm into HO (§5.1) should (a) enable the communication of arbitrary names, as required to
represent delegation, and (b) address the fact that the linear communication discipline, enforced by
session types, limits the possibilities for representing infinite behaviour.

To illustrate our encoding of name passing into HO, we informally introduce some process syn-
tax; formal definitions are given in § 3.1. Below, a, b are names and s is a linear session name; name
S is the dual of s—they are endpoints of the same session. Processes a!(V').P and a?(z).P denote
output and input at a, respectively; abstractions and applications are denoted A\xz.P and (Ax.P) a,
respectively. Processes (v s)(P), P | @, and O represent usual forms of name restriction/hiding,
parallel composition, and inaction.

In our encoding, we “pack” the name to be sent (denoted b) into an abstraction; upon reception,
the receiver “unpacks” this object following a precise protocol on a fresh session (denoted s):

[al(b).P] = al{)z. 27(x).(zb)).[P]
[a7(2).Q] = a?(y).(v s)(y s | 51 {Az. [Q]).0)

Thus, an abstraction containing the name b is first passed around along a. Following this com-
munication, a sequence of (deterministic) reductions between s and s guarantees that b is properly
unpacked by means of abstraction passing and appropriate applications. Indeed, the above encod-
ing requires three extra reduction steps to mimic a single name communication step in HO7. Also,
notice that an output action in the source process is translated into an output action in the encoded
process (and similarly for input). This is key to ensure the preservation of session type operators
mentioned above (cf. Def. 4.4).

As hinted at above, a challenge in encoding recursion is preserving linearity of session names.
Roughly speaking, given uX.P, we encode its recursion body P as an abstraction \Z. HPJJJ in
which each session name of P (included in set o) is converted into a name variable in Z. Since
AZ. [LPJJU does not mention (linear) session names, we may embed it into a “duplicator” process
which implements recursion using higher-order communication [Tho93]. The encoding of the re-
cursion variable X invokes this duplicator in a by-need fashion: it receives Ax. [LPJ ., and uses two



copies of it: one copy allows us to obtain P through the application of the session names in o; the
other allows us to invoke the duplicator when needed. Interestingly, for this encoding to work we
require non-tail recursive session types; this exploits recent advances on the theory of duality for
session types [BDGK14, BP12].

A Plausible Encoding That is Not Precise. Our notion of precise encoding (Def. 4.6) requires the
translation of both process and types; it admits only process mappings that preserve session types
and are fully abstract. Thus, our encodings not only exhibit strong behavioural correspondences,
but also relate source and target processes with consistent communication structures described by
session types. These requirements are demanding and make our developments far from trivial. In
particular, requiring type preservation may rule out other plausible encoding strategies. To illustrate
this point, consider the following alternative encoding of name-passing into HO:!

[a?(z).Q]" = a!/(Az. [Q]*).0
[al(b).P]" = a?(z).(zb| [P]*)

Intuitively, the encoding of input takes the initiative by sending an abstraction containing the en-
coding of its continuation (2; the encoding of output applies this received value to name b. Hence,
this mapping entails a “role inversion”: outputs are translated into inputs, and inputs are translated
into outputs. Although fairly reasonable, we will see that the encoding [-]* is not type preserving
(cf. Ex. 4.1). Consequently, it is also not precise. Since individual prefixes (input, output, branch-
ing, select) represent actions in a structured communication sequence (i.e., a protocol abstracted by
a session type), the encoding [[-]* would simply alter the meaning of the session protocol in the
source language.

3. Preliminaries

We introduce the higher-order session mw-calculus (HO7). We first define syntax, operational se-
mantics, and its sub-calculi (denoted 7w and HO). Then, a type system and behavioural equivalences
for HO7 are recalled in §3.2 and §3.3. HOx features first-order abstractions and monadic com-
munication; extensions with higher-order abstractions and polyadicity (denoted HO7™ and HO 7,
respectively) are discussed in §6. In §3.4 we recall the Hotel Booking scenario, a case study for
HO= that we developed in [KPY15, KPY17].

3.1. HOx: Syntax, Operational Semantics, and Subcalculi

Syntax. The syntax of HOw is defined in Fig. 2. HOw is a subcalculus of the language studied
in [MYO07]. It is also a variant of the language that we investigated in [KPY15], which includes
higher-order value applications.

Names a,b,c, ... (resp. s,s,...) range over shared (resp. session) names. Names m,n,t, ...
are session or shared names. Dual endpoints are m withs = s and @ = a. Variables are denoted with
x,Yy,z,...,and recursive variables are denoted with X, Y, .... An abstraction Az. P is a process P
with name parameter x. Values V, W, ... include identifiers u, v, ... and abstractions Ax. P (first-
and higher-order values, resp.).

!This encoding was suggested by a reviewer of a previous version of this paper.



Figure 2 Syntax of HO7. While HO lacks shaded constructs, 7 lacks constructs.

n == ab | s3

u,w n=n | z,y,2

VW u= | |

P.Q == ul(V).P | u?(z).P | ual.P | us{li: Pitics |
| P1Q | (vn)P | 0| X | pX.P

Process terms P, (), . . . include usual prefixes for sending and receiving values V. Processes u <
[.P and u>{l; : P;};cs are the usual constructs for selection and branching, used to specify labeled
deterministic choices within sessions [HVK98]. Process V u denotes application; it substitutes
name u on the abstraction V. Typing ensures that V' is not a name. Recursion pX.P binds the
recursive variable X in P. Constructs for inaction 0, parallel composition P; | P, and name
restriction (v n)P are standard.

Notation 1. We shall write P to denote a replicated process P, representable as uX.(P | X).

Session name restriction (v s) P simultaneously binds endpoints s and 5 in P. Functions fv(P),
fn(P), and £s(P) denote, respectively, the sets of free variables, names, and session names in P,
and are defined as expected. We assume V' in u!(V'). P does not include free recursive variables X.
If fv(P) = 0, we call P closed.

In a statement, a name (resp. variable) is fresh if it is not among the names (resp. variables)
of the objects (processes, actions, etc.) of the statement. We shall follow Barendregt’s convention:
all (session) names and variables in binding occurrences, in any mathematical context, are pairwise
distinct but also distinct from free (session) names and variables.

Operational Semantics. The operational semantics of HO is defined in terms of a reduction rela-
tion, denoted —>, whose rules are given in Fig. 3 (top). We briefly describe the rules. Rule [App]
defines name application. Rule [Pass] defines a shared interaction at n (with @ = n) or a session
interaction. Rule [Sel] is the standard rule for labelled choice/selection. Other rules are standard
m-calculus rules. Reduction is closed under structural congruence, noted = and given in Fig. 3 (bot-
tom). We write =, to denote a-conversion and assume the expected extension of = to values V.
We write —* for a multi-step reduction.

Subcalculi. As motivated in the introduction, we define two subcalculi of HO:

e The core higher-order session calculus, denoted HO, lacks recursion and name passing; its formal
syntax is obtained from Fig. 2 by excluding constructs in ' grey .

e The session w-calculus, denoted 7, lacks higher-order communication but includes recursion; its
formal syntax is obtained from Fig. 2 by excluding constructs in .

Let C € {HOm, HO, 7}. We write C~*" to denote the calculus C without shared names: we delete
a,b from n. Thus, languages in C~5" feature linear, deterministic behaviour only. In § 5 we shall



Figure 3 Operational Semantics of HO7.

(Az. P)u — P{%x} [App]

n(V).P | n?(z).Q — P | Q{V/z} [Pass]
nal;.Q | n>{l;: Pilier — Q| P (j€I) [Sel]
P— P = (vn)P — (vn)P' [Res]
P—P=P|lQ—P|Q [Par]
P=Q—Q =P =P—P [Cong]

P|OEP P1|PQEP2|P1 P1|(P2’P3)E(P1|P2)|P3 (l/n)OEO
Pl(vn)Q=(wn)(P|Q)(n¢fn(P)) uX.P=P{IXP/X} P=QifP=,Q

Figure 4 Syntax of session types for HOm.

= C ]

S8 | [{D)

= C—=o | C—oo

= NU;S | 2U);S | @{li:Sitier | &{li:Sitier | pt.S | t | end

e~ Q G
. .H.

demonstrate that HO7, HO, and 7 have the same expressivity, and that C is strictly more expressive
than C~sh,

3.2. Session Types for HOw

We state key definitions and properties for the session type system for HO7w. The considered
type system, introduced in [KPY17], distills the key features of [MY07, MY 15] and so it is simpler.

The syntax of types for HO7 is given in Fig. 4. We write ¢ to denote the process type. Value
type U includes first-order types C' and higher-order types L. Types C' — ¢ and C' —o ¢ denote
shared and linear higher-order types, respectively. Session types, denoted by S, follow the standard
binary session type syntax [HVK98], with the extension that carried types U may be higher-order.
Shared channel types are denoted (S) and (L).

The type syntax of HO exclude €' from value types U; the types of 7 excludes and .

Given C € {HOm, HO, 7}, the sub-calculus C~" is obtained by excluding shared name types ((S)
and (L)), from name type C.
We now define session type duality [BDGK14], which builds upon type equivalence.

Definition 3.1 (Type Equivalence). Let ST a set of closed session types. Two types S and S’
are said to be isomorphic if a pair (S,S’) is in the largest fixed point of the monotone function
F :P(ST x ST) — P(ST x ST) defined by:



(end, end)}

(HU1); 51, {U2); S2) | (S1,52), (U1, Uz) € R}

(?(U1); 51, 7(U2); S2) | (S1,52), (U, Us) € R}

(&{lZ : Si}ig[, &{ll : S{}lej) | Vi € I(SI,SZ/) € %}

(®{li : Sitier, ®{li : Si}ier) | Vi€ I1.(S;, S]) € R}

{(ut.8,8) | (S{#t-51},9) € R}

{(S.pt.8") | (S,8'{#-S/t}) € R}

Standard arguments ensure that F' is monotone, thus the greatest fixed point of F' exists. We write

S1 ~ Sy l'f(Sl,Sz) c R

ccccccl

Intuitively, duality is obtained by swapping ! by 7, ? by !, & by &, and & by &, including the
fixed point construction. More formally, we have:

Definition 3.2 (Duality). Let ST a set of closed session types. Two types S and S’ are said to be dual
ifapair (S, S’) is in the largest fixed point of the monotone function F' : P(STxST) — P(STxST)
defined by:

F(R) = {(end,end)}
U {(KU1);51,7(U2); S2) | (S1,52) € R, Ur ~ Us}
U {(?(01); 51, KU2); S2) | (51,52) € R, Ur ~ Ua}
U {(EB{Z S’i}iela &{ll : SZ/}ZGI) | Vi € I.(Si, Sz/) S §R}
U {(&{l S; }z‘ela @{li : S;}zel) ’ Vi € I.(S,‘, S{) S §R}
U {(ut.S,8") | (S{rt-5/t}, ) € R}
U {(S,ut.8") | (8,8 {nt-S'/t}) e R}

Standard arguments ensure that F' is monotone, thus the greatest fixed point of I exists. We write

Sl dual SQ if(Sl,SQ) e R

We consider shared, linear, and session environments, denoted I', A, and A, resp.:

I i= 0 | T'z:C—o | T'u:(S) | T"u:(L) | T-X:A
A =0 | Az:C—o
A 0| A-u:S

I" maps variables and shared names to value types, and recursive variables to session environments;
it admits weakening, contraction, and exchange principles. A maps variables to linear higher-order
types; A maps session names to session types. Both A and A are only subject to exchange. The
domains of I', A, and A are assumed pairwise distinct. We write A - Ay for the disjoint union of
Aq and Ag. We write I'\x to denote the environment obtained from I" by removing the assignment
x : U— o, for some U. Similarly, we write A;\Ay and A1\ A9 with the expected reading.

Given the above intuitions for environments, the typing judgements for values V' and processes
Paredenoted I'; A; AV UandI'; A; A F P o, respectively.

Fig. 5 gives the typing rules. We now describe some of them; see [KPY17] for a full account.
The shared type C' — ¢ is derived using Rule (PROM) only if the value has a linear type with an
empty linear environment. Rule (EPROM) allows us to freely use a shared type variable as linear.
Abstraction values are typed with Rule (ABS). Application typing is governed by Rule (APP):
we expect the type C of an application name w to match the type of the application variable x
(i.e., C' —o o or C' — ¢). In Rule (SEND), the type U of value V' should appear as a prefix in the



Figure 5 Typing Rules for HOx.

(SESS) (SH)
L0 {u:SturS Fu:U;0;0FuvU

(LVAR) (RVAR)
[i{z:C—oo}l;PtazpC—o0 T-X:A;0AFX>o

(ABS) (APP)
A A1 FPro Ty Ak C T A FVBEC~o ~e{—o, =) i AskunC
Ma; A; A\Ag F Az, P> C —o0 DA AL - A Vo
(PrROM) (EPROM) (END)
L0 V>C—o0 Ti;A-z2:C—o0;AFPro T3 NMAFP>T w¢dom(T,AA)
L;00-FVeC—o T-z:C—o;A;AFP>o I''AA-uw:endb- Pro
(REC) (PAR)
I X:A;0;A-Ppo DA A FPbo 1=1,2 (NIL)
F;@;AI_MX.PDO F;Al'AQ;Al'Agl_Pl‘PQDO F;@;@I‘ODO
(SEND)

u:S e Ay T;AAFEPro A A VU
IyA - Ao (A1 - Ag)\uw:S)-u:NU); SFul(V).Pro

(REQ)
DA A EPro T50;0Fus Uy T;0;A VU Ue{S,L}

DA AL - A Eul(V).Pro

(Acc)
(Rcv) DA A1 Poo Ti0;0 - ws (U)
DA AL - u:SEPpo TiAy A2 U Ty Ag; Aokl Ue{S L}
Maz; A \A2; A\Ag - w :2(U); S Eu?(z).Pro  T\z; A1\Ag; Aj\Ag F u?(x).P>o

(BRrA) (SEL)
Viel T;MA-uw:S;FPp>o AA-u:S;EPro jel
DA -u: &{ly 0 Sitier Fun{li: Pilicr>o DyASA -w:@{li: Sitier Fu<lj.Pro

(RESS) (RES)
INA;A-5:51-5:5FPro  Sidual Sy F-a:(S);A;AFPpro
A AE (vs)Pro A AE (va)Pro

session type [(U); S of u. Rule (RCV) is its dual. Rules (REQ) and (ACC) type interaction along
shared names; the type of the sent/received object (S and L, resp.) should match the type of the
sent/received subject ((.S) and (L), resp.).



We close this section by stating type soundness for HO, as established in [KPY 17]; it implies
type soundness for HO, 7, and C™*". We require two auxiliary definitions. First, we focus on
balanced session environments:

Definition 3.3 (Balanced Environments). We say that a session environment A is balanced if when-
ever s : 51,5: Sy € A then Sy dual Sy (¢f. Def. 3.2).

Second, we define a notion of reduction for session environments:

Definition 3.4. We define the relation — on session environments A as:

A-s:U); S -5:2(U);82 — A-s5:51-5:5
A‘SZGS{Q:Si}ie]~§:&{li25£}iej — A-5:85;- :S;/C(kEI)

|

We write —* to denote multi-step reduction.
We then have:

Theorem 3.1 (Type Soundness [KPY17]). Suppose I'; #; A + P> o with A balanced. Then P —
P implies T;); A’ + P'>oand A = A’ or A — A’ with A’ balanced.

3.3. Behavioural Theory for HOm

We first define reduction-closed, barbed congruence (=, Def. 3.9) as the reference equivalence
relation for HOm processes. We then recall two characterisations of =: characteristic and higher-
order bisimilarities (denoted ~¢ and ~", cf. Defs. 3.12 and 3.11). We refer to Appendix A for
omitted definitions, and to our previous paper [KPY 17] for a detailed treatment of these behavioural
equivalences.

3.3.1. Reduction-Closed, Barbed Congruence (=)

We consider typed relations R that relate closed terms whose session environments are balanced
and confluent:

Definition 3.5 (Session Environment Confluence). We denote Ay = A if there exists A such that
A1 —* Aand Ay —* A,

Definition 3.6 (Typed Relation). We say that T';0; A1 = P>o R T;0; Ag F Q> is a typed relation
whenever P and () are closed; A1 and Ay are balanced; and A1 = Ao.
We write T'; A1 = P R Ao & Q for the typed relation T';0; A1 = P>oRT;0; A - Q > 0.

A barb |, is an observable on an output or selection prefix with subject n [MS92]. Notice
that observing output barbs is enough to (indirectly) observe input actions. A weak barb |}, is
a barb after zero or more reduction steps. Typed barbs |, (resp. {,) occur on typed processes
I';0; A = P>o. When n is a session name we require that its dual endpoint 7 is not present in the
session environment A:

Definition 3.7 (Untyped and Typed Barbs). Let P be a closed process. We define:

1. PL,if P=(vm)(n(V).Py | P3) or P=(vm)(n<l.Py | P3), withn ¢ m.
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2.T5AFP L, ifT;0; AF Poowith P, and 7 ¢ dom(A).
ARP Y, if P—*P andT; A= P ,.
To define a congruence relation, we introduce the family C of process contexts:
Definition 3.8 (Context). A context C is defined as:
C == — | «{(V).C | u?(z).C | ul{dz.C).P | (vn)C | (Az.C)u | uX.C
| C|P | P|C | ualC | up{ly:Pr,-+,;:C,--- 1, : P}
Notation C[P] replaces the hole — in C with P.
We define reduction-closed, barbed congruence [HY95].

Definition 3.9 (Barbed Congruence). Typed relation I'; A1 = P R As = @ is a reduction-closed,
barbed congruence whenever:

1. If P — P’ then there exist Q', A}, AL such that Q —* Q" andT'; A} F P' R AL+ Q';
2. If T A E P lythenT; Ao EQ Uiy

3. For all C, there exist A, AY such that T'; A] = C[P] ® AJ - C[Q];

4. The symmetric cases of 1 and 2.

The largest such relation is denoted with ==.

3.3.2. Two Equivalence Relations: ~" and ~°

In [KPY15, KPY17] we have characterised reduction-closed, barbed congruence for HOx via
two typed relations, called characteristic bisimilarity and higher-order bisimilarity. Their defini-
tion uses a typed labelled transition system (LTS) on processes, informed by session types [KY14],
whose key notions are summarized next. We will be working with closed process terms, i.e., pro-
cesses without free variables.

A Typed Labelled Transition System. The typed LTS describes the interaction of well-typed pro-
cesses with their environment. We shall focus on well-typed processes whose type judgements have
an empty A, i.e., an empty environment for linear higher-order types. Given this, we write

AP -5 AP

to denote a (strong) transition with action label ¢ (cf. Def. 3.10 below).
Formally, the typed LTS is obtained by coupling an untyped LTS on processes, whose tran-
sitions are denoted P —» P’ with a labelled transition relation on typing environments, whose

transitions are denoted (I", A) LN (T, A”) (see Def. Appendix A.2). These auxiliary LTSs are
given in Fig. A.14 and Fig. A.15, respectively. The key idea is that the transitions of a typed process
should be enabled by its associated typing:

if P % P and (I,A) -5 (I,A') then T; A - P -5 A/ F P

The LTS on untyped processes, the LTS on typing environments, and the typed LTS share the
same set of action labels:

11



Definition 3.10 (Action Labels). The set of action labels for HOr, ranged over by ¢, V', ..., is
defined as follows:

C o= 71 | (wvmniV) | n2(V) | ndl | n&l

Label 7 defines internal actions. Action (v m)n!(V') denotes the sending of value V' over channel n
with a possible empty set of restricted names m (we may write n!(V') when m is empty). The action
for value reception is n?(V'). Actions for select and branch on a label [ are denoted n & [ and n&l,
respectively. We write fn(¢) and bn(¢) to denote the sets of free/bound names in ¢, respectively.

Remark 3.1 (Type Annotations (1)). We sometimes annotate process actions with their type. In
particular, given a value V' of type U, we may write label (v m)n(V') as (v m)nl(V :U).

The sets of actions for HO and 7 is derived from the above syntax, in line with the syntax of
values V' in Fig. 2. This way, e.g., (v m)n!(\z. P) is an action label for HO but not for ; similarly,
s7(n) is an action label for 7 but not for HO.

A Refined Typed LTS. The characterisation of barbed congruence relies on a refined typed LTS on
typing environments. Intuitively, the objective is to have a more stringent rule for input transitions,
given as follows:

s¢dom(A) T;AA VU V=mVV=({U)VV =.t?(y).(yx) with ¢ fresh
(A A -5 :20):8) Y% (A A A A - 52 9)

This rule states that a session environment can input a value if such a value is typed with an in-
put prefix and is either a name m, a characteristic value (U)., or a trigger value (the abstraction
Az.t?(y).(y x)). A characteristic value is the simplest process that inhabits a type (here, the type U
carried by the input prefix). The above rule is used to limit the input actions that can be observed
from a session input prefix. The definition of characteristic processes and values is given in Fig. 6.

This refined LTS on typing environments in turn gives rise to a different, refined LTS on pro-

cesses (cf. Def. Appendix A.5). Note the different notation for standard and refined transitions:
4 WV

SLQ and M In the refined LTS, weak transitions are as expected: we write = for the reflexive,

transitive closure of —, == for |:>»i>|:>, and == for £ if ¢ # 7 and = otherwise. Further details

on the typed LTSs are given in Appendix A and [KPY17].

Characterising =. We now recall the definition of higher-order bisimilarity and characteristic
bisimilarity, as jointly introduced in [KPY17]. These bisimilarity relations use two different trigger
processes:

by e t?(x).(vs)(s?(y).(xy) | s(V).0) if V is a first-order value
! £2(2).(v s)(s?(y).(y z) | 51(V).0) if V is a higher-order value
tec ViU E 12(2).(vs)(s?(y) {UV | s{V).0) 2)

The process in (1) is called higher-order trigger process, while process in (2) is called characteristic
trigger process. Notice that while in (1) there is a higher-order input on ¢, in (2) the variable = does
not play any réle. Process (U)Y is the characteristic process of type U, implemented along name y.
We use higher-order trigger processes to define higher-order bisimilarity:

12



Figure 6 Characteristic Processes (left) and Characteristic Values (right).

