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Chapter 3

Proposal for time-resolved optical

preparation and detection of

triplet-exciton spin coherence in organic

molecules

Abstract

Changes in optical polarization upon light-matter interaction can

probe chirality, magnetization and non-equilibrium spin orientation

of matter, and this underlies fundamental optical phenomena such as

circular dichroism and Faraday and Kerr rotation. With fast opti-

cal pulses electronic spin dynamics in materials can be initiated and

detected in a time-resolved manner. This has been applied to mate-

rial systems with high order and symmetry (giving distinct optical

selection rules), such as clouds of alkali atoms and direct-band-gap

semiconductor systems, also in relation to proposals for spintronic

and quantum technologies. For material systems with lower sym-

metry, however, the potential of these phenomena for studying and

controlling spin is not well established. We present here how pulsed

optical techniques give access to preparing and detecting the dy-

namics of triplet spin coherence in a broad range of (metal-)organic

molecules that have significant spin-orbit coupling. We establish how

the time-resolved Faraday rotation technique can prepare and detect

spin coherence in flat molecules with C2v symmetry, and extrapo-

late that the effects persist upon deviations from this ideal case,

and upon ensemble averaging over fully randomized molecular ori-

entations. For assessing the strength and feasibility of the effects in

reality, we present detailed theoretical-chemistry calculations.
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46 Chapter 3. Proposal for time-resolved ... in organic molecules

3.1 Introduction

Organic molecules are increasingly used for opto-electronic devices, because of

their chemical tunability, low-cost, and ease of processing. In such devices, the

ratio of singlet to triplet excitons can be an important performance parameter[39].

Moreover, because of the many interesting spin-related phenomena discovered in

organic semiconductors and molecules[40–45], further exploration of spintronic

applications in these materials is of interest. Both for organic opto-electronics

and spintronics, being able to control and probe triplet-exciton spin coherence

will be of great value for better material studies and improving the functionalities.

A handle for this may rely on the optical polarization of the interacting light.

Correlations between electronic spin states and optical polarization are well es-

tablished for inorganic semiconductors with strong spin-orbit coupling (SOC)[9],

and a particular example for using such correlations is the Time-Resolved Fara-

day Rotation (TRFR) technique[12, 13, 46]. This is a pump-probe technique

based on measuring the polarization rotation (optical rotation angle) of a probe

pulse upon transmission through a sample, as a measure for the (precessing) spin

orientation induced by a pump pulse. The oscillation of the polarization rotation

as a function of the delay time between pump and probe then directly reflects

coherent spin dynamics. The aim of the theoretical work in this chapter is to

study how this pump-probe technique also allows for optical control and probing

of coherent triplet-exciton spin dynamics in organic molecules.

3.2 Theoretical proof of principle for a molecu-

lar TRFR experiment

To realize a molecular TRFR experiment (Fig. 3.1), we suggest to use an ul-

trashort polarized pump pulse that excites a molecular system from the singlet

ground state into a coherent superposition of two sublevels of the lowest triplet

excited state (Fig. 3.2a), for the zero-phonon optical transition. This energy level

scheme differs from the most common TRFR scenario, which focuses on electron

spin coherence (with spin S = 1/2) in inorganic semiconductors[12, 13]. For

This chapter is based on Ref. 2 on p. 177.
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Figure 3.1: Schematic of a molecular Time-Resolved Faraday Rotation

(TRFR) experiment. The pump and probe pulse propagate in the x-direction,

whereas the molecule lies in the yz-plane. Depending on the state of the molecule, the

probe pulse experiences optical rotation upon transmission, where the optical Faraday

rotation angle ∆θ (in the yz-plane) is a measure for the spin orientation induced by the

pump pulse. Coherent spin dynamics occurs along the x-axis and is revealed by varying

the delay time between pump and probe, involving an oscillation of ∆θ. In view of

this work, the metal-organic molecule (2,6-bis(aminomethyl)phenyl)(hydrido)platinum

is depicted, which is referred to as PtN2C8H12. This molecule has C2v symmetry. The

Jones vectors E with corresponding (in general complex) prefactors (α, β, δ and ε) are

in general not normalized, unless representing polarizations (i.e. normalized electric

vectors which we denote with a hat, in which case we call the prefactors polarization

parameters).

these systems optical transitions can be described as excitations of single elec-

trons, from valence-band to conduction-band states. For the relevant electrons

in chemically stable organic molecules the typical situation is very different: the

ground state has two localized electrons in a spin singlet S = 0 configuration.

Without SOC effects, optical transitions are only allowed to excited states that

are also singlet states. Spin coherence can be carried out by excited states with

the electrons in a triplet spin S = 1 configuration, and these states have ener-

gies that are typically ∼200 meV lower in energy than their singlet equivalents.