(20); S) E w?(a).(t(w).0 | (U)) (S)e “€ s (sfresh)
(HUY: Sy S wl{[U)e).tH{u).0 (e € a (afresh)
(®{l: S} £ waltl(u).0 (L)) “€  a (afresh)
(&{li+ Sitier)* “Z we {li: t:)(u).0}ies (U=o) € I (U)F
(ut.S)" “E (S{end/t}) (U—o) = Ao (UF
{end)* =)
(S)) = ul((S)e)-t!(u).0
(L) = wl(L)e).t1(w).0
(U—ojt & w(U)e
(U—o)t 4 (U)e

(t fresh in all cases)

Definition 3.11 (Higher-Order Bisimilarity). A typed relation R is a higher-order bisimulation if for
allT; A1 PR A EQy

1) Whenever T; A1 + Py rM) Al F Py, there exist Qa, Vo, Al such that T'; Ay
Q1 (v )mi{Ve) AL F Q2 and, for a fresh t,

DAY (i) (Ps | t 4o Vi) RAL - (vima)(Qa | t <oy Va)

2) ForallT;A1 + Py N A} b Py such that { is not an output, there exist QQa, AL such that
T: A Q1 e AL Qoand T; AL F Py R Ay b Qo and

3) The symmetric cases of 1 and 2.
The largest such bisimulation is called higher-order bisimilarity, denoted by ~".
We exploit characteristic trigger processes to define characteristic bisimilarity:

Definition 3.12 (Characteristic Bisimilarity). A typed relation R is a characteristic bisimulation if
forall F; Al H P1 % AZ F Ql:

1) Whenever I'; A1 F Py »W) A & P; then there exist Qa, Va, Al such that T'; Ay F
Q1 :—uymﬂn!(vﬂm AL F Q2 and, for a fresh t,
F;Alll F (VT/FLE)(PQ ‘ t <c V1 :Ul) %AIQI F (V%)(QQ ‘ t <c VQ:UQ)
2) ForallT;A1 - Py N A} b Py such that { is not an output, there exist Qa, AL such that

T: Ak Q1 AL Qoand T; AL F Py R Ay b Qo and

3) The symmetric cases of 1 and 2.
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The largest such bisimulation is called characteristic bisimilarity, denoted by ~°.
We state the following important coincidence result:
Theorem 3.2 ([KPY17]). Typed relations =2, ~H, and =~ coincide for HOm processes.

Remark 3.2 (Differences between ~! and ~°). Although ~" and ~¢ are conceptually similar, they
differ in the kind of trigger process considered. Because of the application int <y V (cf. (1)), =
cannot be used to reason about first-order session processes (i.e., processes without higher-order
features). In contrast, ~C is more general: it can uniformly input characteristic, first- or higher-
order values.

An up-to technique. As mentioned above, processes that do not use shared names (e.g., those in
languages in C~") are deterministic. Internal transitions associated to session interactions or S3-
reductions are deterministic. To define an auxiliary proof technique that exploits determinacy we
require some auxiliary definitions. Recall that T; A + P s A’ - P’ denotes an internal (typed)
transition.

The following up-to technique, based on determinacy properties, will be useful in proofs (§ 5).

Notation 2 (Deterministic Transitions). We distinguish two kinds of T-transitions: session transi-
tions, noted I'; A = P s A’ - P, and [-transitions, noted T; A - P 2 A P Intuitively,
V2 results from a session communication (i.e., synchronization between two dual endpoints), while
2Oy results from an application. We write I'; A = P s A’ b P’ 1o denote a session transition or a
B-transition. See § Appendix A.4 and [KPY17] for formal definitions of s and .

We have the following determinacy property:
Lemma 3.1 (7-Inertness [KPY17]). Suppose I'; 0; A = P > o with balanced A.
1) FT;AFPZ AP thenT; AFPAEA P with A —* A
2) If P is an HOm =" process, and P —* P’ thenT; A+ P =% A’ = P', with A —* A/

We use Lem. 3.1 to prove Thm. 5.4, the negative result stated in § 5.4. This property also enables
us to define the following up-to technique, useful in full abstraction proofs. We write L to denote
a (possibly empty) sequence of deterministic steps 5. We can finally state:

Lemma 3.2 (Up-to Deterministic Transition [KPY17]). Let I'; A1 F P R As b Q1 such that if
whenever:

1. Y(vmy)nl(Vy) such that T; A1 = P M A3+ P3 implies that 3Q2, Va such that
;A Q1 (v iy )t (V) Ab Qg and T; Az - Py 25 Al - Py and for fresh t:
F; Alll + (V’Iﬁl)(Pg | t <H ‘/1) R AIZI = (V’I’ﬁz)(QQ ’ t et VQ)

2. Y0 # (vm)nl(V) such that T; A1 + Py KN As b Py implies that 3Q2
such that T; Ay F Qi AL - Qo and Ty Ag b Py s AL - Py and T; AL - Py R Ay F Q.

3. The symmetric cases of 1 and 2.

Then ® C M,
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Figure 7 Two implementations of the Hotel Booking scenario in HOx [KPY17].

Client; < (v by, ho) (511 (Az. Poy{M1/y}).so!(Az. Poy{h2/y}).0 |
h1?(x).ho?(y).if z < y then
(hy < accept.hg < reject.0 else hi < reject.hy < accept.0))

txd ! it).
Py def x!(room).xz?(quote).y!(quote).y > { accept : v aaccept.z!(credit).0, }

reject : x < reject.0

Clienty < (v h) (s1!(Az. Q1{M/y}) .52 (Aa. Q2 {T/y}).0)
Q2 x!{room).x?(quote;).y!(quote,).y?(quotey). Ry
Q, x!l(room).x?(quote,).y?(quotes).y!{quote;). Ry

R, “E if quote, < quote,then (x < accept.z!{credit).0 else x < reject.0)

3.4. The Hotel Booking scenario

We recall the case study for HO7 that we developed in our previous works [KPY 15, KPY17]: a
specification of a hotel booking scenario. The scenario involves a Client process that wants to book
a hotel room. Client narrows the choice down to two hotels, and requires a quote from the two in
order to decide. The round-trip time (RTT) required for taking quotes from the two hotels is not
optimal, so the client sends mobile processes to both hotels to automatically negotiate and book a
room.

Fig. 7 presents two possible HOx implementations of this scenario. For convenience, we write
if e then P; else P; to denote a conditional process that executes P or P> depending on boolean
expression e (this process is encodable using labelled choice). The first implementation, given by
process Clienty, sends two abstractions with body F,,, one to each hotel, using sessions s and ss.
In P,,, name z is meant to be instantiated by the hotel as the negotiating endpoint, whereas name
y is used to interact with Client;. Intuitively, process F,,: (i) sends the room requirements to the
hotel; (ii) receives a quote from the hotel; (iii) sends the quote to Clienty; (iv) expects a choice from
Client; whether to accept or reject the offer; (v) if the choice is accept then it informs the hotel
and performs the booking; otherwise, if the choice is reject then it informs the hotel and ends the
session. Client; instantiates two copies of P, as abstractions on session x. It uses fresh endpoints
h1, ha to substitute channel y in P,,,. This enables communication with the mobile code(s): Client;
uses the dual endpoints h and hs to receive the negotiation result from the two remote instances of
P and then inform the two processes for the final booking decision.

In the second implementation, given by process Clients, the two mobile processes reach an
agreement by interacting with each other (rather than with the client). Processes ()1 and ()2 nego-
tiate a quote from the hotel in the same fashion as process P, in Client;. The key difference with
respect to P, is that y is used for interaction between process Q1 and Q2. Both processes send
their quotes to each other and then internally follow the same logic to reach to a decision. Process
Clients then uses sessions s1 and so to send the two instances of )1 and ()s to the two hotels, using
them as abstractions on name x. It further substitutes the two endpoints of a fresh channel & to
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channels y respectively, in order for the two instances to communicate with each other.
To illustrate the type system of HO, we give types to the client processes. Assume

S = !{quote); &{accept : end, reject : end}
U = !{room);?(quote); ®{accept :!(credit); end, reject : end}

where quote, room, and credit are (first-order) base types. We then have:

0:0;y: S+ Ax. Py > U —00
0; 0; 51 :I(U —o0); end - s :I{U —00); end + Client; > ¢
0; 0;y :!/(quote); ?(quote);end F Az. Q; > U —oo (i =1,2)
0;0; s1 :I(U—o0); end - s9 :I{U —00); end + Clienty > ¢

4. Correctness Criteria for Typed Encodings

We define the formal notion of encoding by extending to a typed setting existing encodability
criteria for untyped processes, as put forward in, e.g., [Nes00, Pal03, PSVV06, Gor10b, LPSS10,
FL10, vG12, PNG13]. We first define a typed calculus parametrised by a process syntax, an opera-
tional semantics, and a type system. Based on this definition, in § 5 and § 6 we will define concrete
instances of (higher-order) typed calculi.

4.1. Basic Definitions

Definition 4.1 (Typed Calculus). A typed calculus L is a tuple (C, T, —, =, ) where C and T are
sets of processes and types, respectively; also, —, =, and \- denote a transition system (over an
underlying set of actions, denoted A), a typed equivalence, and a typing system for C, respectively.

Most elements of the formal notion of typed calculus are self-explanatory. Concerning the
operational semantics, we shall assume a notion of transition system in which transitions are labelled
with elements from a finite set of actions .4, which contains at least the unobservable action 7. We
will often be interested in 7-transitions, denoted —, which characterise reductions. Nevertheless,
to state more precise forms of operational correspondence, we will sometimes find it convenient to

use transitions of the form »£>, where ¢ € A and ¢ # 7 (i.e., visible transitions).
Our notion of encoding considers mappings on both processes and types; these are denoted [-]
and (-), respectively:

Definition 4.2 (Typed Encoding). Consider two typed calculi L1 =(Cy,T1,—1,~1,F1) and Lo =
(Ca, Ta, 2,720, o). Given mappings [-] : C1 — Coand (-) : T1 — T2, we write <[[]], ()> L] —
Lo to denote the typed encoding of L1 (the source calculus) into Lo (the target calculus). Mapping
(-) on types extends to typing environments in the expected way.

When considering forms of operational correspondence with visible actions, our notion of typed
encoding shall include mappings [-] and (-), but also a mapping {-} : A; — A describing how
visible actions in the source calculus £ are mapped in the target calculus Ls.

We now introduce syntactic criteria for typed encodings. Let o denote a substitution of names
for names (a renaming, as usual). Given environments A and I', we write o(A) and o (T") to denote
the effect of applying o on the domains of A and I'. In the case of HO7 and its variants, o(I")
clearly concerns only shared names in I': process and recursive variables in I" are not affected by o.
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Definition 4.3 (Syntax Preservation). We say that the typed encoding ([-],(-)) : L1 — Lz is syntax
preserving if it is:

1. Homomorphic wrt parallel, if (I'); 0; (A1 - Ag) b2 [Py | P2 > o
then (F), @; (A1> : (AQ) Fo [[Pl]] ‘ [[PQ]] > <.

2. Compositional wrt restriction, if (I'); 0; (A) b2 [(vn)P] >
then (I'); 0; (A) F2 (v n)[P] > o.

3. Name invariant, if (o(I")); 0; (0 (A)) F2 [o(P)] > © then
a((T)); 0; 0 ((A)) 2 o([P]) > o, for any injective renaming of names o.

Homomorphism wrt parallel (used in, e.g., [Pal03, PSVV06]) expresses that translations should
preserve the distributed topology of source processes. This criterion is appropriate for both encod-
ability and non encodability results; in our setting, it is induced by the typing rule for parallel com-
position (cf. Rule (PAR) in Fig. 5). Compositionality wrt restriction is also supported by typing and
is useful in our encodability results (§ 5). The name invariance criterion follows [Gor10b, LPSS10].

We now state type preservation, a static criterion on the mapping (-) : 73 — 7a: it ensures
that a typed operator is always translated into itself. The source and target calculi that we consider
here share five (session) type operators: input, output, recursion (binary operators); selection and
branching (n-ary operators). As such, type preservation is key to retain the meaning of structured
protocols: as session types operators abstract communication behaviour, type preserving encodings
help us maintain behaviour across translations.

Definition 4.4 (Type Preservation). The typed encoding ([-],(-)) : £1 — La is type preserving if
for every k-ary type operator op in Ty it holds that

(op(Th,- -+, Tk)) = op((T1), - - (T}))

Example 4.1. Following the discussion in § 2, let (-), be a mapping on session types such that

({U); Shu =2((U)u); (S)hu
(?(U); Shu =1H{(U)u); (S)hu

and other type operators are translated homomorphically. Since (-), translates the output type
operator into an input type operator (and viceversa), it does not satisfy type preservation.

Next we define semantic criteria for typed encodings. Recall that (un)typed barbs have been
defined in Def. 3.7.

Definition 4.5 (Semantic Preservation). Consider typed calculi £, = (Cy,T1,—1,7~1,F1) and
Lo = (Cy, Ta, 2, ~0,t9). We say that the typed encoding <[H], ()> : L1 — L9 is semantic
preserving if it satisfies the properties below.

1. Type Soundness: if T'; ; A 1 P> o then (T'); 0; (A) b2 [P] > o.
2. Barb Preserving: if I'; A by P |, then (I'); (A) F2 [P] Un.

3. Operational Correspondence: IfT'; (); A 1 P> o then
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(a) Completeness: IfT; A1 P 1 A b1 P’ then 3Q, A" such that
(i) (T); (A) F2 [P] =2 (A”) F2 Q and (ii) (T'); (A") 2 [P']~2 (A") 2 Q.
(b) Soundness: If (T'); (A) b2 [P] =2 (A") b2 Q then AP, Q", A, A" such that
() T; Ay P oy A" =y P (i) (T); (A F2 Q B (A™) 2 Q' and
(iii) (I'); (A") b2 [P =2 (A") 2 Q.

4. Full Abstraction: T'; A by P~y A’ by Q if and only if (T); (A) o [P] =2 (A) 2 [Q].

Together with type preservation (Def. 4.4), type soundness is a distinguishing encodability cri-
terion. Barb preservation, related to success sensitiveness in [Gorl0b], is convenient in our devel-
opments as all considered calculi have the same notion of barb. Operational correspondence, stan-
dardly divided into completeness and soundness, is also based on [Gor10b]; it relies on 7-transitions
(reductions). Completeness ensures that a step of the source process is mimicked by a step of its
associated encoding. Soundness is the converse of completeness; the formulation given above is
called weak soundness in [PvG15].

Above, operational correspondence is stated in generic terms. It is worth stressing that the oper-
ational correspondence statements for our encodings are tailored to the specifics of each encoding,
and so they are actually stronger than the criteria given above (see Props. 5.2, 5.5, 6.2, and 6.5).
In particular, we will consider forms of operational correspondence that account also for visible
actions, relying on a mapping {-} on actions, as already explained (cf. Def. 4.7 below). Finally,
following [San92b, PSVV06, Yos96], we consider full abstraction as an encodability criterion: this
leads to stronger encodability results.

4.2. Precise, Minimal, and Tight Encodings

We may now introduce precise, minimal, and tight encodings. While we state strong positive
encodability results in terms of precise encodings, to prove the non-encodability result in § 5.4, we
appeal to the weaker minimal encodings. Also, to compare two precise encodings in § 5.3 here we
introduce the notion of #ight encodings.

Definition 4.6 (Typed Encodings: Precise and Minimal). Let {[-],(:)) : £1 — Ly be a typed
encoding.

- We say that the typed encoding is precise, if it is syntax, type, and semantic preserving (Defs. 4.3,
4.4,4.5).

- We say that the typed encoding is minimal, if it is syntax preserving (Def. 4.3), barb preserving
(Def. 4.5(2)), and operationally complete (Def. 4.5(3)(a)).

The following property, concerning composability of precise encodings, will come in handy
in § 6. It follows closely a similar property established in [Gor10a] for (untyped) valid encodings
between languages with equivalences which are reduction-closed.

Proposition 4.1 (Composability). Assume typed calculi L1, Lo, and L3 whose typed equivalences

~1, A, and 3, respectively) are reduction-closed. Let ([]*,(-)*) : L1 — Lo and ([-]?, (-)?) :
Ly — L3 be two precise encodings. Then their composition, denoted {([-]? o [-]*, (-)? o (-)*) :
L1 — Lg, is precise.
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Proof. The proof follows directly from the definitions, and is very similar to the proof of Proposi-
tion 10 in [Gorl0a]. ]

We now introduce the notion of tight encodings, which refine precise encodings with extra
correctness criterion: a form of operational correspondence for visible actions. As already motivated

. . . ¢ ¢ . .
above, we write {1, {5 to denote actions different from 7, and — (resp. =) to denote a (weak) visible
transition; recall that {{- } stands for a mapping on action labels.

Definition 4.7 (Labelled Correspondence / Tight Encodings). Consider typed calculi L1 and Lo,
defined as L1 = (C1,T1,—1,~1,F1) and Lo = (Cy, Ta, 2, ~2,t9). The encoding <[[]]7 <)> :
L1 — Lo satisfies labelled operational correspondence if it satisfies:

I IfT; Ay P&y Ay P then 3Q, A, 0y such that:
(i) (T); (A) Fo [P] E25 (A") o Qs (i) o = {1} ; and
(iii) (T'); (A") F2 Qm2(A") 2 [P'].

2. If(T); (A) Fa [P] £255 (A') g Q then 3P, ', A", A", £y such that:
() T3 A by Py A7 by P (i) £y = {}s (i) (T); (A") F2 Q =2 (A") ko @
(iv) (T); (A") Fo [P]2(A") s Q.

A tight encoding is a typed encoding which is precise (Def. 4.6) and that also satisfies labelled
operational correspondence as above.

This way, the notion of labelled correspondence complements/generalizes the notions of opera-
tional soundness and completeness given in Def. 4.5, which is restricted to 7-labelled transitions.

5. Expressiveness Results for HO7, HO, and 7

In this section, we present two precise encodings: (1) higher-order communication with recur-
sion and name-passing (HOm) into higher-order communication without name-passing nor recur-
sion (HO) (§5.1); and (2) HOx into the first-order calculus with name-passing with recursion ()
(§5.2). We then compare these encodings (§5.3). Moreover, in § 5.4 we state our impossibility re-
sult for shared/linear names. We consider the following typed calculi, which result as three instances
of Def. 4.1:

Luor = (HOm, 71—, =", F)
EHO - <HO) 75’ =, %Ha |_>
»C7r = <7T)7§7 =, %C’ |_>

where T1, T2, and T3 are sets of types of HOw, HO, and w, respectively. The typing I is defined
in §3.2. The LTSs follow the intuitions given in § 3.3.2. The set of actions Ao, is as in Def. 3.10;
the sets of actions Ano and A, are obtained from Ao, as expected, considering the differences in
the syntax of values V. Moreover, higher-order and characteristic bisimilarities ~ and ~C are as in
Def. 3.11 and Def. 3.12.

Remark 5.1 (Type Annotations (2)). In encodings, we sometimes type-annotate bound variables
in order to distinguish first- and higher-order values and processes. This way, e.g., we may write
u?(x:C).P and u?(x: L).P to denote first- and higher-order input prefixed processes, respectively.
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Figure 8 Auxiliary mapping used to encode HOmx into HO (Def. 5.1).

[w!de. Q). P], = wina @, ) LPl, lwe{li: Plier], = e {li: [P, Yier
|w?(x).P|, € w?(z).|P], |wal.P| E ual|P],
lwn)P| € wn)|P],., [Qz.Q)w]|, E (. |Q],. ) u
[P1e], = 7], 1le], [zw], & cu

lol, " o

Tn if wis aname n and n & o (x fresh)
In all cases: u =

w  otherwise: w is a variable oranamen andn € o

5.1. Precise Encoding of HO7 into HO

HO is expressive enough to precisely encode HO7. As discussed above, the main challenges
are to encode (1) name passing and (2) recursion, for which we only use abstraction passing. As
explained in § 2, for (1), we pass an abstraction which enables to use the name upon application.
For (2), we copy a process upon reception; passing around linear abstractions is delicate because
they cannot be copied. To handle linearity, we define the auxiliary mappings | - | and | - JJU: the
former maps sequences of session names into sequences of variables; the second maps processes
with free names to processes without free names (but with free variables instead):

Definition 5.1 (Auxiliary Mappings). We define mappings | - | and [L . JJU as follows:

o || : 2V — V¥ is a map of sequences of lexicographically ordered names to sequences of
variables, defined inductively as:

el =€
In il = - il (@ fresh)
e Given a set of session names and variables o, the map u . JJU :HO — HO is as in Fig. 8.

Let P be an HOw process with fn(P) = {ny,--- ,nx}. Intuitively, our encoding [[]]} exploits
Jforall j € {1,... ,k}:

the abstraction Azy, - - - , zy. [ [P]}] ;5 where z; = |n;

Definition 5.2 (Typed Encoding of HO7 into HO). Let f be a map from process variables to se-
quences of name variables. The typed encoding ([-]*f,(-)*) : Lnox — Lwo is given in Fig. 9.
Mapping (-) on types homomorphically extends to environments A and T, with

(F - X {TLZ : Si}1§i§m>1 = (F)l CZX ((Sl)l, ey (Sm)l,S*)—><>
where S* is defined as pt.?(((S1)*, ..., (Sm)*,t) —¢); end.