Optical transitions directly into the triplet excited states are only possible when
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Figure 3.2: Energy level scheme and laser (de)tuning for the pump and

probe pulse in a molecular Time-Resolved Faraday Rotation (TRFR) ex-

periment. a, For PtN2C8H12 all three (x, y, z, as defined in Fig. 3.1) components

of 〈ψ2| r |ψg〉 are zero, wherefore we neglect |ψ2〉. When the pump pulse (red arrow)

arrives at t = 0, only |ψg〉 is populated, as indicated with the dot. Full absorption of a

photon out of a short (thus spectrally broad) optical pump pulse polarized in both the

y and z-direction induces a superposition of |ψ1〉 and |ψ3〉. b, Directly after excitation

with the pump, |ψe(t)〉 (being a superposition of |ψ1〉 and |ψ3〉) is populated, as indi-

cated with the dot. A linearly polarized probe pulse (blue arrow) with detuning ∆p

experiences a polarization rotation ∆θ, which oscillates as a function of the delay time

∆t. This oscillation is a measure for the coherent spin dynamics 〈J〉 (t), related to the

evolution |ψe(t)〉.

the system has significant SOC, with more oscillator strength for the transitions

as the SOC strength increases. Typical molecular systems with large SOC are

metal-organic complexes containing a heavy metal atom[47, 48], and molecules

with strong curvature at carbon-carbon bonds[49]. Such molecules are particu-

larly used in organic light-emitting diodes (OLEDs) for efficient triplet-exciton

harvesting.

For our analysis we will assume that the pump pulse exactly transfers all

population from the singlet to the triplet state (i.e. and exact optical π-pulse for

this transition). In practice this will often not be the case, but for the essential

aspects in our analysis this does not compromise its validity. Instead, an ultrafast

pump pulse will in general bring the system in a quantum superposition of |ψg〉
and |ψe(t = 0)〉. However, the quantum coherence between these two states

will typically decohere very fast, and this will bring the system in an incoherent

mixture of |ψg〉 and |ψe(t ≈ 0)〉. Then, the population in |ψg〉 will not contribute
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to the TRFR signal (for our probing scheme, see below). At the same time,

the population in |ψe(t ≈ 0)〉 will contribute to the TRFR signal in the same

manner as a system that is purely in this state. The main reason to still aim for

excitation with an optical π-pulse is that this maximizes the TRFR signal, and

our estimates below here assume this case.

We thus assume that the pump pulse brings the molecules in a state that

is purely a superposition of triplet sublevels (|ψe(t)〉 in Fig. 3.2b). This state

will show coherent spin dynamics as a function of time (also at zero magnetic

field the triplet sublevels are typically not degenerate[50]). We will study this

by calculating both 〈S〉 (t) and 〈J〉 (t), where J = L + S is the total electronic

angular momentum in conventional notation, and t is the time after the arrival of

the pump pulse (to be clear, we use t for time in the system’s free evolution, and

∆t for the pump-probe delay). As commonly done in literature on spintronics[51],

we will use the word spin for well-defined states of J. The discussion will clarify

whether a net spin orientation refers to a nonzero expectation value for J or S.

For our calculations we focus on a molecule that contains a heavy-metal atom

in order to have large SOC. In literature, usually density-functional theory (DFT)

calculations are used to study such complexes theoretically, like e.g. for plat-

inum porphyrins[45] and iridium complexes[52]. We use the more accurate com-

bined CASSCF/CASPT2/RASSI–SO method instead, as introduced by Roos and

Malmqvist[17, 18] in MOLCAS[23], in order to have a better basis for extract-

ing physically relevant wave functions and spin expectation values. Since this is

computationally a very expensive method, we chose the relatively small metal-

organic complex (2,6-bis(aminomethyl)phenyl)(hydrido)platinum (to which we

refer in this work as PtN2C8H12 (Fig. 3.1)). Note that this molecule is (possibly)

not chemically stable, in contrast to the related molecule[53] with Cl substituted

for the H bound to Pt and N(CH3)2 for NH2. However, it is computationally much

less demanding and therefore more suitable for our proof of principle calculation.

The sublevels of the lowest triplet (including SOC) of PtN2C8H12 are labeled

as |ψ1〉, |ψ2〉 and |ψ3〉 (Fig. 3.2 and Supplementary Information Fig. 3.9 (p. 84)).