Observe that the encoding of types (-)* depends on an auxiliary encoding for value types, de-
noted L . J ', Notice also that A in X : A is mapped to a non-tail recursive session type with vari-
able zx. Non-tail recursive session types were studied in [BP12, BDGK14]; to our knowledge, this
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Figure 9 Encoding of HO7 into HO (Def. 5.2).
Terms:

[ul(w).P1} “E ul(Xz. 22(x).(xw)).[PT}
[u?(z:C).QI} “= u?(y).(v s)(y 5|51 (M. [Q]})-0)
[u!(M\z. Q).P]} = ul(ha. [Q]).[P]}
[u?(z: L).PT} & u?(x).[P]}
[s<1.P]} € s<lL[P]}
[s > {li:P}ier]} °E s> {1 : [B]L }ier
[0]}° 0
[(vn)P1} °E (vn)[P]}
[ul; = @
[0z Q) ul} = (Az. [QI}) u
[P | QIF = [P} | [QlF
[X P} °E (v s) A7l y). y?(2x)-[[PTh xSy o)-0
| 57(2x)-IPI g xomy) (i = £n(P))
[X1} = (vs)(ex (1,5) | 51(2x).0) (7 = f(X))

Above, fn(P) is a lexicographically ordered sequence of free names in P. Map [L . JJU is given in
Def. 5.1 and Fig. 8.

Types:
|S]" % (2((S)* —o0); end) —o ()] % (2(((S)!) —o); end) —o0
(L) |M 9 (2(((L)}) —©); end) —oo |C—oo|" = (C)! 0
LC—><>J1de:f (C) =0
(S = ((S)) (L)) = (L)Y
((UY; S)* “Z UMy (S) (2(U); S) = 2(|U] )i (S)*!
(@{li : Si¥ier)* € ®{li - (Si) Yier (&{li  SiYier)* E &{li = (Si) Yier
(ut.S) = put.(S)* (1) =

(end)! % end

is the first application in the context of higher-order session types. For convenience, we use polyadic
name abstractions \z1,...,zx. P, with k& > 2 (sometimes also denoted as A\(x1,...,zx). P). A
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precise encoding of polyadicity into HO7 is given in § 6.2 (see also Cor. 6.2 to its extension to HO).

Key elements in Fig. 9 are encodings of name passing ([ul(w).P]} and [u?(x).P]}) and recur-
sion ([uX P]}} and [ X ]]}) As motivated in § 2, a name w is passed as an input-guarded abstraction;
on the receiver side, the encoding i) receives the abstraction; ii) applies to it a fresh endpoint s;
iii) uses the dual endpoint 5 to send the continuation P as an abstraction. Thus, name substitution
is achieved via name application. As for recursion, to encode pX.P we first record a mapping from
recursive variable X to process variable zy; here, we assume that for each recursive variable X;
there is a fresh variable zx,;. Then, using the auxiliary mapping [L . J]U in Def. 5.1, we encode the
recursion body P as a name abstraction in which free names of P are converted into name variables.
(Notice that P is first encoded into HO and then transformed using mapping [L . J]U.) Subsequently,
this higher-order value is embedded in an input-guarded “duplicator” process. We encode X in such
a way that it simulates recursion unfolding by invoking the duplicator in a by-need fashion. That
is, upon reception, the HO abstraction encoding P is duplicated: one copy is used to recover the
original recursion body P (through the application of £n(P)); another copy is used to re-invoke the
duplicator when needed.

We illustrate the encoding by means of two examples: the first illustrates our strategy for en-
coding recursion, while the second illustrates the strategy for first-order session communication.

Example 5.1 (Encoding Recursion). Let pX.al{(m).X be an HOm process. Its encoding into HO is
given next; notice that f = () and f' = X — am.

[[uX.a!(m>.X]]}1c = (vs1)EN AN @as T, y1)- 11 7(2x). | [al(m >.Xﬂ},ﬂm) 0
| s12(x)-[al(m) XT5.)

[[a!(m).X]]}/ = al(\z1. 217(x).(xm)).(v s2)(zx (a,m, s2) | S2!(zx).0)
uﬂa!<m>.Xﬂ},ﬂ@ = z/(Az1. 217(x).(x T)).(V $2) (2x (T, Tm, $2) | 52)(2x).0)

This way, by writing V to denote the abstraction
Mzay Tm,y1)- 117 (2x) el A21. 217 (2) (T ) - (V S2) (2x (Tay T, S2) | $21(2Xx).0)
we would have
[uX.al{m). X]]f = (vs1)(5IUV).0 | s1?(2x).al{Az1. 217(z).(z m)).
(v 52)(2x (a,m, 52) | 531(2x).0))

Next we illustrate the behaviour of [[uX.a!(m>.X]]}; below { stands for a!(\z. z?(x).(x m)).

[[uX.a!(m>.X]]} D al(Azr. 21 2(x).(zm)). (v s2)(V (a,m, s2) | 521(V).0)
(vs2)(V (a,m, s2) | 521(V').0)
(v s2)(s27(2x).al(Az1. 21 7(z).(x m)).
(vs3)(2x (a,m, s3) | 531(2x).0) | 521(V).0)
= (vs2)(52U(V).0 | s27(2x).al{Az1. 217 (z).(x m)).
(vs3)(2x (a,m, s3) | 53!(2x).0))
—, [l (m). XT

I I~
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Figure 10 Encodings of the hotel booking clients (Example 10).

[[Ql]]} = [[:U!(room).x?(quotel).y!(quotel).y?(quoteQ).Rw]]}
= zl(Az1. 217(z1).(21 room)>.[[x?(quotel).y!<qu0tel>.y?(qu0t62).Rm]]}
= z!(A\z1. 21?(z1).(z1 room)).z?(y1).(v 1) (y1 51 |
s1!(A\quote;. [[y!(quotel).y?(quoteQ).Rz]]}).O)
= z!(Az1. 21?(z1).(z1 room)).z?(y1).(v 1) (y1 51 |
st (Aquotey. y!(Aza. 297 (x2). (22 qu0t61)>.[[y?(quoteQ).Rx]]}>.0)
= z!(Az1. 217(z1).(z1 room)).z?(y1).(v 1) (y1 51 |
st Aquotey. y!(Azo. 297(x2).(x2 quote;)).y?(u1).(v s2)(u1 s2 | S2l{Aquotes. [[Rx]]}>0)>0)
[[Qg]]} = [[x!(room>.x?(quotel).y?(quotBQ).y!(quotel).Rz]]}
= z!(Az1. 21?7(z1).(z1 room)).z?(y1).(v 1) (v1 51 |
st Aquoteq. y?(up).(v s2)(ug s2 | s2!{(Aquotey. y!(Aza. 227 (x2).(x2 qu0t61)>.[[Rx]]}>.0)>.0)

with

[[Rxﬂ} = [if quote; < quote, then (z < accept.z!(credit).0 else z < reject.O)]]}
= if quote; < quotey then [(z <accept.z!(credit).0 else z <reject.0)]}
<

= if quote; < quote, then (x <accept.x!(Az. 27(z).(x credit)).0 else x < reject.0)

Example 5.2 (Encoding a hotel booking client). The HOx process Clients (cf. Fig. 7) is one possible
implementation for the hotel booking scenario described in § 3.4. Its encoding in HO is as follows:

[[Clientg]]} = [(vh)(s1!(Az. Q1 {M/y}).s2! (A Qg{ﬁ/y}>.0)]]}
= (wh)(si!{(Az. [ {My}]})-s2 (A2 [Q2{"/y}]7).0)
where [[Ql]]} and [[QQ]]} are given in Fig. 5.2.
We now state the properties of the encoding. We start with type preservation and type soundness:

Proposition 5.1 (HO7 into HO: Type Preservation and Type Soundness). The encoding from Lyox
into Lyo (cf. Def. 5.2) is type preserving (cf. Def. 4.4) and type sound (cf. Def. 4.5(1)).

Proof. Type preservation follows directly from Fig. 9. Type soundness is shown by induction on
the inference of I'; @; A = P > ¢. See Prop. Appendix B.1 (Page 52) in Appendix B.1. O

We now state a generalised form of operational correspondence, which includes 7-labeled tran-
sitions (reductions) but also visible actions. To this end, we define a mapping on action labels:

Definition 5.3. Given the typed encoding <[[]]}, ()1> : Lnor — Lyo (cf. Def. 5.2), the mapping
on actions {-}* : Anor — Awo is defined as follows:

Lm)nl(m) ¥ °E (vim)nl(\z. 22(z).(xm))
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{n?(m)}* e n?(Az. 2?(x).(x m))
{wimn! (e, PY} = (vin)n!(Az. [P]5)
{2z, PYJ °E 2. [P]})
and as an homomorphism for other actions { € Anox.
We then have:

Proposition 5.2 (Operational Correspondence, HO7 into HO). Let P be an HOw process. If
I;0; A+ P o then:

1. Suppose I'; A+ P XL A’ P'. Then we have:

a) If 41 € {(vm)nl(m), (vm)n!(Az.Q), s D1, s&l} then Iy s.t.
(D)5 (A)! [P 2 (A7) - [P']} and £ = {3}

b) If 1 = n?(\y. Q) and P' = Py{ - Q/z} then I/5 s.t.
(D)% (A F [P]E 2 (A) - [Ro] 42w [Qli/2} and £, = {41},

¢) If £, = n?(m) and P’ = Py{"/x} then 362 Rsuch that (T); (A)! F [P]} 2 (A R,
with 5 = {61 )%, and (D)5 (A - R 20 (A'Y F [Po]b{ma}.

d) If Ekll ; Tand P = (vm)(n!(m).Py | n?(z).P) and P’ = (vm) (P | P2{"Yx}) then 3R
such that
(T)5 (A) = [P} = (A + (vm) ([P} | R), and
(D)L AV - (i) ([P | R) Vs (A = (vim) ([P | [Pa]3{m)).

e) I}flﬁl =7and P = (vm)(n!(\y. Q).P, | n?(x).P) and P’ = (vin) (P, | Po{M-Q/z})
then
(T); (A F [PI} 5 (A E (vm) ([P} | [Pal3{Ay- [QTi/2)).

f) If (1 =7and P = (vm)((A\z. P) V) and P’ = (vm)(P1{V/z}) then
(D)% (A) F [P]} = (A F [P}

2. Suppose (I')!; (A)* F [[P]]1 & (A’)! - Q. Then we have:
a) If lo € {(vm)n!(Az. 27(x).(xm)), (vm)n!{Az. R), s ® 1, s&l} then 31, P’ s.t.
T;AF P& A PLey = {6} and Q = [P']5.
b) If /3 = n?(A\y. R) then either:
(i) azl,x f/” P'st. T;A F P& A F PP, 0y = ), [P"]4 = R. and
= [P'T5
() R=y?(z).(xm) and 351,2 P'stT;AF Py A E P{m/z2}, 0y = {l )1, and
(D) (A) - Q Enmn™s (A") - [[P'{m/z}]]f
¢) If /5 = 7 then A’ = A and either
() IP'st. T;AFPS AR P L and Q = [[P’]]f
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(i) 3P, Py, z,m,Q st. T;A - P55 AF (vi)(Py | Pa{™/z}), and
(D) (A) F Q ¥l (A - [P} | [P}

Proof. By transition induction. See Prop. Appendix B.2 (Page 55) in Appendix B.1. 0

In the above proposition, it is worth observing how we can explicitly distinguish the role of

. C . 2 7, .
finite, deterministic reductions (—» and }—B>, cf. Not. 2) in soundness and completeness statements.

The typed operational correspondence given above is an important component in the proof of
full abstraction, which we state next.

Proposition 5.3 (HO7 into HO: Full Abstraction). Let P;, (1 be HOm processes.
F; Al [ P1 %H AQ [ Ql ifandonly lf(F>17 <A1>1 F [[Pl]]}» %H (Ag)l [ [[Ql]]}‘

Proof. The proof of both directions proceeds coinductively. See Prop. Appendix B.3 (Page 58) in
Appendix B.1. O

We may state the main result of this section:

Theorem 5.1 (Precise Encoding of HOx into HO). The encoding from Lyor into Lyo (cf- Def. 5.2)
is precise.

Proof. According to Def. 4.6, preciseness includes syntax-, type-, and semantics-preservation.
Syntax preservation follows immediately from the definition of the encoding. Type preservation
follows from Prop. 5.1 (Page 23). Semantics-preservation follows from Prop. 5.2 (Page 24) and
Prop. 5.3 (Page 25). O

5.2. Precise Encoding of HOw into

We now discuss the precise encodability of HO7 into 7; the only non trivial issue is encod-
ing higher-order communication, which is present in HO7 but not in 7. We closely follow San-
giorgi’s encoding [San92b, SWO01], which represents the exchange of a process/abstraction by pass-
ing around a fresh trigger name. Trigger names may then be used to activate copies of the abstrac-
tion, which becomes a persistent resource represented by an input-guarded replication.

The process mapping [-]2, which we now informally discuss, casts this strategy in the setting of
session-typed communications. In the presence of session names (which are linear and cannot be
replicated), our approach uses replicated names as triggers for shared resources and non-replicated
names for linear resources. The encoding of abstraction sending therefore distinguishes two cases:

(va)(ul{a).(IP]? | *a?(y).y?(2).[QF%))  if£s(Q) =0
(va)(ul{a).([P]? | a?(y).y?(z).[Q]?)) otherwise

where *P stands for uX.(P | X) (Not. 1). In the first case, if the abstraction body does not contain
(linear) session names then it can be safely represented as a persistent server accessible via a (fresh)
trigger name a, which is sent in place of the abstraction. The second case covers the case in which
the abstraction to be passed around is linear: the server on a should be invoked exactly once—it
cannot be persistent. In this scheme, the encoding of abstraction reception simply expects a trigger
name:

[u!(\z. Q).P]> < {

[u?(z).P]? °E u?(z).[P]?
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Figure 11 Encoding of HOw into 7 (Def. 5.4).
Terms:

[u! (A Q>.Pﬂ2 def {(U a)(ul{a).([P]? | *a?(y).y?(x).[Q]?)) iffs(Q) =0

(v a)(ul{a).([P]? | a?(y).y?(2).[Q]?)) otherwise
[u?(z).P]* °€ w?(z).[P]?
[zu]? 2 (vs)(z!(s).5(u).0)
[z, P)u]?>°E (vs)(s?(x).[P]? | 5'(u).0)
Types:
(S —0); S1)* S 1{(2((S)*); end)); (1)
(2(S—00): 51)* L 2((2((S)?); end)); (S1)

Elided mappings are homomorphic.

The mechanism for representing abstraction passing with name passing is completed in the encoding
of name application. There are two cases:

[ u]? et (v s)(x!(s).31(u).0)
[Oz. P)u]?°E (vs)(s?(z).[P]? | 3'(u).0)
Thus, in both cases we first establish a fresh session s with the server representing the abstraction

body; the name to be applied (u) is then passed around using s. Observe how this encoding naturally
induces the name substitution expected from a name application. We may now define:

Definition 5.4 (Typed Encoding of HO into 7). The typed encoding ([-]?,(-)?) : Lnox — Lx is
defined in Fig. 11.

Example 5.3 (Encoding Client; and Clients). The Hotel Booking scenario is described in § 3.4 (and
Fig. 7) as the HOT processes Client; and Clienty. We first encode Client; in 7 is as follows:

[Client,]? = [(v b, ha) (51! Az Py {"1/y}) 50! (A Pay {h2/51).0 |
h1?(x).ha?(y).if © < y then
(h1 <accept.hy < reject.0 else hy <reject.hy <accept.0))]?
— (vhy, ho)([s1! A Pay{11/y}). 521 (A Py {12/} .0] |
h1?(x).ha?(y).if © < y then
(h1 < accept.hs < reject.0 else hi < reject.hy < accept.0))
— (i, o) (v @) (51! (an)-(Tso! (A Pay {13/ 1) O | ax?(y)-57(2) [Py {11/ }1%)) |
h1?(x).ha?(y).if © < y then
(h1 <accept.hy < reject.0 else hy < reject.hy < accept.0))
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= (vh1, ho) ((v a1)(s1!{a1).(v az)(s2!(az).
(0 ] 422(5)-57()-[Pry {12/} 1)) | ax?(9)-52 () [Poy /)|
h1?(x).he?(y).if © < y then
(h1 <accept.hy < reject.0 else hy < reject.hy < accept.0))

where [[chy]]2 = Pyy, for it does not involve higher-order communication. Similarly, the encoding
of Clienty is as follows:

[Clienta]* = [(v k) (s1!(Az. Qu{/y}).s21 (A Qa{ Ty }).0)]?
= (wh) (v ar)(s1 o) (52! - Q). O | an?(y).7(x) 1@ {17112 )
= (v h)((va1)(s1il{a1).(v a2)(s2!{a2).0 |
02?(9)y?(0)-[Qa ) | an?(w) 7 () [ {1/ w}]?))
where [Q1]? = Q1 and [Q2]? = Q2 for they do not involve higher-order communication.

We state the properties of this encoding. First, type preservation, type soundness, and opera-
tional correspondence, which requires a mapping on action labels.

Proposition 5.4 (HOx into 7: Type Preservation and Type Soundness). The encoding from Lyox
into L (cf. Def. 5.4) is type preserving (cf. Def. 4.4) and type sound (cf. Def. 4.5(1)).

Proof. Type preservation follows directly from Fig. 11. Type soundness is proven by induction on
the inference I'; ); A = P > ¢. See Prop. Appendix B.4 (Page 61) in Appendix B.2. O

Definition 5.5. Given the typed encoding ([-]?,(-)?) : Lnor — Lx (cf: Def. 5.4), the mapping on
actions {-}? : Anor — Ax is defined as follows:

fwm)n! O, PY}? (v m)n!(m)
{n?(\z. P)}? = n?(m) (m fresh)
and as an homomorphism for other actions { € Anon.
We now state operational correspondence:

Proposition 5.5 (Operational Correspondence, HO7 into 7). Let P be an HOw process such that
;0;AF Pro.

1. Suppose T'; A+ P& A’ F P Then we have:
a) If b1 = (vm)n!(\z. Q), then 3T’ A" where either:
(TP (A [P A Ty (a7 [P ] a?(y) 4700 [QF (7 £5(Q) = )

) (F)Q; (A)Q - [[P]]2 1OV , (I‘)Q; A - [[P’]]Q | 57(y)y7(aj)[[Q]]2 (otherwise)
b) If t4 = n?(\y. Q) then 3R where either

- ()% (A)?* = [P]? M I'; (A")2 & R, for some I and
(T)2 (A F [P <8 (A" F (v a)(R] +a?(y)57(x).[QIP) (i £s(Q) = 0
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(Y% (AY - PP A4 (ry2, (A7 - R, and
(T)2 (A")2 F [P1]? =° (A")? F (vs)(R | s?(y).y?(2).[Q]?) (otherwise)
c) If {1 = 7, with T # 73 then one of the following holds:
- (T)%(A)? F [P & () = () ([P | (va) ([P} | #a?(y)y?(x).[Q])),
for some Py, Py, Q (with £5(Q) = 0);
- (D)% (A)? F [P = (A)? F (vm)([A]? | (vs) ([P {Fa) | s7(y)y?(2)-[Q])),
for some Py, Py, Q (with £5(Q) # 0);
- (D)% (A)? [P & (D)% (A)* F [P
d) If 6y = 75 then (T)*; (A)? F [P]> & (L)% (&) - [P
e) If {1 € {n @& I, n&l} then
3y = {01 Y2 such that (T)?; (A)? - [P]2 2 (T)2; (A')2 + [P']2

2. Suppose (T')%; (A)? - [P]? N (A" + R.

a) If ta = (v m)n!{m) then one of the following holds:

(v m)nl(m)

- 3P’ such that P ——— P’ and R = [P']?;

- 3Q, P’ such that P MO Q) b and R = [P]? ] *a?(y).y?(x).[Q]? and £5(Q) = 0;

- 3Q, P’ such that P O bl and R = [P']? | s?(y).y?(x).[Q]? and £5(Q) # 0;
b) If to = n?(m) then one of the following holds:

- 3P such that P "X P and R = [P']2;
- 3Q, P’ such that P29 pr
and (T')%; (A')? = [P']? =° (A')? = (va) (R | *a?(y).y?(x).[Q]?) and £5(Q) = {;

- 3Q, P’ such that P AT pr
and (L)% (A')? = [P']? &° (A')? - (v s)(R | s2(y).y?(2).[Q]?) and £5(Q) # 0.
c) If by = 7 then 3P’ such that P ¥~ P’ and (T')?; (A’)? F [P']? ~° (A’)? - R.
d) If b5 & {n!{m),n @ l,n&l} then Iy such that {; = {{>}? and
T'AFPSS T AR P

Proof. By transition induction. See Prop. Appendix B.5 (Page 65) in Appendix B.2. O

Some comments on the completeness properties given by Prop. 5.5 (Page 27) are in order. Items
1(a), 1(b), and 1(e) describe the way in which the encoding mimicks source visible transitions (out-
put, input, and labelled choice/selection, respectively). As discussed above, the encoding of output
sets up a potentially persistent server to represent the body of the abstraction being exchanged.
The statement in 1(a) formalises the fact that after an output transition in the source process this
server has not been yet invoked/used on the target side, and so it appears as a residual context
(xa?(y).y?(x).[Q]? or s?(y).y?(x).[Q]?) in parallel to the encoding of the continuation of the out-
put ([P’ ]]2). Similarly, the statement in 1(b) formalises the fact that after an input transition the
resulting process R should be placed in an appropriate context containing the server representing
the abstraction body. Together, R and its server are behaviorally equivalent to [P’]?. Items 1(c)
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and 1(d) state correspondences for internal actions, in the sense of Def. 4.5. In particular, the first
two sub-items in 1(c) describe how a source reduction due to abstraction passing is matched: in
our encoding this is mimicked by exchanging the trigger names; the third sub-item covers other
possibilities for source reductions.

Exploiting the above properties (type preservation, typed operational correspondence), we can
show that our typed encoding is fully abstract and precise.

Proposition 5.6 (HO7 to 7r: Full Abstraction). Let P, Q1 be HO7 processes. I'; A1 = Py =% Ag
Q1 if and only if (T')?; (A1)? F [P1]? = (A2)® F [Q1]%

Proof. The proof of both directions proceeds coinductively. See Prop. Appendix B.6 (Page 67) in
Appendix B.2. O

We may now finally state:

Theorem 5.2 (Precise Encoding of HOw into 7). The encoding from Lyor into Ly (cf. Def. 5.4) is
precise.

Proof. According to Def. 4.6, preciseness includes syntax-, type-, and semantics-preservation.
Syntax preservation follows immediately from the definition of the encoding. Type preservation
follows from Prop. 5.4 (Page 27). Semantics-preservation follows from Prop. 5.5 (Page 27) and
Prop. 5.6 (Page 29). O

5.3. Comparing Two Precise Encodings

The precise encodings in § 5.1 and § 5.2 confirm that HO and 7 constitute two important sources
of expressiveness in HO7. This naturally begs the question: which of the two sub-calculi is more
tightly related to HOm? We argue, both empirically and formally, that when compared to 7, HO is
more economical and satisfies tighter correspondences.

Empirical Comparison: Reduction Steps. We first contrast the way in which
a) the encoding from HO7 to HO, denoted [H]} (§5.1), translates processes with name passing;

b) the encoding from HO to 7, denoted [-]? (§ 5.2), translates processes with abstraction passing.

Consider the HO7 processes:

Py = sl{a).0 | 57(x).(x!(s1).0 | ... | z!(sp).0)
Py =s/{(Az.R).0 |57(x).(xs1| ... | xsp)

P, features pure name passing (no abstraction-passing), whereas P» involves pure abstraction
passing (no name passing). Intuitively, P; and P> have a similar purpose: in both cases, the intended
communication on s leads to n usages of the communication object (name a in Py, abstraction Az. R
in P,). Consider now the reduction steps from P and Ps:

Py al(s1).0| ... | al(s,).0
Pl O R)si| ... | Q@ R) sy e o R{si/z} | ... | R{5+/x}
~—_——
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We now encode P; into HO and P into 7 and contrast the results. First, by considering the encoding
of P; into HO (following mapping [H]} in Fig. 9) we obtain:

[[Pl]]} = si{Az.27(x).za).0 |
57(y).(v so) (y s0 | so!{Az. (21(V1).0 | ... | z/(V,,).0)).0)
T (v 50)(so?(z).xa | Sgl{Az. (z1(V1).0 | ... | z/(V},).0)).0)
T al(V3).0] ... | al(V,).0

where we write V; to stand for \z. 2?(z;).x; s;. Now, we encode P, into 7 (following mapping [-]?
in Fig. 11):

[P]? = (va)(sl{a).(0 | *a?(y).y?(z).[R]?)) |
52(z).((v s0)(z!(s0).50!(51).0) | ... | (¥s0)(z!(s0).50!(s).0))
== (va)(*a?(y).y?(z).[R]|
(v s0)(al(s0)-501(s1).0) | ... | (v s0)(al(s0).55!(sn).0))
=ry (va)(xa?(y)y?(2).[R]? | [RI* {1/} |
(v s0)(al(s0)-50!(s2).0) | ... | (vs0)(a!(s0)- %’<8n>-0))
Frowm-1)  (va)(*a?(y).y?(@).[R]* | [RI*{sy/} | [R]*{sz/a} | ... | [R]*{sn/})
Clearly, encoding P; into HO is more economical than encoding P, into 7. Not only moving
to a pure higher-order setting requires less reduction steps than in the first-order concurrency of
m; in the presence of shared names, moving to a first-order setting brings the need of setting up
and handling replicated processes which will eventually lead to garbage (stuck) processes (such as
+a?(y).y?(z).[R]? above). In contrast, the mechanism present in HO works efficiently regardless
of the linear or shared properties of the name that is “packed” into the abstraction. The use of

[-transitions guarantees local synchronizations, which are arguably more economical than point-
to-point, session synchronizations.

It is useful to move our comparison to a purely linear setting. Consider processes ()1 and (J2:

Q1 = s'1(s).0 | s'?(z).2!{a).0
s s!{a).0

Q2 = sl{(Ax.R).0 | 57(z).xza
s R{Y/x}

Q1 is a 7 process and ()2 is an HO processs. If we consider the encoding of 1 into HO and of Q)2
into m, respectively, we obtain:

[[Ql]]} = S1Az.22(2).28).0 | $2(y)-(v s0)(y s0 | So!{Az. 2!(Az. 27(y).y a).0).0)
Z s (vso)(s0?(x).w s | 5ol Az 2! (Az. 22(y).y a).0).0)
o (A 2l(Mz2.27(y).ya).0) s
SR si{\z. 27(y).y a).0

[ = (vai)(sia).(0 | @?(y)-y?(x).[R]*)) | 57(2).(v s0)(z!{s0).50!(a).0)
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s (vs)(s0?(x).[R]? | 50!{(a).0)
= [RI?{9/}

In this case, the encoding [-]? is more efficient because it induces less reduction steps. Therefore,
considering a fragment of HO7 without shared communications (linearity only) has consequences
in terms of reduction steps. These apparent benefits of encoding [-]? over encoding [[]]} in the
presence of linearity should, however, be considered in a broader setting, for in §5.4 we prove
that linear resources do not suffice to encode shared communications. Therefore, in the general
case featuring linear and shared communication not only the benefits of [-]? over [[]]ch could not
be obtained, but the drawbacks mentioned in the comparison between [P1]} and [P2]? (ie., the
garbage processes generated by [-]2) could well be more prominent. This observation may be used
to informally argue that [[]]} is “better than” [-]? (or, alternatively, that HO7 is closer to HO than to
m); next, we develop a formal argument to substantiate this claim.

Formal Comparison: Labelled Transition Correspondence. To formally state that HOr and HO
are more closely related than HO7 and 7, we may distinguish the precise encodings [[]]} and [-]?
depending on whether they are also tight encodings or not (cf. Def. 4.7):

Theorem 5.3 (HO Tightly Encodes HO7). While the encoding of HO7 into HO (Def. 5.2) is tight,
the encoding of HOw into m (Def. 5.4) is not tight.

Proof (Sketch). The proof proceeds by showing that the encoding [[]]} enjoys labelled operational
correspondence, whereas [[-]? does not. Recall that a labeled operational correspondence for [[]]}
has been already stated in Prop. 5.2 (Page 24). The analog of Prop. 5.2 (Page 24) does not hold for
the encoding [-]? of HO7 into 7. Consider the HO7 process:

T 0;A b sl P).0b o 22 g0

with Az. P being a linear value. We translate it into a 7 process:

o
()2 0; (A)? - (v a)(s1(a).(0 | a?(y).y?(@).[P]2)) po % A’ F a?(y).y?(x).[P]?po s .
The resulting processes have a mismatch both in the typing environment (A’ # (0)?) and in the
actions that they can subsequently observe: the first process cannot perform any action, while the
second process can perform actions of the encoding of \x. P. O

5.4. A Negative Result

As most session calculi, HO7 includes communication on both shared and linear names. Shared
names enable non deterministic, unrestricted behaviour; linear names represent deterministic com-
munication structures. The expressiveness of shared names is also illustrated by our encoding from
HO~ into 7 (Fig. 11). This result begs the question: can we represent interaction along shared
names using linear names only? It turns out that shared names strictly add expressiveness to HOx:
next we prove the non existence of a minimal encoding of interaction along shared names using
linear names.

Theorem 5.4. There is no minimal encoding from m to HOx s
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Proof. Assume, towards a contradiction, that such a typed minimal encoding indeed exists. Re-
call that a minimal encoding is syntax preserving, barb preserving, and operationally complete
(cf. Def. 4.6). Consider the 7 process

P =a(s).0]a(z)n<l1.0|a(x).m<ls.0 (with n # m)
such that I'; @; A - P > . From process P we have one of the following:

DAFPS A Fnal0]alz)maly.0 =P 3)
D;AFPS A'Fmaly.0|a(z)nali.0 =P “)

Thus, by definition of typed barb (cf. Def. 3.7) we have:
AP L, A T;A'RP Y 5)
AR ), AN T;A P |, (6)

Consider now the HO7 " process [P]. By our assumption of operational completeness (Def. 4.5-

3(a)), from (3) with (4) we infer that there exist HO7 " processes .S1 and Sy such that:

(T); (A) F [P] 2 (A') - 51 =7 [A] 7
(T); (A) F [P] 2> (A') - Sy =F [P] (8)

By our assumption of barb preservation, from (5) with (6) we infer:

(C); (A )Y [P U A AT); (A7) F [PL] m ©)
(T); (A) F [Pl ¥ A (D) (A) - [Po] U (10)
By definition of ~, by combining (7) with (9) and (8) with (10), we infer barbs for S; and S5:
(T); (A) St dn A (D) (A) F Si i (11)
(T); (A) - So b A (T); (A) F 5o (12)

That is, S and [P;] (resp. Sz and [P5]) have the same barbs. Now, by 7-inertness (Lem. 3.1), we
have both

(T); (A') - Sy & (A) - [P] (13)
(T); (A') - So &7 (A) + [P] (14)

Combining (13) with (14), by transitivity of ~, we infer
(T); (A") F S~ (A") F S5 (15)
In turn, from (15) we infer that it must be the case that:

(T); (A) E [P U A (D) (A) [P U
(T); (A) E[P2] U A (D) (A) F [P2] U

which clearly contradict (9) and (10) above. We therefore conclude that a minimal encoding from
7 to HO7—s" does not exist. O
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We then have:

Corollary 5.1. Let C;,Cy € {HO7,HO, 7}

(a) There is no minimal encoding from Lc, into L—s.
2
(b) There is a precise encoding ofﬁqsh in ﬁC;sh.

Proof. Part (a) is immediate from Thm. 5.4. Part (b) follows from the definitions of the typed encod-
ings of HOm into HO (cf. Def. 5.2) and of HO into 7 (cf. Def. 5.4), which work uniformly for linear
and shared names, as well as from the preciseness results for such encodings (cf. Prop. 5.1 (Page 25)
and Prop. 5.2 (Page 29)). O

6. Extensions: HO7 with Higher-Order Abstractions and with Polyadicity

We now extend HO in two orthogonal ways: HOm ™ extends HO7 with higher-order applica-
tions/abstractions, while HO 7 extends HOx with polyadicity. In both cases, we detail the required
modifications in syntax and types. By combining HO7™ and HO 7 into a single calculus we obtain
HO 7 T: the extension of HO7 with both higher-order abstractions/applications and polyadicity (cf.
Cor. 6.1 and Cor. 6.2)

We present precise encodings of HO7™ and HO 7 into HO7. We then use the encodings of HO7
into HO and 7 in the previous section, together with encoding composability (Prop. 4.1 (Page 18)),
to relate HO and 7 with the super-calculus HO 7, which subsumes both HO7+ and HO 7.

6.1. Precise Encoding of HOm™ into HOm

We first introduce HO7r™, the extension of HOm with higher-order abstractions and applications.
This is the calculus whose (typed) behavioral theory we studied in [KPY 15, KPY17]. The syntax
of HOn™ is obtained from Fig. 2 by replacing V « with V W in the syntax of processes, where
W is a higher-order value. As for the reduction semantics, we keep the rules in Fig. 3, except for
Rule [App|, which is replaced by

(Az. P)V — P{V/z}
Example 6.1. The following is a simple HOm™ process with its corresponding reductions:

siAz.Q).0 | 5?(y).(Az. (zs1)y) — (Az. (251)) (A\z. Q)
— (Az. Q) s1

— Q{51/x}

Above, the additional expressivity of HOm™ with respect to HOw is in the ability of applying a
Sfunction such as \z. (z s1) to an argument such as \x. Q), which is not a name but another function.

The syntax of types in Fig. 4 is modified as follows:
L = U—o | U-—oo.

These types can be easily accommodated in the type system in §3.2: in Fig. 5, we replace C' by
U in Rule (ABS) and C by U’ in Rule (APP). With these extensions, subject reduction (Thm. 3.1)
holds for HO7 ™ (cf. [KPY15])
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We give an encoding of HO7 into HO7 and show that it is precise. We may then use encoding
composition (Prop. 4.1 (Page 18)) to encode HO7™ into HO and 7. We consider the following
typed calculus (cf. Def. 4.1):

Lront = (HOTH, Ta, 5, A, 1)

where 7Ty is a set of types of HO7™; the typing I- is defined in § 3.2 with Rules (ABS) and (APP)
modified as explained above. Formally, the set Apg,+ coincides with Apo,, for the syntax of
values V' is the same in both languages. However, by considering the refined actions given by
type-annotated values (cf. Rem. 5.1), we have that Apo,+ includes output and input actions of
the form (v m)n!(Az : L. P) and n?(\z: L. P), whereas Ano, includes only labels of the form
(vm)n!(Ax:C. P) and n?(A\z:C. P).

Definition 6.1 (Typed Encoding of HOn ™ into HOm). The typed encoding ([-]3,(-)®) : Luor+ —
Luor is defined in Fig. 12.

We consider mappings for terms and types, denoted [-]* and (-)3, respectively. Since now
functions can be applied to (higher-order) values, we have also an auxiliary mapping on values,
denoted { - [}*. We illustrate the essence of these mappings by means of an example.

Example 6.2. We translate the simple process from Ex. 6.1, underlining the parts of the translation
which are expanded/modified from one line to the following:

[s! (A2 Q).0 [ 52(y).(Az. (2 51) )]

= sl{{Az. QI°).[0]° | 57(y)-[(Az- (2 51) )]
= slQw. w?(2).[Q]%).0 | 57(y).(v 50) (s0?(2)-[(2 s)]* | 56! ({ly[}°)-0)
= sl{w. w?(2).[Q]%).0 | 57(y).(v s0)(s0?(2).(v 52) (2 52 | 32! ({{51[}°).0) | 50!(y).0)
= slOw. w?(2).[QI%)-0 | 57(y)-(v s0) (507(2)-(v 52) (2 52 | 52!(s1).0) | 55(y).0)
— 0| (v50)(507(2)-(v 52) (2 52 | 52!(s1).0) | 55! (Aw. w?(2).[Q]7).0)
— 0 (vs2)(Aw. w?(@).[Q]) 52 | 52!(51).0) | O
— 0 (v52)(52?(2).[Q] | 531(51).0) | O

—= [QI* {51/}
This typed encoding satisfies the following properties:

Proposition 6.1 (HO7™ into HO7: Type Preservation and Type Soundness). The encoding from
Luor+ into Luor (cf. Fig. 12) is type preserving (cf. Def. 4.4) and type sound (cf. Def. 4.5(1)).

Proof. Type preservation follows directly from Fig. 12. Type soundness is shown by induction on
the inference of I'; @; A = P > . See Prop. Appendix B.7 (Page 69) in Appendix B.3. O

Before proving operational correspondence we define a mapping on action labels:

Definition 6.2. Given the typed encoding {[-]3,(-)®) : Luor+ — LHonr (cf. Def. 6.1), the mapping
on actions {-}> : Ayor+ — Anox is defined as follows:

{wm)ntAz: L. PYY °E (vm)nl(Az:(L)3. 22(x).[P]?)
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{n?\z: L. PYY® °Z n2(\z:(L)3. 22(z).[P]?)
and as an homomorphism for all other actions { € Ayox+-
We may now state a labeled form of operational correspondence, as well as full abstraction:

Proposition 6.2 (Operational Correspondence. From HO7 ™ to HO7). LetT';0; A - P be an HOx
process.

1. T;AF P& A F P implies

a) gz}} e {wm)n!(\z. Q),n?(\z. Q)Y then (T)3; (A + [P 5 (A')® + [P']® with
0 =2
b) Ift ¢ {(vm)n!(\z. Q),n?(\z.Q), 7} then (T')3; (A) + [P]® KN (A" = [P]3.
c) If ¢ = 75 then (T')%; (A)® I- [P]® & A" F R and (T')3; (A')® - [P']® =" A" - R, for
some R.
d) Ift = 7 and { # 75 then (T')3; (A)® - [P]® = (A')3 - [P]°.

2. (T)3; (A F [P 5 (A" - Q implies

a) If ¢ € {(vm)n!(Az. R),n?(\x. R)} then T; A + P L A - P with {032 = ¢ and
Q= [P']3

b) If ¢ ¢ {(vin)n!(\z. R),n?(\z. R), 7} then T; A - P+5 A+ P’ and Q = [P']°.

c) If0 = 7 then either T; A - P+ A’ = P with Q = [P']®
orT; A F P2 A F P and (D)3 (A")3 - Q 5 (A7) - [P']2.

Proof. By transition induction. See Prop. Appendix B.8 (Page 70) in Appendix B.3. O

The correspondence is rather tight: in both completeness and soundness directions, the most
interesting cases are due to input and output actions (whose label explicitly mentions a value) and
to 75 internal actions in the source process. We may now have:

Proposition 6.3 (Full Abstraction. From HOz" to HOm). Let P,Q be HOn™ processes with
;0 A1 FPooandT;0; A = Q0.
ThenT; Ay = P~ Ay B Q ifand only if (T)3; (A1)3 = [P]® &8 (Aq)® F [Q]3

Proof. By coinduction. See Prop. Appendix B.9 (Page 71) in Appendix B.3. O
Using the above propositions, Thms. 5.1 and 5.2, and Prop. 4.1 (Page 18), we derive the follow-
ing:

Theorem 6.1 (Encoding HO7 ™ into HOm). The encoding from Lo+ into Luor (cf. Fig. 12) is
precise.

Proof. According to Def. 4.6, preciseness includes syntax-, type-, and semantics-preservation.
Syntax preservation follows immediately from the definition of the encoding. Type preservation
follows from Prop. 6.1 (Page 34). Semantics-preservation follows from Prop. 6.2 (Page 35) and
Prop. 6.3 (Page 35). O
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Figure 12 Encoding of HO7r™" into HOx.

Values and Terms:

{alt* =

{Az: L. P}
[ul( Mz : L.Q).P]? =
[u?(z).P]® =

Az 2?(z).[P]?
ul{{ha. Q).[PT®
u?(x).[P]?

(vs)(zs | s1{V]7).0)

2Z (vs)(s2(2).[PPP | SU{V}®).0)
Types:

(HL—0); S)® “Z1((L—0)3); (S)°
(2(L—0); S)® = 2((L—0)%); (S)°

(L—0)% = 2((L)%); end —o

(L—00)3 “E 2((L)?); end—o0

Mappings for elided processes and types are homomorphic.

We then have the following corollary:
Corollary 6.1 (Encodability of HO7™ into HO7 and 7). Consider the typed encodings
- ([15:€)*) : Lriox = Luo (cf. Def. 5.2)
- ([T%,¢)%) : Lror = Lx (cf: Def. 5.4)
- ([ €)?) : Luor+ — Luor (cf Def- 6.1)
Then the following typed encodings are precise:
- (L1 o LI, €)* 0 €)%) : Luox+ = Lro
- ([P lP.€)2 0 ()?) : Lron+ — L

Proof. Directly from Thm. 5.1, Thm. 5.2, and Thm. 6.1 (which give preciseness for all the involved
encodings), using Prop. 4.1 (Page 18). O

6.2. Precise Encoding of HO T into HOm

The calculus HO 7 extends HO7 with polyadicity so as to enable the exchange of tuples of
names 7. (with fixed length & > 1) in both session communication and as arguments to function
applications. Communication along shared names remains monadic. As such, the syntax of Fig. 2 is
modified by considering polyadic first-order applications of the form Ax1,...,z;. @ (k > 1) in the
syntax of values V; the syntax of processes includes polyadicity in input and output prefixes, as well
as in function applications. The operational semantics in Fig. 3 requires only minor modifications
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to accommodate the simultaneous substitution {V/Z} (for equally sized %/V and ) in Rules [App]
and [Pass]:

(\Z. P)u — P{%/z}
n\(V).P | m2(%).Q — P | Q{V/z}
The type syntax in Fig. 4 is extended accordingly, as follows:
L == Coo | C—o
S = NUxS | 2U)S |

As in [MY07, MY15], the type system for HO 7 disallows polyadicity along shared names. We
consider the following typed calculus (cf. Def. 4.1):

EHO% = <HO7~T7 7?), '£>a %H7 |_>

where 75 is the set of types of HO 7; the typing - is defined in § 3.2 with type syntax given above.
Also, writing k to denote the arity of HO 7, the set of labels Ao 5 extends that in Def. 3.10 with
actions (v m)nl{mq,...,mg), n!(Az1,...,zr. P),n?(my,...,mg), and n?(A\x1,...,xg. P).

We now define a typed encoding of HO 7 into HO7. For simplicity, in definitions and statements
we sometimes give the dyadic case (tuples of length 2); the general k-adic case is as expected.

Definition 6.3 (Typed Encoding of HO 7 into HOT). The typed encoding ([-]*,(-)*) : Lnoz —
Lyor in Fig. 13.

The encoding is unsurprising: a single polyadic communication of a tuple of length £ > 1 is
translated as k independent monadic communications, exploiting the already private communication
medium given by the session name—unlike classical encodings [Mil91], there is no need to create
an additional fresh name for carrying out the monadic exchanges. Polyadic first-order abstraction
and application appeal to an auxiliary fresh session along which parameters are communicated one
by one.

The encoding satisfies the following properties:

Proposition 6.4 (HO 7 into HOx: Type Preservation and Type Soundness). The encoding from
Luox into Luor (¢f Fig. 13) is type preserving (cf. Def. 4.4) and type sound (cf. Def. 4.5(1)).