The energies of these levels with respect to |ψg〉 are 3.544, 3.558 and 3.564 eV re-

spectively, as obtained from the CASPT2 calculation. The corresponding nonzero

components of the transition dipole moments are 〈ψ1| y |ψg〉 ≈ 0.0003 − i0.0112

and 〈ψ3| z |ψg〉 ≈ 0.0063 in atomic units (where the conversion factor to SI-units

is 8.47836 · 10−30 Cm). In other words, a transition from |ψg〉 is allowed only

with y and z polarized light to state |ψ1〉 and |ψ3〉, respectively, but forbidden

to state |ψ2〉. Having this type of selection rules for singlet-triplet transitions is
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a generic property of systems with C2v symmetry (for details see Supplementary

Information Sec. 3.12 (p. 83)), and introduces a way to selectively excite to (a

specific superposition of) triplet sublevels. Such an imbalance in populating the

triplet sublevels is essential for inducing spin orientation (see also below).

A spectrally broad pump pulse with polarization in both the y and z-direction

can thus bring the system into a superposition of |ψ1〉 and |ψ3〉. From the

CASPT2 calculations, an energy splitting E3 − E1 = 20 meV (30 THz angu-

lar frequency) has been obtained (Supplementary Information Table 3.3 (p. 83)).

To simultaneously address |ψ1〉 and |ψ3〉, we thus need to use ultrashort laser

pulses with an uncertainty in the photon energy given by σEph > E3 − E1. This

requires that the time duration of the pulses does not exceed 16 fs (defined as the

standard deviation of the envelope), as follows from the time−energy uncertainty

relation.

Figure 3.3: Calculation of 〈Jx〉 (t), 〈Lx〉 (t) and 〈Sx〉 (t) for a superposition

of two triplet sublevels of a single PtN2C8H12 molecule. This calculation

originates from a superposition of triplet sublevels |ψ1〉 and |ψ3〉 (which interact with y

and z polarized light respectively, Fig. 3.2), induced by an ultrashort pump pulse having

electric unit vector Êpump = ẑ+ŷ√
2

. Spin oscillation occurs in the x direction only. More

specific, 〈Jx〉 (t), 〈Lx〉 (t) and 〈Sx〉 (t) oscillate with frequency ω31 = (E3−E1)/~, while

the y and z components remain zero.
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For the pure triplet spin states Tx, Ty and Tz (defined in Supplementary

Information Eq. (3.77-3.79) (p. 84)), all (x, y, z) components of 〈S〉 are zero.

Instead, for a superposition of these sublevels the net spin can be nonzero. More

specifically, for a superposition of two of these spin states (say, Ti and Tj), the

spin expectation value oscillates with only a nonzero component in the direction

perpendicular to i and j, and with a frequency corresponding to the energy

difference between the sublevels. To induce nonzero spin and subsequent spin

dynamics for PtN2C8H12, we therefore propose a direct excitation from |ψg〉 to

the state |ψe(t = 0)〉, being a superposition of |ψ1〉 and |ψ3〉 (Fig. 3.2a, for

details see Supplementary Information Eq. (3.26) (p. 67)). As a function of time,

this superposition evolves as |ψe(t)〉 (Fig. 3.2b and Supplementary Information

Eq. (3.28) (p. 67)), for which 〈Jx〉 (t), 〈Lx〉 (t) and 〈Sx〉 (t) oscillate with frequency

ω31 = (E3 − E1)/~, while the y and z components remain zero. Fig. 3.3 shows

the result of a calculation of such an oscillation, for the case where the electric

unit vector of the pump pulse is Êpump = ẑ+ŷ√
2

.

We aim to probe this oscillating spin (orientation) via Faraday rotation, which

can be realized my measuring the polarization rotation ∆θ (as introduced in

Fig. 3.1). The optical transitions and selection rules that we have introduced

in the above can be used for calculating ∆θ (for details see Supplementary In-

formation Sec. 3.7 (p. 64) and Sec. 3.8 (p. 66)). Fig. 3.4 shows results of such

a calculation, for an ensemble of isolated and identically oriented PtN2C8H12

molecules (e.g. realized by using a crystal host). We have assumed a detuned

linearly polarized probe pulse, and present ∆θ as a function of the delay time ∆t

between an ultrashort polarized pump and probe pulse. Taking a detuned probe

(Fig. 3.2) limits probe-pulse induced population transfer back to the ground state,

which allows to consider dispersion only[54]. We take a detuning where dispersion

is near maximal, while probe absorption is strongly suppressed.