Proof. Type preservation follows directly from Fig. 13. Type soundness is shown by induction on
the inference I'; ); A = P > ¢. See Prop. Appendix B.10 (Page 72) in Appendix B.4. O

In this case, the required mapping on actions maps an action on Ayo 5 into a sequence of actions
in Ao This is a natural consequence of dividing a polyadic name communication or application
into several independent (monadic) communications:

Definition 6.4. Given the typed encoding <[[-]]4, (->4> : Lho= — Luoxr (cf. Def. 6.3), the mapping
on actions {-}* : Anoz — Awnox" is defined as follows:

i = (vmy)nl(m;) ifm; €m

~ | 4 dgf
{(wm)nt(mq, ma)} 01,0 where {& — nllm) P
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L m)nl(Ay, z0. PYB* °Z (vim)nl(Az. 22(x1).22 (22).[P]%)

(e et {Tﬁ,Ts, s T =18

T, T otherwise
f{noi}* el
{n&i}* &l

The above definition handles the dyadic case. Notice that we distinguish two kinds of internal
actions: the first case above results from the translation of function applications; the second case is
associated to internal actions arising from the mapping of polyadic name synchronization. We may
now state operational correspondence:

Proposition 6.5 (Operational Correspondence. From HO 7 to HO7). Let I';); A - P be an HO7®
process.

1. ;AP ENYNAY implies

a) If £ = (v )n!(m) then (T)*; (A)* + [P]* N N (A" = [P']* with {£}* =

517 c. 7£k-

b) If £ = n?(m) then (D)% (A)* - [P]* & ... &% (A - [P]* with )% =
Ela .. 7£k-

) If 0 € {(vm)nl(\E. R),n?(\i. R)} then (D)% (A) - [P]* & (A')* + [P']* with
{eye=v.

d) If€ € {n @ 1,n&l} then (T)%; (A)* - [P]* 5 (A')* F [P]4
e) If 0 =75 then (T)%; (A)* F [P]* 20 L5 (AY)A b [P]* with {£}=75, 75, , T,
k
) If =7 then (T)*; (A)* - [P]* 5 .. .5 (A F [P]* with {e}* =7,--- 7.
k

2. (D)4 (A)4 F [P]* 5 (A1)4 F Py implies

a) If ¢ € {n?(m),nl{m), (vm)n!(m)} then T; A+ P L A P and
(D)4 (A1)% - P2 & (AN F [P]® with {0} = 0y, Ll and £ = (1.
b) If ¢ € {(vm)n!(A\x. R),n?(A\x.R)} then '; A - P Ly AT F P owith {0} = ¢ and
P1 = [[P/]]4.
c) Ift € {n®l,n&l} thenT; A+ P S AP and Py = [P']*.
d) If 0 = 15 then T; A+ P2 A+ P and (D)% (A1) F PL 5 5 (A)4 F (P)4
with {{}* = TBs Ty 5 Ts
k
e) Ift =Tand l # 15 then T; A = P+ A+ P and (T)* (A1)  F PL s .5 (A')4 -
(P'Y* with {e}* =1, 7.
k
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Proof. The proof of both parts is by transition induction, following the mapping defined in Fig. 13.
See Prop. Appendix B.11 (Page 73) in Appendix B.4. O

As expected, the above correspondence is most interesting in the cases of input and output
actions and of 74/7 reductions in the source process. The case of first-order input and output (Items
1(a) and 1(b)) a single source action is reflected as k£ independent actions from the corresponding
target process. In contrast, when the source action is a single 73 (Item 1(e)) then we have k + 1
independent actions: the first is a 75 synchronisation as it corresponds to the application of a fresh
session name; the other k actions are 75 synchronisations, as they correspond to the communication
of the k arguments to the function, which are passed around using the session established thanks to
the first 74 action. When the source action is a single regular synchronisation (Item 1(f)) then we
have k synchronisations in the target side. The correspondences in the soundness direction follow
similar intuitions. We may now state:

Proposition 6.6 (Full Abstraction: From HO 7 to HOw). Let P, Q be HO 7 processes withT'; (); Ay +
Pr>oandT;0; Ag = Q> o. Then we have:
;A1 F P~ Ay - Qifand only if (T)*; (A1)* = [P]* =1 (As)* - [Q]*

Using the above propositions, Thms. 5.1 and 5.2, and Prop. 4.1 (Page 18), we derive the follow-
ing:

Theorem 6.2 (Encoding of HO 7 into HOw). The encoding from Lyo 5 into Luor (¢f. Fig. 13) is
precise.

Proof. According to Def. 4.6, preciseness includes syntax-, type-, and semantics-preservation.
Syntax preservation follows immediately from the definition of the encoding. Type preservation
follows from Prop. 6.4 (Page 37). Semantics-preservation follows from Prop. 6.5 (Page 38) and
Prop. 6.6 (Page 39). O

We then have the following corollary:
Corollary 6.2 (Encodability of HO 7 into HO7 and 7). Consider the typed encodings
- (15 ()*) : Lror — Lo (cf: Def. 5.2)
- (1%, €)?) : Lror — Lx (cf: Def. 5.4)
- (1% €)*) : Luow — Luor (cf. Def. 6.3)
Then the following typed encodings are precise:
- ([T o T1%. € o ()*) : Loz — Lo
- ([P l1%€)2 0 ()*) : Luor — L

Proof. Directly from Thm. 5.1, Thm. 5.2, and Thm. 6.2 (which give preciseness for all the involved
encodings), using Prop. 4.1 (Page 18). 0

By combining Thms. 6.1 and 6.2, we can extend preciseness to the super-calculus HO 7 T,
which subsumes both HO7r* and HO 7.
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Figure 13 Encoding of HO 7 (dyadic case) into HO.

Terms:
[ul(ur, ug). PT* °Z ul(uy).ul(us).[P]*
[u!( A1, 9. Q). PI* °E wl(Az. 22(21).27(22).[Q]4). [ P]*
[z (ur,u2)]* °E (v s)(z s | 81 {u1).5(us).0)
[(Az1, @5 P) (g, u)]* & (v5)(s7(21).57(w2).[P]* | 31(wr).5!(us).0)
Types:

(1(S1, S2)3 S)* " 1((S1)*); 1{(S2)*); (S)*
(1(L); S)* "= 1{(L)"); (S)*
((Ca, Ca)—0)* *E (2((C1)*); 2((C)*); end) —+o
((C1, Ca)—o0)* = (2((C1)*); 2((C2)*); end) —oo

The input cases are defined as the output cases by replacing ! by 7. Elided mappings for processes
and types are homomorphic.

7. Related Work

There is a vast literature on expressiveness for process calculi; we refer to [Par08] and [Pér10,
§2.3] for surveys. Our study offers new encodability results and casts known results [San92b] into
a session typed setting. Our work stresses the view of “encodings as protocols”, namely session
protocols which enforce linear and shared disciplines for names, a distinction little explored in
previous works. This distinction enables us to obtain refined operational correspondence results
(cf. Props. 5.2, 5.5, 6.2, 6.5). We showed that HO suffices to encode the first-order session calcu-
lus [HVK9S], here denoted 7. To our knowledge, this is a new result; its significance is stressed
by the demanding encodability criteria considered, in particular full abstraction up to typed bisim-
ilarities (=/~C, cf. Props. 5.3 and 5.6). This encoding is relevant in a broader setting, as known
encodings of name-passing into higher-order calculi [SWO01, BHG06, MRO05, Xul2, XYLI15] re-
quire limitations in source/target languages, do not consider types, and/or fail to satisfy strong en-
codability criteria (see below). We also showed that HO can encode HO and its extension with
higher-order applications (HO7 ™). Thus, all these calculi are equally expressive with fully abstract
encodings (up to ~f/~C). To our knowledge, these are the first results of this kind.

Early works on (relative) expressiveness appealed to different notions of encoding. Later on,
proposals of abstract frameworks, which formalise the notion of encoding and state associated syn-
tactic/semantic criteria, were put forward; recent proposals include [Gor10b, FL.10, vG12, PNG13,
PvG15]. Our formulation of precise encoding (Def. 4.6) builds upon existing proposals (e.g., [Pal03,
Gor10b, LPSS10]) to account for the session types associated to HO7.

Early expressiveness studies for higher-order calculi are [Tho90, San92b]; recent works in-
clude [BHGO06, LPSS10, LPSS11, Xul2, XYL14]. Due to the close relationship between higher-
order process calculi and functional calculi, encodings of (variants of) the A-calculus into the 7-
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calculus (see, e.g., [San92a, Fu99, YBH04, BHYO01, SX14]) are also related. Sangiorgi’s encod-
ing of the higher-order 7-calculus into the mw-calculus [San92b] is fully abstract with respect to
reduction-closed, barbed congruence. We have shown in § 5.2 that the analogue of Sangiorgi’s en-
coding for the session-typed setting also enjoys full abstraction (up to ~/~C, cf. Prop. 5.5 (Page 27)).
A basic form of input/output types is used in [San0O1], where the encoding in [San92b] is cast in
the asynchronous setting, with output and applications coalesced in a single construct. Building
upon [San01], a simply typed encoding for synchronous processes is given in [SWO1]; the reverse
encoding (i.e., first-order communication into higher-order processes) is also studied for an asyn-
chronous, localised 7-calculus (where only the output capability of names can be sent around). The
work [San96] studies hierarchies for calculi with internal first-order mobility and with higher-order
mobility without name-passing (similarly as in HO); these hierarchies are defined according to the
order of types needed in typing. Via fully abstract encodings, it is shown that name- and process-
passing calculi with equal order of types have the same expressiveness.

Other related works are [BHG06, MROS5, Xul2, LPSS11]. The paper [BHGO06] gives a fully
abstract encoding of the m-calculus into Homer, a higher-order calculus with explicit locations,
local names, and nested locations. The paper [MROS5] presents a reflective calculus with a “quoting”
operator: names are quoted processes and represent the code of a process; name-passing is then a
way of passing the code of a process. This reflective calculus can encode both first- and higher-
order m-calculus. Building upon [Tho93], the work [Xul2] studies the (non)encodability of the
untyped 7-calculus into a higher-order m-calculus with a powerful name relabelling operator, which
is essential to encode name-passing. The paper [XYL15] defines an encoding of the (untyped) 7-
calculus without relabeling. This encoding is quite different from the one in §5.1: in [XYL15]
names are encoded using polyadic name abstractions (called pipes); guarded replication enables
infinite behaviours. While our encoding satisfies full abstraction, the encoding in [XYL15] does not:
only divergence-reflection and operational correspondence (soundness and completeness) properties
are established. Soundness is stated up-to pipe-bisimilarity, an equivalence tailored to the encoding
strategy; the authors of [XYL15] describe this result as “weak”.

A core higher-order calculus is studied in [LPSS11]: it lacks restriction, name passing, output
prefix, and replication/recursion. Still, this untyped subcalculus of HO is Turing equivalent. The
work [LPSS10] extends this core calculus with restriction, output prefix, and polyadicity; it shows
that synchronous communication can encode asynchronous communication, and that process pass-
ing polyadicity induces an expressiveness hierarchy. The paper [XYL14] complements [LPSS10]
by studying the expressivity of second-order process abstractions. Polyadicity is shown to induce
an expressiveness hierarchy; also, by adapting the encoding in [San92b], process abstractions are
encoded into name abstractions. In contrast, here we give a fully abstract encoding of HO 7 ™ into
HO that preserves session types; this improves [LPSS10, XYL14] by enforcing linearity disciplines
on process behaviour. The focus of [LPSS10, Xul2, XYL14, XYLI15] is on untyped, higher-order
processes; they do not address communication disciplined by (session) type systems.

Within session types, the works [DH11, DGS12] encode binary sessions into a linearly typed
m-calculus. While [DH11] gives an encoding of 7 into a linear calculus (an extension of [BHYO01]),
the work [DGS12] gives operational correspondence (without full abstraction) for the first- and
higher-order 7-calculi into [KPT99]. By the result of [DH11], HO7™ is encodable into the linearly
typed w-calculi. The syntax of HO7 is a subset of that in [MYO07, MY15]. The work [MYO07]
develops a higher-order session calculus with process abstractions and applications; it admits the
type U = Uy — Us...U, — o and its linear type U' which corresponds to U—oand U — o

41



in a super-calculus of HO7+ and HO 7. Our results show that the calculus in [MYO07] is not only
expressed but also reasoned in HO via precise encodings (with a limited form of arrow types: C — ¢
and C' — ©). The work [OY16] studies two encodings: from PCF with an effect system into
a session-typed m-calculus, and its reverse. The reverse encoding is used to implement session
channel passing in Concurrent Haskell. In future work we plan to use the core calculi studied in this
paper to implement higher-order communication efficiently into Concurrent Haskell without losing
its expressiveness.

8. Concluding Remarks

We have thoroughly studied the expressivity of the higher-order m-calculus with sessions, here
denoted HO7. To this end, we developed a new abstract notion of (precise) encoding that accounts
for (session) types in both source and target calculi. Indeed, unlike most previous works, we have
carried out our expressiveness study in the setting of session types. Types not only delineate and
enable encodings; they inform the techniques required to reason about their correctness properties.

Our results cover a wide spectrum of features intrinsic to higher-order concurrency: pure process-
passing (first- and higher-order abstractions), name-passing, polyadicity, linear/shared communica-
tion (cf. Fig. 1). Remarkably, the discipline embodied by session types turns out to be fundamental
to show that all these languages are equally expressive, up to strong typed bisimilarities. Indeed,
although our encodings may be used in an untyped setting, session type information is critical to
establish key properties for preciseness, in particular full abstraction.
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Figure A.14 The Untyped LTS for HO7 processes. We omit Rule (Parr).
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Appendix A. Behavioural Semantics

We report auxiliary definitions and results from [KPY15, KPY17], which were informally in-
troduced in § 3.3.

Appendix A.1. Labelled Transition System for Processes

We define the interaction of processes with their environment using action labels ¢:
¢ o= 7 | (wm)n (V) | n2(V) | n®l | n&l

Label 7 defines internal actions. Action (v m)n!(V') denotes the sending of value V' over channel
n with a possible empty set of restricted names m (we may write n!(V') when m is empty). Dually,
the action for value reception is n?(V). Actions for select and branch on a label [ are denoted
n & [ and n&l, respectively. We write £n(¢) and bn(¢) to denote the sets of free/bound names in ¢,
respectively. Given ¢ # 7, we say £ is a visible action; we write subj(¢) to denote its subject. This
way, we have: subj((vm)n!l(V)) = subj(n?(V)) = subj(n & 1) = subj(n&l) = n.

Dual actions occur on subjects that are dual between them and carry the same object; thus,
output is dual to input and selection is dual to branching.

Definition Appendix A.1 (Dual Actions). We define duality on actions as the least symmetric rela-
tion < on action labels that satisfies:

n @l =< n&l (vm)n(V) <n?(V)

The (early) labelled transition system (LTS) fpr untyped processes is given in Fig. A.14. We
write P i> P, with the usual meaning. The rules are standard [KYHH15, KY14]; we comment
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on some of them. A process with an output prefix can interact with the environment with an output
action that carries a value V' (Rule (Snd)). Dually, in Rule (Rv) a receiver process can observe an
input of an arbitrary value V. Select and branch processes observe the select and branch actions
in Rules (Sel) and (Bra), respectively. Rule (Res) enables an observable action from a process with
an outermost restriction, provided that the restricted name does not occur free in the action. If a
restricted name occurs free in the carried value of an output action, the process performs scope
opening (Rule (New)). Rule (Rec) handles recursion unfolding. Rule (Tau) states that two parallel
processes which perform dual actions can synchronise by an internal transition. Rules (Pary)/(Parz)
and (Alpha) define standard treatments for actions under parallel composition and a-conversion.

Appendix A.2. Environmental Labelled Transition System

Our typed LTS is obtained by coupling the untyped LTS given before with a labelled transition
relation on typing environments, given in Fig. A.15. Building upon the reduction relation for session
environments in Def. 3.4, such a relation is defined on triples of environments by extending the LTSs
in [KYHH15, KY14]; it is denoted

(FlaAh Al) i> (F27 A27 AZ)

Recall that I admits weakening. Using this principle (not valid for A and A), we have (I, A1, A;) N
(T, A2, Ay) whenever (', A1, Ay) N (I, Ao, Ag).

Input Actions. These actions are defined by Rules [SRv] and [ShRv]. In Rule [SRv] the type of value
V' and the type of the object associated to the session type on s should coincide. The resulting type
tuple must contain the environments associated to V. The dual endpoint s cannot be present in the
session environment: if it were present the only possible communication would be the interaction
between the two endpoints (cf. Rule [Tau]). Following similar principles, Rule [ShRv] defines input
actions for shared names.

Output Actions. These actions are defined by Rules [SSnd] and [ShSnd]. Rule [SSnd] states the con-
ditions for observing action (v m)s!(V') on a type tuple (I', A, A - s:.5). The session environment
A - s: S should include the session environment of the sent value V' (denoted A’ in the rule),
excluding the session environments of names m; in m which restrict the scope of value V' (denoted
A; in the rule). Analogously, the linear variable environment A’ of V' should be included in A. The
rule defines the scope extrusion of session names in m; consequently, environments associated to
their dual endpoints (denoted A; in the rule) appear in the resulting session environment. Similarly
for shared names in m that are extruded. All free values used for typing V' (denoted A’ and A’ in the
rule) are subtracted from the resulting type tuple. The prefix of session s is consumed by the action.
Rule [ShSnd] follows similar ideas for output actions on shared names: the name must be typed with
(U); conditions on value V" are identical to those on Rule [SSnd].

Other Actions. Rules [Sel] and [Bra| describe actions for select and branch. Rule [Tau] defines internal
transitions: it reduces the session environment (cf. Def. 3.4) or keeps it unchanged.

We illustrate Rule [SSnd] by means of an example:
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Figure A.15 Labelled Transition System for Typed Environments.
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Example Appendix A.1. Consider environment tuple (T'; 0; s :1((!(S);end) — o);end - s’ : 5)
and typed value V.= \z. z!(s').m?(2).0 with

[;0;8 :S-m:?(end);end - V > (1{(S); end) —oo
Then, by Rule [SSnd), we can derive:

(V)

(T;0; s :1{(1(S); end) —o);end - s’ : S) (sl (T;0; s : end - m :!(end); end)

Observe how the protocol along s is partially consumed; also, the resulting session environment is
extended with m, the dual endpoint of the extruded name m.

Recall that we sometimes annotate the output action (v m)n!(V) with the type of V; this is
written as (v m)n!l(V :U) (cf. Remark 3.1).

The typed LTS combines the LTSs in Fig. A.14 and Fig. A.15.

Definition Appendix A.2 (Typed Transition System). A typed transition relation is a typed relation
;A F Py -5 Ay b P where:

1. P, % Pyand
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2. (T,0,A1) -5 (0,0, Ag) with T; 0 Ay F P o (i = 1,2).

. . ... 4 .. l

We write = for the reflexive and transitive closure of —», = for the transitions —>———>,
‘ e, . .

and = for = if { # T otherwise =

A typed transition relation requires type judgements with an empty A, i.e., an empty environ-
ment for linear higher-order types. Notice that for open process terms (i.e., with free variables),
we can always apply Rule (EPROM) (cf. Fig. 5) and obtain an empty A. We will be working with
closed process terms, i.e., processes without free variables.

Appendix A.3. Characteristic Values and the Refined LTS
We first define characteristic processes/values:

Definition Appendix A.3 (Characteristic Process and Values). Let u and U be a name and a type,
respectively. The characteristic process of U (along u), denoted (U)", and the characteristic value
of U, denoted (U)c, are defined in Fig. 6.

We can verify that characteristic processes/values do inhabit their associated type.

Proposition Appendix A.1 (Characteristic Processes/Values Inhabit Their Types).  [I. Let U be
a channel type. Then, for some T', A, we have T; ); A = (U). > U.

2. Let S be a session type. Then, for some ', A, we have T'; ); A - s : S+ (S) > o.
3. Let U be a channel type. Then, for some T'; A, we have T - a : U; 0; A F (U)* > <.

Definition Appendix A.4 (Trigger Value). Given a fresh name t, the trigger value on t is defined as
the abstraction A\x.t?(y).(y ).

We define the refined typed LTS by considering a transition rule for input in which admitted
values are trigger or characteristic values or names:

Definition Appendix A.5 (Refined Typed Labelled Transition System). The refined typed labelled
transition relation on typing environments

(T1; A A) 5 (Tys Ag; Ag)

is defined on top of the rules in Fig. A.15 using the following rules:
[TR]
(T A AL =5 (T Ag; Ag) £ #n2(V)
(Ts Az Ar) 5 (D35 Ag; Ag)

[RRCV]
(T'1; A Ar) nﬂ? (Ta; Ag; Ag) V=mvVvV=(U)VV =Ax.t?(y).(yx) t fresh
n?(V
(Ti Ars A1) 20, (1o Ag; As)
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Then, the refined typed labelled transition system
DA F PSS Ay Py
is given as in Def. Appendix A.2, replacing the requirement
(0,0, A1) = (T,0, Ay)

with (T'1; A1; Aq) LN (T'9; Ag; Ag), as just defined. Following Def. Appendix A.2, we write = for

. .. 4 .. 1 4 £ .
the reflexive and transitive closure of v, = for the transitions E—&>, and = for = if { # T
otherwise =-.

Notice that the (refined) transition I'; A = Py >£> As F P implies the (ordinary) transition
DA F P -5 Ay kP

Appendix A.4. More on Deterministic Transitions and Up-to Techniques

As hinted at earlier, internal transitions associated to session interactions or S-reductions are
deterministic. To define an auxiliary proof technique that exploits determinacy we require some
auxiliary definitions.

Definition Appendix A.6 (Deterministic Transitions). Suppose I'; 0; A = P > o with balanced A.
TransitionT; A+ P+ A’ + P’ is called:

— a session-transition whenever transition P —— P’ is derived using Rule (Tau) (where subj({;)
and subj({3) in the premise are dual endpoints), possibly followed by uses of Rules (Alpha),
(Res), (Rec), or (Parr)/(Parg) (cf Fig. A.14).

— a f-transition whenever transition P — P’ is derived using Rule (App), possibly followed by
uses of Rules (Alpha), (Res), (Rec), or (Pary)/(Parg) (cf. Fig. A.14).

Notation 3. We use the following notations:

— T;AF P& A+ P denotes a session-transition.

-
— T;AF P2 A'F P denotes a B-transition.

— I;AF P2 A v P denotes either a session-transition or a [3-transition.

— We write £ to denote a ( ‘possibly empty) sequence of deterministic steps LN

Using the above properties, we can state the following up-to technique. Recall that the higher-
order trigger ¢ <—y V has been defined in (2) (Page 12).

Lemma Appendix A.1 (Up-to Deterministic Transition). Let I'; A1 F P R Ay + Q1 such that if
whenever:

1. Y(vmy)n!(Vh) such that T'; Ay = P et (Vi) As & P3 implies that 3Q2, Vo such that

A0 Qg (v iy )l Vo) AL F QaandT; Az + Py SN Al F P and for a fresh name t and
A, Al
;AT F (vmn)(Py [t 4=r Vi) RAG F (vmp)(Q2 | t <=u V2)
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2. YU # (vm)n (V) such that: T; A1 F Py S As kP implies that 3Q2 such that
F;Al F QlléAlz F Q2 andI‘;Ag F P3 é All (o P2 andF;A’l F P2 %AIQ F QQ.

3. The symmetric cases of 1 and 2.

Then ® C ~H.

Proof (Sketch). The proof proceeds by showing that the relation

gFE':>:{(P27Ql) | AL F Py %AIQI—QM F;A1|—P1|:d>A/1|—P2}

is a higher-order bisimulation, which requires the use of Prop. 3.1 (Page 14).
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Appendix B. Expressiveness Results

In this section we give the proofs for the expressiveness results stated in §5 and §6. Proving
precise encodings entails proving type preservation, operational correspondence, and full abstrac-
tion (cf. Def. 4.6). For operational correspondence, recall that we prove a stronger statement than
Def. 4.5(3), as we consider both visible and internal actions. For full abstraction, we rely on a
notational convention:

Notation 4 (Typed Relations). For the sake of readability, when describing typed relations we shall
omit typing information for pairs of processes, which is usually clear from the context. This way,
e.g., in the proof of Prop. Appendix B.3 (Page 58) we write

R={(P,Q1) | (D) (A1)" - [P1]} =" (A2) F [Qu}}
instead of

R={(P,Q1) | T;0;A1FPipo A T;0;A0F Q110
A (D)5 (AN E [P =" (A2)t F [@1]F)

Appendix B.1. Properties for encoding Lyor into Lyo

In this section we prove Thm. 5.1 (Page 25) which states that the encoding [[]]} of Lyor into
Lyo is precise. A precise encoding requires to prove three independent results:

e Type preservation, stated as Prop. 5.1 (Page 23) and proven here as Prop. Appendix B.1 (Page 52).

e Operational Correspondence, stated as Prop. 5.2 (Page 24) and proven here as Prop. Appendix
B.2 (Page 55).

o Full Abstraction, stated as Prop. 5.3 (Page 25) and proven here as Prop. Appendix B.3 (Page 58).

Proposition Appendix B.1 (Type Preservation, HO7 into HO). Let P be an HO7 process. If
T;0; A = P othen (T);0; (A) = [P]} > o.

Proof. By induction on the inference of T'; ); A = P > o. We consider four interesting cases:

1. Case P = k!(n).P’. Then there are several sub-cases, depending on whether & and n are linear
or not. We content ourselves by checking the case in which k is a session (linear) name. There
are two sub-cases, depending on whether 7 is a linear or a shared name.

(a) In the first sub-case n = k’ (output of a linear channel). Then we have the following typing
in the source language:
Li0;A-k:SEP>o T;0:{k:S1} K>S
T;0;A -k 2 Sy -k :1{(S1); SEENKE). P oo

Thus, by IH we have:
(C)':0; (A) k= (S)' [P0
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Let us write U; to stand for ?({(S1)! —o¢); end —o ¢. The corresponding typing in the target
language is as follows:

(T)': {z: (S1)! —oo}s b o (Si1)t—o ()50 {A : (S1)'} - K > (S1)*
(L)L {z : (S1)t—oo}; K : (S1)tFazk o
(TY{z: (S1)t —oo}; K : (S1)t - z:end Fzk'>o
(TYL0; k"« (S1)* - 2 :2((S1)t —o0);end F 2?(z).(x k') > o
(LY 0,k (S1)t E Az 2?(2).(z k) > Uy

(B.1)

()L 0; (AY! - k- (S) [[P']]} >o (T 0; K - (S1)t = Az 2?(2).(z k') > Uy (B.1)
(UYL 0; (A - & = (Si)t - kKU ); (S) - k(A2 27(). (2 k:’)>.[[P’]]} > o

(b) In the second sub-case, we have n = a (output of a shared name). Then we have the
following typing in the source language:
a:{(S1);0;A-k:SEP 1o T-a:(S);0;0F a>(Sy)
Loa:(S1);0;Ak:1(S1)); S+ kla).P'>o

The typing in the target language is derived similarly as in the first sub-case.

2. Case P = k7(x).QQ. Again, there are several sub-cases, depending on whether k and x have
linear types. We content ourselves by checking the case in which k is a session (linear) name.
We have two sub-cases, depending on the type of x (linear or shared name).

(a) In the first case, x stands for a linear name. Then we have the following typing in the source
language:
DA k:S-2:5FQpo
Li0;A -k :2(S51); S FEN(z).Qpo

Thus, by IH we have:
() 0;(A) - k= (S) -z : (S1) F Q>0

Let us write U to stand for (?({S1)! —o ¢); end) —o ©. The corresponding typing in the
target language is as follows; we have three auxiliary derivations:

(TY s {z: U1 };0 2> Uy (T)t; 055 :2((S1)t —0);end F s>?((S1) —00); end

(D) {2 Ur}:s 2((S1)t —oo);end F 2550 (B2)
(D)4 0,0+ 0o (CY50; €AY - k= (S) -2 (S1)t F [Ql} o
(C):0;5: end 0o (T)40; (A)! - k2 (S)! F Az [Q] > (S1)t —o0 B3
(D)1 0; (A - K = (S)L -5 :1((S1)! —o0); end F S1{ Az [[Q}]}>O > o B-3)
(T);{z : Ui} s :2((S1)t —o0);end Faxs>o (B.2)
(D)L 0; (A)* - k= (S)t -5 :1((S1)t —o0); end - S Az [[Q]]}>O >o (B.3) B.4)

() {x : U} (A) - k= (S) s :7((S1) —0);end - 5 :1((S1) —o0); end
Fas | sl [[Q]]}>.0D<>
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Finally we have:
(TY{z: U} (A) - k2 (S) - s:2((S1)t —0);end - 5 :1((S1)* —o0); end
Fas |3 (A2 [Q]F).0>0
(D)4 {z : U1} (A) - k= (S)LE (vs)(zs | sz [[Q]]}>O) >o

(B.4)

(T); 05 (AL - K 2(U1); (S)E F k2 (2).(v5) (s | SY A2 [Q]).0) > o

(b) In the second sub-case, x is a shared name, and we have the following typing in the source

language:
Coz:(S1);0;A k:SHQ>o

T;0;A - k:?7((S1)); S F k?(z).Qp>o

The typing in the target language is derived similarly as in the first sub-case.

. Case Py = X. Then we have the following typing in the source language:
I' X:A;0;AFXp>o
r

Let A =nq:51,...,%n : Sy, with dom(A) = nn. By Def. 5.2, we have that
(F)l = (F/ . X : {nz : Si}lgigm)l = (F,>1 CZX . ((Sl)l, ceey (Sm)l,S*)—m

T

where S* = ;it.?((T,t) —©); end, which is equivalent to ?((T', S*) —¢); end. By Fig. 9,
[[X]]} = (vs)(zx (n,s) | s¥{zx).0)
with . = f(X). We shall show that
(I')! - 2x : (T, 8%)—o0; 05 (A) F [X]}no
We first have two auxiliary derivations:

(T)*5 05 {ni = (Si)*} i (S)*
() 0 0F x5 (7.5 oo (D)% 0; {s: 57 F s52((F, 5%)—0);end

= B.S
(T)L: 0: (A): - 5 2((T, 5%)—0); end F 2x (7, 8) b o (B.5)
and
(UYL 0; 000 - .
(T); 0;s:end 0> o (C)5 0; 0F z2x & (T, 8%) =0 56

(T)*5 05 5 (T, 5%) —~o);end b= 5l(2x).0 0
We may now derive:
(T); 0; (A)! - s :2((T, 8%)—o);end b zx (it,5)>0 (B.S)
()L 0; 5 :1((T, S*)—>o);end + 3!(2x).0>0 (B.6)
(D)1; 0; (A -5 :2((T, 5*)—o);end, 5 :1((T, ) —o);end F zx (7, s) | 51(zx).0 >0
(T); 0; (A) F (vs)(2x (R, s) | 31(2x).0) b o
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4. Case Py = pX.P. Then we have the following typing in the source language:

' X:A;0; AFPpo
[;0; AFuX.Pro

By Fig. 9, we have:

[uX.P} = (v s)SK A7l y)- y?(2x)- [[P]F x5y 9)-0 | 87(2x)-IPT} (x i)
‘We shall show that
(C)Y 0; (A F [uX . Pli>o

Below we write R to stand for [[P]]} (Xqy and T = |£n(P)| (cf. Def. 5.1). Moreover, we write
Ajz to denote A after a renaming with names 7.

We have two auxiliary derivations:
(D) - zx : (T, 5%)—0; 0; (Az) + URJJQDO
(D)t - zx : (T,5%)—0; 0; (Az)!-y:end “RJJQ) > <
()Y 0; 00 o ()L 0; (Az)t -y 7((f S*)—0);end F y?(zx). [LRJJ(DDO
([); 0;5:end-0po (UYL 0; 0= A2, y). y?(2x)- “RJJ@ (T, S*)—o

(T)%; 05 5 (T, S*) —~o);end - SUA(@,y). y2(2x). [ R],).000 B0
and
(D) - zx : (T, 8%)—0; 0; (As) F R o
(TY! - 2y : (T,S*)io; 0; (Aa)t-s:endF R0 (B.8)
()% 0; (A) - s:2((T,S*)—0);end F s7(zx).R>o
We then have:

(); 0; 5:!@, S*)—o)send F SWA(E,y). y?(2x)-| R],)-000 (B.T)
(T); 0; (A)-s:2((T, S*)—o);end F s?(zx).R>o (B.8)
(D)L 0; (A) - s :2((T, S*)—><>) end,s :I((T,5*)—o);end b
S, ). y?(2x)- [LRJJ .0 | s?(zx).R>o
(D)L 0; (A) F (v s)(s?(zx).R | SHA(Z,y). y?(zx).[LRJJ@>.O) > o

We repeat the statement in Page 24. We use the mapping on actions {-}! given in Def. 5.3.

Proposition Appendix B.2 (Operational Correspondence, HO7 into HO). Let P be an HO7 pro-
cess. If I'; 0; A = P> ¢ then:

1. Suppose I'; A+ P XL A’ P'. Then we have:

a) If 41 € {(vm)n!(m), (vm)n!(Az.Q), s @, s&l} then I3 s.t.
(D)5 (A F [PT5 #2 (A + [P']} and & = {61}
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b) If 1 = n?(\y. Q) and P’ = Py{ - Q/z} then 3¢, s.t.
(D)5 (A) F [PTS ¥2 (AN + [R5 {2 [Q1i/2} and 6, = {e ).

¢) If ¢, = n?(m) and P’ = Py{m/x} then 352, Rsuch that () (A)! F [P 2 (A)! F R,
with £ = {61}, and (T)1; (A') + R ~2 7% (A/)E [Po]#{"/«}.

d) If ¢4 = 7and P = (vm)(n!{m).P, | n?(z).P;) and P’ = (vm)(P; | Po{"/z}) then 3R

such that
(T)*5 (A = [P} = (A) - (v ~)([[P1]]} | R), and
(0)(A) F (v ) ([P} | R) = (M) F (vii) ([P} | [Pa] 3 x)).
e) Iflﬂl =7and P = (vim)(n!(\y.Q).P, | n?(x).P,) and P' = (vim)(P, | P{M-Q/z})
then

(T); (A F [PI} 5 (A F (vm) ([P} | [Pal3{Ay- [QTi/2}).
f) If (1 = 7and P = (vm)((\z. P) V) and P’ = (vm)(P{V/z}) then
(T)%; (A)* - [PIF = (A1) - [P
2. Suppose ()" (A)" - [P[} % (A’)! F Q. Then we have:
a) If {5 € {(1/ ﬁz)n'()\z 2?(z).(xm)), (vm)n!(Ax. R), s ® 1, s&l} then 341, P’ s.t.
TAFPES AP = {2}, and Q = [P']}.
b) If /3 = n?(A\y. R) then either:
() 31,2, P, P"st. T;A F P A - PHW-PYa) 0y = {6530, [P"]§ = R. and
Q= [P}
() R=y?(z).(xm)and Iy, 2, P’ st. T; A+ P A P{m/z}, 0, = {{2}*, and
(D)% (A) - Q ol (AM) - [[P'{m/z}uf
¢) If /5 = 7 then A’ = A and either
(i) 3P st T;AF Ps At Pand Q = [P']5.
(i) 3P, Py, z,m,Q st. T;AF P 5 A (vm)(Py | Po{™/z}), and
(D)5 A F Q5 (M) - [P} | [Pa{myc} ]}

Proof. By transition induction. We consider parts (1) and (2) separately:
Part (1) - Completeness. We consider two representative cases, the rest is similar or simpler:

1. Subcase 1(a): P = s!(n).P" and ¢; = s!(n) (the case {; = (vn)s!(n) is similar). By assump-
tion, P is well-typed. We may have:
[0;A0-s: 81 P >0 T;0:{n:S}+npS
;0; Ag - n:S - s:1(S); S1 F sl{n).P'>o

for some S, S1, Ag. We may then have the following transition:

T;Ag - n:S - s :1(S); Sy b sln). P v Ag - s:51 - P/
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The encoding of the source judgment for P is as follows:
(TY0; (Ag - n:S - s :1(S); S1)* [[s!(n).P’]]} > o

which, using Def. 5.2, can be expressed as:
(T)*;0; (Ag) n:(S)* - s :1(?((S) —o0);end—o0); (S1)* F sl(Az. 2?(z).(x n)).[P'T; >0

Now, {¢1 }! = s!(\z. 2?(x).zn ). We may infer the following transition for [[P]]}:

(D)5 (A F s!{hz. 22(z).(z n)>[[P']]} > o

(T)5 (Ao} - s (S1)" - [P]jeo

fep?
(D)5 (Ag - s: 1)t F [PTipo

from which the thesis follows easily.
2. Subcase 1(c): P =n?(x).P' and {1 = n?(m). By assumption P is well-typed. We may have

LA -z:S n:S1FPpoo Tih{x:StFan>S
;0;Ag-n:?(S); 51 Fn?(x).P>o

for some S, S1, Ag. We may infer the following typed transition:
[;800-n:S-m:SEP{"Wz}vo

n?(m)

;A0 -n:7(S); 81 Fn?(x).P bo—>

The encoding of the source judgment for P is as follows:
()5 05 (A0 - n :2(S); S1)* F [P mo
= (D)0 (Ag)' - n :2(2((S) ' —o0);end—o0); (S1)* - n?(z).(vs)((z s) | S Aa. [P]}).0) >0
Now, {41 }* = n?(Az. 2?(x).(xm) ) and it is immediate to infer a transition for [ P[3:
(T) (Ao)! - :2(2((S)! —o0); end —o0); (S1)* F n?(z).(vs)((z s) | 31(Az. [P']}).0) >0

A0F Yy (AG) - n (S1)E -m: (S)F R o
where R stands for the process (v s)((z s) | s1(Az. [P']').0){*#- 27(2)-(z m)/2}. We then have:
s (vs)(s2(x).(zm) | sz [P']}).0)
= (Az.[P']})m|0

= [P}

R

and so the thesis follows.
Part (2) - Soundness. We consider two representative cases, the rest is similar or simpler
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1. Subcase 2(a): P = n!(m).P" and lo = n!{\z. 27(x).(x m)) (the case f2 = (v m)n!(Az. 2?(z).(x m))
is similar). Then we have:

(T); 0; (Ag) - n :1{2((S) —o0); end —o0); (S1)* - n!<)\z. 27(:U)(:Um)>[[P’]]J1c > o
for some S, S1, and Ag. We may infer the following typed transition for [[P]]}:
(D)5 (Ao)* - n:N(2((S)' —o0); end—oo); (S1)* = nl(Az. z7(:z:)(:cm)>[[P’]]}
S (Y5 (A0) s (S1)! - [P
Now, in the source term P we can infer the following transition:
T; Ag-n1(S); 81 F nlm).P T Agn: Sy F P
and thus the thesis follows easily by noticing that {n!(m)}* = n!{(\z. 2?(z).(x m)).
2. Subcase 2(b): P = n?(x).P" and f5 = n?(\y.y?(x).(x m)). Then we have:
(T)Y5 0; (Ao)t - n :2(2((S) —o0);end—o0); (S1)' F n?(x).(v s)((xs) | 51(Az. [P']}).0) >0

for some S, S1, Ag. We may infer the following typed transitions for [[P]]}:

(T)Y5 (Ag)* - n:2(?((S)' —o0); end—00); (S1)* F n?(z).(vs)((z s) | s1(Az. [P']}).0)
L2 (T (Ao) -n: (S1)-m: (S1)' F (vs)((zs) | §!<)\x. [[P']]}lc>.0){/\2~2'?($)-17m/m}
= ()5 (Ao) -n: (S1)-m:(S)' F (vs)((Az. 2?(z).am)s | 51 Aa. [[P'ﬂ}>.0)
Ty (Y (Do)t n s (S) e (S)EF (v s)(s2(a)-(xm) | 1z [P']3)-0)
= (D)5 (Ao)' s (S1)! - mes (S)E (A [P} m

s (D) (Ag) m (S1)tm: (S)! - [PT{a)

Now, in the source term P we can infer the following transition, from which the thesis follows:
?
T; Ag-n:2(S); S1 F n2(x). P v Ty Ag s Si-m: S F Pz}

O]

We now present the proof of the full abstraction result (Prop. 5.3 (Page 25)). In the proof, we rely
heavily on the (detailed) labelled correspondence given above to define typed bisimulation relations
up-to determinacy (Appendix A.1). Proving that these relations indeed satisfy the requirements is
immediate for most cases, where we just follow the requirements of the labelled correspondence
transitions. The most interesting cases are the output cases, where the analyses should be done
up-to the characteristic process.

Proposition Appendix B.3 (Full Abstraction, HO7 into HO). T'; A = P; =~ Ay I @ if and only
if (T)*; (A1) = [P~ (A2)' F [Qi]}-
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Proof. For the right-to-left direction we show that the following relation $:

R={(P1,Q1) | (D)5 (A1)" F [P} =7 (A2)' - [Qi]7}
is a higher-order bisimulation (Def. 3.11). Suppose I';A; F P; »£> A} F Py; we perform
a case analysis on the shape of ¢, using the soundness direction of operational correspondence
(cf. Prop. Appendix B.2 (Page 55)). The most interesting case is when ¢ = (v mi;")n!(m1); the
other cases are similar or easier.

(vmii")nl{m1)

GivenI'; A1+ Py A} F P,, we have that Prop. Appendix B.2 (Page 55) implies:

(vmi)nl(Az. 2?(z).(x m1))

(C)5 (A) [[Pl]]}’ (A + [[P2]]f
Now, combining this transition with the definition of & we obtain both:

nl(Az. 27 (z).(x ma))

()5 (Ao)? - @]} 2 (A5)" F [Q:]}

and

(U5 (A (i) ([Pe]y [£7(2)-(v 5)(s?(y)-(zy) | 3!
~H (A5)" F (vm2)([Qalf [ t7(2).(v 5)(s?(y)-(zy) | 3!

/\/;
&R
%S
G
— =
w B
i:
e
3\_/

Based on the encoding [H]}c (cf. Fig. 9), we may rewrite the above equality as follows:

(M)A B ()P | £2(2).(vs)(s?(y)-(zy) | $1(m1).0))]
M (Ag) F [(vm2)(Q2 | t2(2).(v5)(s?(y)-(x y) | $H(m2).0))[}

N—
@)
]
=
~
N—
—~

We may then observe that:

DAY B (vmin)(Py | 82(2).(vs)(s?(y).(zy) | 3!
R Ay B (vm)(Qa | 17(2)(vs)(s7(y)-(zy) | 51(m2).0))

S—
Wl
El
—
~
(=)
SN—r
S—

which can be rewritten to coincide with the output clause of higher-order bisimilarity (Def. 3.11),
as required:

F; All F (I/ Tﬁll)(Pg ‘ t H ml) r A/g F (I/Tﬁz/)(QQ ‘ t <H mz)
This concludes the proof.
For the left-to-right direction, we consider the following relation:

R={([P]} [Q:]F) | T;A1F PL R Ay b Q1)

We show that %t C~*". Suppose (I')*; (A1)* = [P1]} EN (A1)! F [P2]}; we perform a case anal-
ysis on the shape of ¢, using the soundness direction of operational correspondence (cf. Prop. Ap-
pendix B.2 (Page 55)). We consider three cases:
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1. Case: ¢ ¢ {(vm)n!(Az. P), n?(\z. P)}. Then, we have that Prop. Appendix B.2 (Page 55)
implies I'; A1 + Py '£> A F P,. From this transition and the definition of : we infer both:

T;As Q1 s AL Qo (B.9)
AL P = AL Qo (B.10)

From (B.9) and Prop. Appendix B.2 (Page 55) we obtain:

(T)' (A2)' F Q1] 8 (A5)" F [Qa]}
Furthermore, from (B.10) and the definition of & we obtain, as required:

(T (AL F [Po] R (A)" F [Q]f

2. Case: ¢ = (vm)n!(Ax. P). We distinguish two sub-cases, depending on whether Az. P corre-
sponds to the encoding of a name.

e If Ax. P does not correspond to the encoding of a name, then by Prop. Appendix B.2 (Page 55)
we infer that
(D) (A H [P} (A - [Po]
implies
T:A - P S AL - Py
and the rest of the argument proceeds as in the previous case.

e If Axz. P does correspond to the encoding of a name, then by Prop. Appendix B.2 (Page 55)
we infer that

(vmi1")nl(Az. 2?(z).(x m1))

(T)"5 (An)" F [P (A [P

implies
-
DA, b op B0 ar
for some my. From the latter transition and the definition of ® we infer both:

(vmi2")nl{msz)

F; AQ f— Ql A/Q |_ Q2 (Bll)

and

L5 AY = (i) (Pe | #2(x).(v 5)(s?(y)-(zy) | 51(ma).0))
A A () (Q2 | t2(2).(vs)(s2(y)-(xy) | 1(m2).0))  (B.12)

for some my. From (B.11) and Prop. Appendix B.2 (Page 55), we obtain:

()5 (Ag)' - [Q1]F (A5)" - [Qa]

Furthermore, from (B.12) and the definition of & we obtain the following:

(T)5 (A" [wm)(Pe | 12(x)(v s)(s?(y)-(z y) | 1(m1).0))];
R (A5)" (o) (Q2 [ £7(x).(v5)(s7(y)-(x y) | 51(m2).0))]}

(vmi2")n!l(Az. 2?(z).(x m2))

which coincides with the output clause of higher-order bisimilarity, as required.
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3. Case: £ = n?(\x. P). Also here we distinguish whether the received abstraction corresponds to
the encoding of a name:

e If A\z. P does not correspond to the encoding of a name, then the proof proceeds as in
previous cases.

e If Az. P does correspond to the encoding of a name, then by Prop. Appendix B.2 (Page 55)

we infer that
1 n? (Az. z?(z).(xm1)

(C)' (AL E [P (A YR
implies
DAL F P AL - Py (B.13)
(D)L (AY) - R0 (A F [R]L (B.14)
From (B.13) and the definition of R we infer:
T Ag b Q) 220 A E (B.15)
DAL Py~ AL E Qo (B.16)

for some my. From (B.15) and Prop. Appendix B.2 (Page 55) we obtain:

1 n?z. 2?(z).(x m2))

(C)' (A2)' F [Qi]F (A5)' F [Qa2]F
Furthermore, from (B.16) and the definition of & we obtain:
(T)' (A F [P} R (AS) F [Qa]f

If we consider result (B.14) we obtain:

(C) (A7) F R 5™ R (A5)" F [Qu]
and then we may show that R is a bisimulation up-to £, following Lem. Appendix A.1.
O

Appendix B.2. Properties for encoding Lyor into L

In this section we prove Thm. 5.2 (Page 29), which states that the encoding [-]? of Ly, into
L is precise. A precise encoding requires to prove three independent results:

o Type preservation, stated as Prop. 5.4 (Page 27) and proven here as Prop. Appendix B.4 (Page 61).

e Operational Correspondence, stated as Prop. 5.5 (Page 27) and proven here as Prop. Appendix
B.5 (Page 65).

o Full Abstraction, stated as Prop. 5.6 (Page 29) and proven here as Prop. Appendix B.6 (Page 67).

Proposition Appendix B.4 (Type Preservation, HO into 7). Let P be an HO7 process.
IfT;0; A+ P othen ()2 0; (A)? F [P]? > o.
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Proof. By induction on the inference I'; ); A = P > . We consider three representative cases:

1. Case P = k:!<)\:v. Q>.P. Then there are several sub-cases, depending on whether k and x have
linear types. We content ourselves by checking the case in which k is a session (linear) name.
We then have two possibilities, depending on the typing for Ax. Q.

(a) The first sub-case concerns a linear typing, and so we have in the source language:
F‘@'AQ-JJ:Sl }—QDO
;A kE:SEP> o
%o © DAk Az Qb S —o0
L5 0; A1 - Ag - k1S —0); S F kI Az.Q).Pro

Following Fig. 11, we have [k!(Az. Q).P]? = (va)(ul{a).([P]? | a?(y).y?(z).[Q]?)). By
IH we have:

(T)20; (A2)? -z : (S1)* F [Q)P b o
(L)% 0; (A1) k- (S)2 F [P]*bo

Let Uy =?((S1)?); end. Also, we write (') to stand for (I')? - a : (Uy). We first have:

(T7)2;0; (Ag)2 -z : (S1)2 F [Q]2 >0
N2 0 - g ()% 0;(A2)? -y :end - x: (S1)? F [Q]*>o
(T')%;0:0 F av (Uy) (T)2; 0, (A2)2 -y : Up - y2(2).[Q]2> o B
(T7)2;0; (A2)2 F a?(y).y?(z).[Q]2 > o '

We then have:
(I')2;0; (A1) k: (S)* + [P]*vo
(T7)2;0; (A2)? + a?(y).y?(x).[Q]*>o (B.17)
(D)% 0: (A2 - (D)2 -k : (S)2F
[P]? | a?(y).y?(2).[Q]* > o
()23 0; (A1) - (A2)? - K :1{{U)); (S)2 F Kia).([P]? | a?(y).y?(2) [QIP) b o 18)
(T)20;(A1)2 - (A2)? - k :1{(U1)); (S) - o
(va)(ka).([P]? | a?(y).y?(2).[Q]?)) > ©

which concludes the proof for this sub-case.

(b) In the second sub-case, A\z. () has a shared type, and so £s(Q) = (). We have the following
typing in the source language:

(I')%0;0 - av (Ur)

;0;2:5FQpo
0;0

T:0:0F Az. Qb S —0
Ti0;A k: Sk P s
08k S >e L;0:0 - x. Q> S —o

T;0; Ak :1(S;—0); S k!<)\m. Q>.P><>

Following Fig. 11, we have [k!{\z. Q).P]? = (va)(ul{a).([P]? | *a?(y).y?(z).[Q]?)).
Recall that by Not. 1, P is a shorthand notation for uX.(P | X). By IH we have:

(T)%0;2 - (S1)* - [QI* > o
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(T)%0;(A)* - k= (S)* - [P o
Let Uy = 7((S1)?); end. We also have:

(T1)? = (0)*-a:(h)
(T2)? = (T1)2-X:0

Also, let () and (*x) stand for (I'2)?;0; 0 F a > (Uy) and (T'2)?; 0; 0 - X > o, respectively.
We first have two auxiliary derivations:

(C2)2; 0; : (S1)? F [Q*>o
(C2)2; 05y end-2: (S1)2 - [Q]*>o
(T2)2; 05y :?((S1)2);end F y?(x).[Q]2>o ()
([2)2; 05 0+ a?(y).y?(2).[Q]* >0 ()
(T2 0: 0 F 2(y) 7@ [P [ X0 510
(T'1)2; 05 0 pX.(a?(y).y?(2).[QI? | X)>o '

and
(T1)%50; (A)* -k :(S)* + [P]Pvo
(T1)2;0;0 + uX.(a?(y)y?(2).[Q)*| X)>o (B.19)
(T1)25 05 (A)? - k= () F [P]? | pX.(a?(y).y?(2).[Q* | X) >0

(B.20)

We now finally have:

(T1)2:0;0 + av(U)
(T1)?; 05 (A)? - k:(S)*> F [P]?| puX.(a?(y).y?(2).[Q]* | X)>o (B.20)
(T1)2; 05 (A)? - & :1((U1)); (S)2 F kYa).([P]? | pX.(a?(y)-y?(2).[Q]? | X)) > o
(T)2; 0; (A)2 -k :((U1)); (5)? - (va)(k!{a).([P]? | uX.(a?(y)-y?(z).[Q)? | X)))>o

This completes the proof for this case.

2. Case P = k?(x).P. Here again there are several sub-cases, depending on whether k& and x have
linear types. We content ourselves by checking the case in which k is a session (linear) name.
Then there are two sub-cases: x : S;7—<¢ and = : 51 —9.

(a) In the first case, we have the following typing in the source language:

I'z:5—=00A-k:SFP>o
5 0; A-k:2(S1—0);SEEk?(z).Pro

Following Fig. 11, the corresponding typing in the target language is as follows:

()2 -2 : (2((S1)?);end); 0; A-k: (S)? F (P)?>o
()5 0; (A)2 -k :2((?7((S1)?); end)); (S)? + k?(z).[P]? > o
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(b)

In the second case, we have the following typing in the source language:

[ {z:S1—¢}; A k:SFP>o
[;0; Ak :?(S;—00); SEE?(z).Ppo

The corresponding typing in the target language is as follows:

()2 -z : (7((S1)?);end); 0; A-k:(S)? - (P)’p>o
()25 0; (A)2 -k :2((?7((S1)?); end)); (S)? + k?(z).[P]? > o

3. Case P = x k. Also here we have two sub-cases, depending on whether x has linear or shared
type.

(a)

(b)

In the first sub-case, z is linear and so we have the following source typing:

[ {x: S —ok 0Fa>Si—oo T;0;{k:S1}Fk>S
[y {z:S1—ol k:S1Fxk>o

Notice that by Rule (EPROM) we have:

[y {z:S1—ol k:S1Fxk>o
L z:5—=0;0;k:S1Fxkpo

Following Fig. 11, we have that [z k]? = (v s)(z!(s).5!(k).0). Let us write (I'1)? to stand
for ()2 -z : (?((S1)?); end). To derive the corresponding typing in the target language we
first need an auxiliary derivation:

)% 0,00
(Fl();')@' 5:end l—DO<>><> (T1)?; 05 {k: (S1)?} - ko (S1)?

(T2 0; %+ (51)% 5 {(S1)2); end I 51(k)-05 o

(B.21)

We then have:

(T1)% 0; 0 = 2o (?((S1)?); end)
(T1)% 0;k : (S1)?-5:1{(S1)?);end + 3NEk).O>o (B.21)
(T1)%; 0; {s:2((S1)?);end} F s?7((S1)?);end
(T1)2; 0; k= (S1)? - s:7((S1)?);end - 5 :1((S1)?); end I z!(s).31(k).0 >
(T1)%; 0; k- (S1)? F (vs)(x!(s).51(k).0) > o

which completes the proof for this sub-case.

In the second sub-case, x is shared, and we have the following typing in the source language:

I z:5—o0;0;0Fz>8—¢ Ii0;k:S1Fk>S;
F-xz:81—=0,0;k:S1Fzkpo

The associated typing in the target language is obtained similarly as in the first case.
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We repeat the statement in Page 27. Recall that we use the mapping on actions {-}? given in
Def. 5.5.

Proposition Appendix B.5 (Operational Correspondence, HO7 into 7). Let P be an HOw process
such thatT;0; A+ P> o,

1. Suppose T; A+ P L A’ F P’ Then we have:
a) Ift1 = (vm)n!(\z. Q), then 3T, A" where either:
5 (AP PP A Ty () F [P | a2 () 07(0) [QF (i £5(Q) = )
) (F)Q; (A)2 - [[P]]Q fad? \ (I‘)Q; A - [[P’]]Q | 57(y)y(x)[[Q]]2 (otherwise)
b) If {1 = n?(\y. Q) then IR where either
- ()% (A)? + [[P]]2 F’ (A”)2 + R, for some T" and
(T)%;(A")? - [P1]? =° (A”)2 = (va)(R| *a?(y).y?(2).[Q) (if £s(Q) = 0)
()2 (A2 F P2 A (ry2 (A2 - R, and
[TV (A'Y2 - [P <6 (A2 - (v ) (R | 52(3).47(2)-[QI?) (othervise)
c) If {1 = 7, with T # 7 then one of the following holds:
- (D)% (A)? F [P? & (A)? E (vm) ([P | (v a) ([P} | *a?(y).y?(2).[Q1%),
for some Py, P, Q (with £s(Q) = 0);
- (D)% (A) F PP & (A7) F (wm) ([P | (v s)([PaI {2} | s2(y)y7(2).[Q1),
for some Py, P, Q (with £5(Q) # 0);
- (D)% (A)* - [P]? = (D)% (A7) - [P']?
d) If ty = 75 then (T')?; (A)* = [P]* = (T)?; (A')* - [P']?
e) Ift1 € {n @ 1,n&l} then
3o = {01 }2 such that (T)2; (A)? F [P]2 2 ()2 (A)2 + [P']2

2. Suppose (T')%; (A)? - [P]? 2, (A" + R.

a) If o = (v m)n!(m) then one of the following holds:
(vm)nt(m)

- AP’ such that P ———— P' and R = [P']*;
- 30, P’ such that P25 Pl and R = [P | %a?(y).y?(2).[Q]? and £5(Q) = 0;
n(Ae.Q)

- 3Q, P’ such that P ¥—""="s P' and R = [P']? | s?(y).y?(2).[Q]? and £s(Q) # 0;
b) If ta = n?(m) then one of the following holds:

- 3P’ such that P " P and R = [P']%;

- 3Q, P’ such that P 279, pr
and (T')?; (A")? = [P']*> =¢ (A")* F (va)(R | *a?(y).y?(x).[Q]?) and £s(Q) = 0;

- 3Q, P’ such that P 279 pr

and (T)? (A')? - [P']? =° (A')? I (v s)(R | s?(y).y?(2).[Q]?) and £5(Q) # 0.
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c) Ifly = 7 then 3P’ such that P~ P’ and (T')?; (A")? I- [P']? ~° (A’)? F R.
d) If bs & {n!{m),n & l,n&l} then Iy such that {1 = {l>}? and
T; AP T AR P,

Proof. The proof proceeds by transition induction. We only give details for the proof of Part 1, as
Part 2 proceeds straightforwardly. We consider four representative sub-cases:

nl(Az. Q)

1. Case 1(a), with £s(Q) = 0. Then T';); A+ P A’ P’, and so we infer

(O (A H [P 2 AV [P | xa?(y)9?(2).[QP°
and from Def. 5.4 we have {n!(Az. Q) }= (v a)n!(a), as required.
2. Case 1(a), with £5(Q) # (). Then we have P = n!{(\z. Q).P’ and
[PI? = (vs)(n(3).[P' | 52(y)-97(2).[QI)
and the argument proceeds as in the previous case.

3. Case 1(b), with with £5(Q) = 0. Then T;0; A + P 229 A7 b AT Q/g) and so we

infer that ,
(T)% (A)2 - [P ™ (A")? - R{%x}
with {n?(Az. Q) }? = n?(a). It remains to show that
(T)?; (A")? F [P{A2- @} ]? =° (A") F (va) (R{Yz} | *a?(y).y?(x).[Q]?)

which can be proven by structural induction on P’. The most interesting case is when P’ = x m.
We then have:

[om{Az-Qfa}]? = [Q{m/«}]?
(va)(R{Yz} | *a?(y)y?().[Q1) = (wa)((vs)(2!(s).5U(m).0){%x} | *a?(y).y?(2)-[Q]*)

The right-hand side process can evolve as follows:

(T)% (A7) = (va)((vs)(a!(s) 5K m).0){Y/z} | xa?(y).y?(z).[Q%)
o (A7) = (va)([Q{™/=}]* | *xa?(y).y?(2).[QI?)

which is bisimilar with [Q{"/2}]? because a is fresh.

An interesting inductive step case is parallel composition, i.e., P’ = P; | P,. We need to show:
(T)2; (A" = [(Py | Po){A%-Qfa}]? &° (A")? = (va)([P1 | P*{9/} | *a?(y).y?(x).[Q)
We know that

()% (A1)* - [P{As @} = (AT)? - (va)([P]*{%} | *a?(y).y?(2).[Q]%)
()% (A2)* - [RfAe- @/} = (AT)? - (va)([Po]{¥} | #a?(y)y?(2).[Q]%)

and so we conclude immediately exploiting the fact that ~° is a congruence.
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4. Case 1(b), with £s(Q) # (. This case is similar to the previous one.

O

Proposition Appendix B.6 (Full Abstraction, From HOwx to 7). Let Py, Q1 be HOT processes.
F; Al - P1 ~C AQ F Ql ifand OI’lly lf<F>2, (A1>2 F [[Pl]]2 ~C (A2)2 F [[Ql]P'

Proof. The proof follows directly from operational correspondence (Prop. Appendix B.5 (Page 65)).
The different cases of the proposition are used to define bisimulation relation to prove the the right-
to-left direction, and a bisimulation up-to determinate transition (Lem. Appendix A.1) to prove the
left-to-right direction.

For the right-to-left direction, we show that the following relation:
R={(P.Q) | (T)* (A1) [P]* ~° (A2)* - [Q]°}

is a characteristic bisimilarity (Def. 3.12). Suppose ['; A1 + P N A} + Py; we perform
a case analysis on the shape of ¢, using the soundness direction of operational correspondence
(cf. Prop. Appendix B.5 (Page 65)). The most interesting case is when ¢ = n!(Az. R;); the other
cases follow the bisimulation game that is implied by Prop. Appendix B.5 (Page 65).

GivenT';; A1 P e Ra) A} F P, by Prop. Appendix B.5 (Page 65) (Part 1), we infer that:

ynlai:U)

(T)2; (Ag)? F [P]2 22 (A2 F [P | arl(y)y?(2).[Ri]?

which implies, from the requirements of ~C, both

(D)% (A)? F [QI7 22200 (ALY H [Q? | %as!(y).y? (). [Ra]? (B.22)

and

(T)% (A1) B (va)([PT? | *a1?(y)-y (x) [Ba]? | £2(2).(v 5)(s?(y) (U} | s!(a1).0))
o (A5)* F (ax)([QT | *a2?(y).y?(2).[Ra]? | £7(2).(v 5)(s?(y)-(U) | s/{a2).0))

Now, from (B.22) and Prop. Appendix B.5 (Page 65) (Part 2), we infer that there exist Q’, R such
that:

(Az. R2)

Ty Ag b Q AL EQ

By following the (deterministic) transitions from the latter pair of processes we obtain that:

LAY B P t2(x).(vs)(s?(y).(U)Y | sl{(R1).0)
R AL B Q| t?7(x).(vs)(s?(y).(U) | s!(Re).0)

This suffices to conclude, because from the definition of [-]? (cf. Fig. 11) we have:

[P £2(2).(vs)(s?() UV | s{R1).0)]* = [P]*| #a2?(y).y?(2).[Ro]?
| £7(x).(v 5)(s7(y).(U)" | s!(a2).)0
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(and similarly for Q" | t?(z).(v s)(s?(y).(U)Y | s!(R2).0)).
For the left-to-right direction, we show that the relation:
R={([P]*[Q]°) | T; A1+ P~° Ay - Q}

is a characteristic bisimulation. Suppose (I')?; (A1)2 - [P]? N (A})? F R; we need to exhibit
a corresponding move from [Q]2. To this end, we perform a case analysis on the shape of ¢, using
Prop. Appendix B.5 (Page 65) (Part 2).

One interesting case is when ¢ = (rvaj)n!{a1) and P = nl{\z. Ry).P’ with £s(Ry) = 0,
for some Ry, P’; the other cases are similar or simpler. Given these assumptions, and considering
Fig. 11, the transition from [P]? is as follows:

' (T)2: (A1) F (vai)(nla1).[P]? | *a1?(y).y?(z).[R1]?)
Lramia, (A2 - [P *aa?(y) 7). [Ra]?

Then, using Prop. Appendix B.5 (Page 65) (Part 2(a)), we may infer a transition from P:

(Az. R1)

T; AL Fnl(Az. Ry).P A+ P

In turn, this transition, together with the definition of , enable us to infer both:

(Az. Ra2)

T A F Q E AL EQ

and
DAL B P e?2(x).(vs)(s?(y).(U)YY | sl{R1).0)
¢ AL F Q| t2(x).(vs)(s?(y)(U) | s!(R2).0)

Q

for some R». Now, using this transition from () in combination with Prop. Appendix B.5 (Page 65)
(Part 1(a)) we obtain:

(D)% (A2)? F [Q]2 22 Ay 1 [Q2 | %as?(y).y7(). [Ra]?

From the definition of i (and the fact that the pair of mapped processes can observe only determin-
istic transitions) we may finally obtain:

(T)%: (A1) [P1? | *ar?(y)y?(x).[Ba]? | £2(2).(v 5)(s7(y) (U} | s}(a1).0)

R (A5)? + [QT? ] xa2?(y).y?(z).[Re]? | t2(2).(v 5)(s?(y) U} | s/{az).0)
as required. This suffices, because
[P £2(2).(vs)(s?(y) {UY | s{R1).0)]* = [P]*] *a2?(y).y?(w).[Re]?
| £7(2).(v5)(s7(y).(U)" | s/(az).0)
(and similarly for Q’.) dJ
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Appendix B.3. Properties for encoding Lyor+ into Lyor

In this section we prove Thm. 6.1 (Page 35), which states that the encoding [[-]® of Lo+ into
Luor 1s precise. A precise encoding requires to prove three independent results:

o Type preservation, stated as Prop. 6.1 (Page 34) and proven here as Prop. Appendix B.7 (Page 69).

e Operational Correspondence, stated as Prop. 6.2 (Page 35) and proven here as Prop. Appendix
B.8 (Page 70).

o Full Abstraction, stated as Prop. 6.3 (Page 35) and proven here as Prop. Appendix B.9 (Page 71).

Proposition Appendix B.7 (Type Preservation. From HO7 ™ to HOm). Let P be an HO™ process.
IfT;0; A+ P> othen (T)3;0; (A)2 = [P > .

Proof. By induction on the inference of I'; ); A = P > o. We detail two representative cases:

1. Case P = u!(A\z.Q).P’, with u linear and Az. Q) with linear type. Then we have the following
typing in HO7*:

D z: LAy A Qoo T-x:L;0;0Fx> L
A AL - u:SEP o DA Ao b A L.Q> L—oo
F;Al ‘AQ;Al 'A2~uZ!<L—OO>;S'—U!<)\JZ.Q>.PII><>

Thus, by IH we have:

(F)S; (A1>3; (A1>3 T (S)S = [[P']]3 > o (B.23)
(T)° -z : (L)% (A2)% (A2)° + [Q)Ppo (B.24)
(C) -z : (L)% 0;0 + z>(L)° (B.25)

Following Fig. 12, the corresponding encoding and typing in HO is as follows. First an auxil-
iary derivation:
(B.24)
()3 -2 : (L)3;(A2)3;(A2)3 -z :end - [Q3 o (B.25)
(T)3; (A2)3; (A2)3 - 2 :2((L)3);end F 27(z).[Q]3 > o

(B.26)

Then we have:

(T)3;0; 2 :7((L)3); end - 27 ((L)3); end (B.26)

(B23) (D)% (A2)%; (Aa)® F Az 22(2).[Q]* > (2((L)?); end) —oo
(T)%; (A1)® - (A2)%; (A1)3 - (As)® - u 1 (7((L)?); end—oo); (S)? - ul(hz. 22(z).[Q]2).[P'[P b o

2. Case P = (Az. P) (\y. Q). We may have different possibilities for the types of each abstraction.
We consider only one of them, as the rest are similar:

I'az:CooA;A1FPpo Li0: A0 -y:CHQpBo
;A AL E Az P (C—o0)—0  T;0; Ak Ay. Q> C —o0
F;A;Al -AQ F ()\%P) (Ay.Q)DO
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Thus, by IH we have:

(T)3 -z : (C—0)3(A)3 (A1) F [P]Poo (B.27)
(T)3:0; (A1) -y : (C)® + [QFvo (B.28)

Following Fig. 12, the corresponding typing in HO is as follows. First, we present an auxiliary
derivation; recall that (C' —¢)3 = (C')3 —oo.

B.27)
(T)3 -z : (C—0)3(A)3;(A1)3 - s:end - [P]3>o
(T)3; (A)3; (A1)3 - s:7((C —0)3);end - s?(z).[P]3 > o

(B.29)

‘We now have:

(B.28)
(T)%:0;(A2)% -y : (C)°’ F [QF o
(T)3;0; (A2)3 F \y. [QP > (C —00)3
(T)2;0; (A2)® -5 : end - Ay. [Q]3 > (C —o0)3
(T)3; 0; (A3)3 - 5 :1{((C —o0)3); end I 5! (Ay. [Q[?).0> o
(TP (A% (A1) (B2)° s :2((C—))send 5 H{(C—o0)?); end F 57(ax) [PT* [ 5100y [QIF).05 0

(B.29)

()% (A)% (A1) - (A2)® F (v ) (s7(2).[P]? | 51 (Ay. [Q]*).0) > o

O]

We repeat the statement in Page 35. Recall that we use the mapping on actions {-}* given in
Def. 6.2.

Proposition Appendix B.8 (Operational Correspondence. From HO7t to HO7). Let I';(); A = P
be an HO7™ process.

1. T:AF P& A - P implies
a) If £ € {(vm)n!Az.Q),n?(\x.Q)} then (I')3;(A)3 + [P]® Ly (A")3 = [P']? with
=
b) If ¢ ¢ {(vin)n!(\z. Q),n?(\z. Q), 7} then (T)3; (A)? - [P]° 5 (A')3 F [P'].
c) If ¢ = 75 then (T')%; (A)® - [P]® = A" F R and ()%, (A')® - [P']® =" A" - R, for

some R.

d) Ift = 7 and { # 75 then (T')3; (A)® F [P]® = (A')3 - [P']°.
2. (T)3: (A - [P S (A)3 F Q implies

a) If 0 € {(vm)n!Oz. R),n?(\z. R)} then T; A F P 5 A - P! with {0} = ( and
Q= [P]3.
b) If0 ¢ {(vin)n!(\z. R),n?(\z. R), 7} then T; A - P % A+ P’ and Q = [P']°.

70



c) If0 = 7 then either T; A - P+ A’ = P’ with Q = [P']®
orT; A F P2 A F P and (D)3 (A")2 - Q 5 (A7) - [P']2.

Proof. We consider both parts separately, considering the mapping in Fig. 12.

1. The proof of Part 1 proceeds by transition induction. We content ourselves by showing two

interesting cases; other cases are similar. Suppose I'; A - P S A E P

a) Case 1(@): Then T; A F nl(Az. Q).P 22,

Fig. 12, we have that

A + P'. By following the encoding in

[P]? = nl{{Az. Q°).[P']?
= n!{(\z. 27(2).[Q]®).[P']?
and therefore (T)3; (A)® F nl(Az. 22(2).[Q]3).[P]? /=@ 1Q1),
required.
b) Case 1(c): Then I'; A F (Az. Q1) \y. Q2 A F Ql{AZL QZ/x}. By following the
encoding in Fig. 12, we have the following:
[P]? = (vs)(s?(2).[@]° | 3!{{Ay. Q2[).0)
— W)@ [T | 31z 22(y).[Q]%).0)

A+ [P']3, as

and therefore

(T)% (A)° - (v5)(s7(2)-JQ1]° | 31Nz 27(y).[Q2]%)-0) ™ (A'Y? F [Qu]P{A = 22()-[Qal )}

We are left to show that [Q1{M- @2/z}]® and [Q.]3{ ?-2?(¥)-[Q21°/2} are related by
~H. This follows easily from the structure of the encoding [-]3, which mimics higher-
order applications using deterministic transitions only.

2. The proof of Part 2 also proceeds by transition induction. All cases are easy: they are similar
to those described for Part 1 or follow directly from the encoding in Fig. 12.

O]

Proposition Appendix B.9 (Full Abstraction. From HO7™ to HO7). Let P,Q HO®™ processes
withT;0; A1 - P>oand T;0; Ag - Q > o.
ThenT; Ay = P~ Ay b Q ifand only if (T)3; (A1)® = [P]? =" (Aq)® - [Q]3

Proof (Sketch). The right-to-left direction is proven by showing that the relation
Ri={(P,Q) | (T)%(A1)° F [P]° =" (A2)° - [Q]°}

is a higher-order bisimulation, following Part 2 of Prop. Appendix B.8 (Page 70) for subcases (a)
and (b). In subcase (c) we use Prop. 3.1 (Page 14). Similarly, the left-to-right direction is proven by
showing that the relation:

Ro = {([P]3[Q]®) | T;A1 - P~F Ay Q)

is a higher-order bisimulation up to deterministic transitions by following Part 1 of Prop. Appendix
B.8 (Page 70). The proof is straightforward for subcases (a), (b), and (d). In subcase (c) we use
Lem. Appendix A.1. O

71



Appendix B.4. Properties for encoding Loz into Lyox

In this section we prove Thm. 6.2 (Page 39), which states that the encoding [-]* of Lyo 7 into
Lo is precise. A precise encoding requires to prove three independent results:

e Type preservation, stated as Prop. 6.4 (Page 37) and proven here as Prop. Appendix B.10 (Page 72).

e Operational Correspondence, stated as Prop. 6.5 (Page 38) and proven here as Prop. Appendix
B.11 (Page 73).

e Full Abstraction, stated as Prop. 6.6 (Page 39) and proven here as Prop. Appendix B.12 (Page 75).

Proposition Appendix B.10 (Type Preservation. From HO7 to HOw). Let P be an HO7 process.
IfT;0; A+ P othen (T'); 0; (A)* F [P]* > o.

Proof. By induction on the inference I'; §; A - P > . We examine two representative cases, using
dyadic communications:

1. Case P =nl(V).P and T;0; A1 - Ag-n :1{(C1,Ca) —0); S F nl(V).P'>o. Theneither V =y
or V.= A(x1,z2).Q, for some Q). The case V = y is immediate; we give details for the case
V = Az1, z2). Q, for which we have the following typing:

F;@;AQ'.rl:Cl'l'QZCQ'—QDO

F;@;Al-nZSFPIDO F;@;AQ|‘)\(l‘1,$2).@>(01,02)—00
F;@;Al . AQ ‘n :!<(Cl,02)—0<>>;5 H k“<)\(l‘1,l‘2)Q>Pl><>

We now show the typing for [P]*. By IH we have both:
(T)%0; (A1) - n: (S) [P >0 (T)%0;(A2)* - 21 : (Cr)* -2 : (Co)* F [Q)*po

Let L = (C4,Cy) —o¢. By Fig. 13 we have (L)* = (?((C1)*); 7((C2)*); end) —oc and [P]* =
nl(Az. 2?(z1).27(x2).[Q]*).[P']*. We first infer the following auxiliary typing derivation:

(I)% 0 (Ag)? - 1 : (C1)* - 22 : (Co)* F [Q]*po
()% 0; (A2)® -1 : (C1)* - 22 : (C2)* -z end - [Q]* >0
(I)*: 0; (A2)* -z : (C1)* - 2 :7((C2)*); end b 27(x0).[Q]* b o
()% 0; (A2)* - 2 :2((C1)*); 7((C2)*); end F 27(z1).27(22) . [Q]* > ©
(T)% 05 (A2)* F Az 22(21).27(2)-[Q]* & ((C1)%, (C2)*) —oo

(B.30)

Now we have:

(T)%:0; (A)4- k- (S)4 - [P]4>o (B.30)
(D)% 05 (A1) - (Do) - n 1(LY8); (S F [PJes o

2. Case P =n?(x1,22).P and T';0; Ay -n :?((C1,Co)); S F n?(xq,x2). P’ >o. We then have the
following typing derivation:

L;0;A1 - n:S 21 :CL-29:CoP o Ti0Fx, 20> Ch,Co
T;0;A1-n:?2((C1,02)); S Fn?(xy, 20). P >o
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By Fig. 13, we have [P]* = n?(x1).k?(z2).[P']*. By IH we have
(D)% 0:(A1)* - s (S)* - a1 (C1)* 22 : (Co)* F [P b0

and the following type derivation:

()% 0; (A1) -2y : (Ch)2 -0 (Co)2-m: (S)AF [P o
(T)% 0 (A1)% - 21 : (Ch) - 2 ((C2)2); (S)* - n2(wa) [P v o
(I)*%: 0; (A1)* - n :2((C1)*): 7((C2)*): (S)* F [P >0

O]

We repeat the statement in Page 38. Recall that we use the mapping on actions {-}* given in
Def. 6.4.

Proposition Appendix B.11 (Operational Correspondence. From HO7 to HO7). Let T';0; A = P
be an HOT process.

1. T:AF P& A - P implies

a) If £ = (v )n!(m) then (T)*; (A)* + [P]* R N (A" = [P']* with {£}* =

[1’ Ce 7€k-

b) If ¢ = n?(m) then (D)% (A)* F [P]* < ... &5 (A F [P]* with {0} =
El’ Ce 7&:_

¢) If £ € {(vm)nl(\L. RY, n?(\z. R)} then (T)%; (A)* F [P]* 5 (A + [P']* with
feps=v.

d) If € € {n @ 1,n&l} then (T)%; (A)* - [P]* 5 (A') F [P]4
e) If 0 =75 then (T)%; (A)* F [P]* 20 2 (AY)A b [P]* with (£} =75, 75, , 7,
k
D IfC=7then (T)*; (A)* - [P]* 5 ... 5 (A [P with {e}t =7, 7.
k

2. (D)4 (A)A F [P]* 5 (A1)4 F Py implies
a) If £ € {n?(m),nY(m), (vm)nl(m)} then T; A -+ P s AT P and
(D)4 (ALY - P2 5 (AYYE E [P']A with {0 = 61, by, and £ = 0.

b) If 0 € {(vi)nl(dz. R),n?(Az. R)} then T; A - P &5 A' - P’ with {0'}* = ¢ and
P1 = [[P,]]4.

c) Ift € {n®l,n&l} thenT; A+ P S AP and Py = [P']*.

d) If 0 = 15 then T; A+ P2 A+ P and (D)% (A1) PL 5 5 (A4 (P)4
with {{}* = TBy Ty 5 Ts
k

73



e) Ift =7 and l # 15 then T; A = P A' = P and (D)4 (A1) Py Lo (A)4
(PY* with {({}*=71,--- 7.
k

Proof. The proof of both parts is by transition induction, following the mapping defined in Fig. 13.
We consider four representative cases, using dyadic communication:

1. Case (1(a)), with P = n!{mq,ms).P" and ¢; = n!(my, ms). By assumption, P is well-typed.
As one particular possibility, we may have:
;0;A0-n:SEP>o T;0;mq:S1 - mo:So Fmy,ma> S, 5
F; @; Ao . m1:31 . mQZSQ n :!<Sl, SQ>; SH n!(ml, m2>.Pl > <o

for some I', S, S1, 52, Ag, such that A = Ag-m;:S1-ma:S2-n :1(S1, 52); S. We may then have
the following typed transition:

[ Ag - mq:St - ma:So - n :1(S1,S9); S F nl{my, ma). P’ N Ny -n:SEP
The encoding of the source judgment for P is as follows:
(1) 0; (Ao - m1:S1 - ma:Sa - n :1(Sh, S2); S)* F [n!(mq, ma).P']* >0
which, using Fig. 13, can be expressed as:
()% 0; (Do) m1:(S1)* - ma:(S2)* - n :1{(S1)*); 1{(S2)®); (S)* = nl(ma).nl{ma).[P]* o

Now, {/1}* = n!(m1),n!{ms). It is immediate to infer the following typed transitions for
[P]* = nl{m1).n!{(ma).[P]*

(F>4; (A0>'m1:(81>4 . m22(52>4 “n :!((Sl)4>; !((Sg)4>; (3)4 F n!(ml).n!<m2>.[[P/]]4
(T)*; (Ag) ma:(S2)* - n :1{(S2)*); (S)* - nl(ms).[P']*

S () (Do) ne(S)* F [P
= (D)% (Ag-n: S)* [P

nl(mi)

which concludes the proof for this case.

2. Case (1(c)) with P = nl{A(z1,22). Q).P and {; = nl(\(z1,22). Q). By assumption, P is
well-typed. We may have:
;0;A0-n:SEP>o T;0; A1 F Az, 22).Qr (Ch,C) —o0
T;0; Ag - Ay -n {((Ch, Ca) —00); S+ nl{\(z1,22). Q). P >o

for some I', S, C1, Ca, Ag, Ay, such that A = Ag - Ay - n :I{(C1,Cs) —o0); S. (For simplicity,
we consider only the case of a linear function.) We may have the following typed transition:

I'Ag-Ar-n :!<(C’1,Cg)—0<>>; S+ n!<)\(ac1,x2). Q>.P' N Ny -n:SEP
The encoding of the source judgement is:

()% 0; (Ao - Ay - n:l{((Cy, Ca) —o0); S)* F [nl{A(21,22). Q). P]* > o
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which, using Fig. 13, can be equivalently expressed as:
(T)* 0; (Ao-Ar) n :!<(?((Cl)4); 2((C2)*); end) —o<>>; (S)* n!</\z. z?(xl).z?(xQ).[[Q]]4>.[[P’]]4><>

Now, {1 }* = n!{(\z. 2?(z1).2?(22).[Q]*). It is immediate to infer the following typed transi-
tion for [P]* = n!(Az. 2?(z1).27(z2).[Q]*).[P']*:
(T)% (Ao - Ar)n K (7((C1)*); 2((C2)*); end) —o0); (S)* = nl(Az. 22(21).27(2).[Q]*) [ P']*
AP,y oy - (8)°, - [P]*
= (D)*%(A¢-n:8)* - [PT*
which concludes the proof for this case.

3. Case (2(a)), with P = n?(xq,x9).P’, [P]* = n?(x1).n?(xe).[P']*. We have the following
typed transitions for [P]*, for some S, S1, So, and A:

(F>4; (A)4 -n :?((5’1)4); ?((52)4); (5)4- - n?(xl).n?(:z:g).[[P']]4
S, Y4 (A - 2((52)%); (S)% - s (S1)4 F n? (). [P o }
S (DY (AN ()R my s (1) ma ¢ (S b [P e s} = Q

Observe that we use substitution twice. It is then immediate to infer the label for the source
transition: £1 = n?(my, ma). Indeed, {¢1 }* = n?(my),n?(ms). Now, in the source term P we
can infer the following transition:

F; A-n 2?(51,52); Sk n?(azl,ajg).P' 'é—1> A-n:S- mq : S1 msy SQ + Pl{m17m2/x17$2}
which concludes the proof for this case.

4. Case (2(b)), with P = nl{A(z1,32).Q).P', [P]* = nl{Az.27(z1).27(22).[Q]*).[P']*. We
have the following typed transition, for some S, C1, Co, and A:

(D)4 (A)* - n: (!<(Cl’ Cs) —o<>>; S)* n!<)\z. z?(ml).z?(:ng).[[Q]]4>.[[Pl]]4
S (Y AY s (S)EE [P = Q

where #] = n!(\z.2?(x1).27(x2).[Q]*). For simplicity, we consider only the case of linear
functions. It is then immediate to infer the label for the source transition: ¢1 = n!(\(x1, x2). Q).
Now, in the source term P we can infer the following transition:

T;A -0 :1{((C, Cy)—00); S nl(Azy, 9. Q).P 5 A - n:S + P’
which concludes the proof for this case.

O]

Proposition Appendix B.12 (Full Abstraction. From HO7 to HO7). Let P,Q be HO®™ process
withT;0; A1 - P>oandT;0; Ag - Q.
Then T; Ay - P~ Ay - Q if and only if (IY*: (Ar)* F [P]* &% (A5)* - [Q]*
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Proof. The proof is coinductive, and follows as a consequence of Prop. Appendix B.11 (Page 73).
The right-to-left direction follows by showing that the relation
R={(P,Q) | (T)*(A1)* - [P]* =" (A2)* - [Q]*}

is a higher-order bisimulation, by following Part 2 of Prop. Appendix B.11 (Page 73). Suppose
P makes a transition with label ¢; we must exhibit a matching move from (). We illustrate four
representative cases:

1. If £ € {n?(m),n!(m), (vm)n!{m)} then (T')*; (A1)* - [P]* KN (A})* - Py implies
(D)% (A2)* - [QI* & (AL + Qu
From Part 2(a) of Prop. Appendix B.11 (Page 73) we conclude that
T;A FPS AP

and
(D)% (A} - P2 s (A - [P

with {¢}* = {¢1,...,¢,}. Moreover, ['; Ay - Q LN A F Q' and
4 ln
(D)% (A5)* F Q1 2 ... = (Ag)* - [QT°

If we follow the bisimulation game we conclude that

(T)% (A7) F [P]* & (AR - [Q)°
and

AP RATEQ

as required.

2. It £ € {(vm)n!{Az. R),n?(Ax. R)} then (T')*; (A)* - [P]* KN (A})* - Py implies both

(T)% (A2)* - [Q]* & (AL)* - Qs

and
(C)% (A F PO (ALY Q| C

with C' corresponding to the characteristic process if ¢ is an output action and C' = 0 other-
wise. From Part 2(b) of Prop. Appendix B.11 (Page 73) we conclude that

DA P& AL P
with {£'% = fand P, = [P']* and T; Ag - Q 55 AL F (0 and Py = [P']* and
(T)% (A [P ] CI* &7 (A5)* F [Q' | C]*
because the characteristic trigger in the case where £ = n!(\z. R) remains the same for {/}*.
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3.

If € € {n @ I, n&l} then (T)%; (A1)* - [P]* 5 (A})4 - Py implies
¢
(T)*%; (A2)* F [Q]* = (AL)* - Q1
From Part 2(c) of Prop. Appendix B.11 (Page 73) we conclude that I'; Ay = P N A E P
with P, = [P’]* and
T A0k Qs AY+ @
with Q1 = [Q']*, which concludes the case.

The cases for ¢ = 7 are similar and correspond to Parts 2(d), 2(e) of Prop. Appendix
B.11 (Page 73).

The left-to-right direction follows by showing that the relation:

R={([PI*[QI") | TsA1F P~ Ax k- Q)

is a higher-order bisimulation up to deterministic transitions, by following Part 1 of Prop. Appendix
B.11 (Page 73). Suppose [P]* makes a transition with label ¢; we should exhibit a matching move
from [Q]*. We consider six cases:

1.

A

If € = (v )nl(m) then T; Ay - P s AL F P’ implies T; Ag - Q £ AL - Q' and
DAIFP | CRAEAFQ | C

with C' corresponding to the trigger process. Furthermore, from Part 1 (a) of Prop. Appendix
B.11 (Page 73) we have that

(T4 (A - [P]* & . &2 (Al + [P]8
with 034 = {01, ..., 0.} and (T)%; (A2)? F [Q]* B> ... ¥ (AL)* + [Q']* and
(T)* (A [P | Cr | Co]* &7 (A)* Q| Cy | Co]*

because the characteristic triggers remain the same for {¢}4.

I € = n2(m) then T; Ay - P+ AL F P’ implies T; Ay - Q £ AL - @ and

;AL P AR AL E Q)
Furthermore, from Part 1 (b) of Prop. Appendix B.11 (Page 73) we have that
(D)% (An)E F [P]* 5 ... &5 (AL - [P
with €34 = {01, .., 0} and (D)% (A2)* - [Q]* £ ... £ (AL)% F [Q']% as required.
The case for £ = (v m)n!(AZ. R) is similar to the first case.
The case for £ = n?(\Z. R) is similar to the second case.
The case for £ € {n @ [, n&l} is similar to the second case.

The case for ¢ = 7 is similar to the second case.
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