While we do not present the full equations for the above calculation in the

main text (but in the Supplementary Information), we will discuss here some

notable aspects. The polarization of the probe pulse after transmission Eout is

affected when its components experience a different real part of the refractive in-

dex[16] (birefringence). A generic description of light-matter interaction in such

a medium requires formulating the linear susceptibility and relative permittivity

as a tensor. However, the refractive index does not have a tensor representation

due to its square-root relation with these parameters[55]. Speaking about refrac-

tive indices only makes sense when a transformation is performed to the basis of

the principal axes, which are the eigenvectors of the linear susceptibility tensor
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Figure 3.4: Calculation of the polarization rotation ∆θ = θout− θin as a func-

tion of ∆t for an ensemble of isolated and identically oriented PtN2C8H12

molecules. The curve was calculated with Supplementary Information Eq. (3.61)

(p. 73) with the following parameter values: Polarization parameters α = β = δ = ε =

1/
√

2, i.e. electric unit vectors Êpump = Êin = ẑ+ŷ√
2

(where Êin is the initial polariza-

tion of the probe); Transition dipole moments d1 = 0.0003 − i0.0112 and d3 = 0.0063

a.u.; Triplet sublevel splitting E3 − E1 = 20 meV; Probe wavelength λ = 349 nm;

Detuning ∆p = −60 meV, which is assumed to satisfy the requirements |∆p| >> γ and

|∆p| >> |E3 − E1|/~; Thickness d = 100 nm; Number density N = 1024 m-3.

χ̃(1) (Eq. (3.31) in the Supplementary Information (p. 68)). For our system, the

oscillating dynamics of |ψe(t)〉 yields that the principal axes oscillate with time

(see Eq. (3.38) and (3.41)). While accounting for this, the electric-field compo-

nents of the probe after transmission (Eq. (3.56)), and in turn the corresponding

azimuth θout (Eq. (3.59)), and polarization rotation ∆θ = θout − θin (Eq. (3.61))

can be calculated, for results as in Fig. 3.4.

Comparing Fig. 3.3 with Fig. 3.4, we conclude that ∆θ(∆t) is an appropriate

measure for 〈J〉 (t), since both oscillate in phase with frequency ω31. The ex-

perimental advantage of measuring oscillating coherent spin dynamics instead of

merely spin orientation is that it is much easier to trace back the origin of a small

signal when it oscillates, and it gives access to observing the dephasing time of

the dynamics.
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3.3 Feasibility analysis

The experimental feasibility of a molecular TRFR experiment particularly de-

pends on the amplitude of the oscillation of the polarization rotation ∆θ as a

function of the delay time ∆t. Typically, the accuracy of a TRFR experiment is

in the order of nrads[56]. Fig. 3.4 gives a value of 23 nrad for this amplitude, well

within the required range. In Supplementary Information Sec. 3.10 (p. 75) we

discuss how this signal can be enhanced by several orders of magnitude. In the

remainder of this section we address other aspects of the feasibility of a molecular

TRFR experiment.

3.3.1 TRFR experiment with an ensemble of randomly

oriented molecules

In Supplementary Information Sec. 3.15 (p. 91) we show for an ensemble of ran-

domly oriented PtN2C8H12 molecules that the TRFR signal is only reduced by

a factor 2 as compared to the case with all molecules oriented such that the

maximum signal is obtained (i.e. perpendicular to the incoming light). Hence,

optically induced spin orientation does not necessarily require the same orienta-

tion for the molecules of interest when put in a crystal host. Moreover, this shows

that a nonzero TRFR signal can be obtained for molecules in the gas phase and

in solution. In these cases it can be satisfied that the molecules of interest are

well isolated from each other. Still, the spin lifetime might be affected by several

effects.

The spin dynamics might be affected by thermal fluctuations within the

molecule. Although this is usually hardly the case for pure spins, the effect

might be nonnegligible in our case due to the orbital part being mixed in via

SOC. As long as this orbital contribution is small, these effects will not be severe.

The strength of the SOC effect drives in fact a trade off between positive and

negative effects for observing long-coherent spin oscillations with TRFR. Strong

SOC makes the direct singlet-triplet transition stronger. However, it will also

shorten the effective triplet-spin dephasing time because it shortens the optical

life time of the triplet state, and since it enhances the mentioned coupling to

thermal fluctuations. In addition, rapid tumbling of molecules in solution might

limit for how long coherent spin oscillations can be observed. This effect might

be suppressed by e.g. taking a high viscosity of the solvent, large molecules or a

low temperature (for details see Supplementary Information Sec. 3.15). Another
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trade off lies in the triplet sublevel splitting for the system of choice. A larger

splitting gives faster spin oscillations, but is thus more demanding on the need for

ultrashort laser pulses. A larger energy scale for the splitting probably increases

to what extent the spin dynamics couples to other dynamics of the system.

3.3.2 Single molecule TRFR experiment

In earlier work, the optically detected magnetic resonance (ODMR) technique

has been used to study triplet spin polarization in molecular ensembles[57] and

single molecules[58]. Within this technique, a microwave field drives the spin

dynamics. An advantage of our TRFR technique may lie in that it is an all-optical

technique, and fast laser pulses give access to a much higher time resolution.

Other advantages are the absence of a magnetic field and the applicability to

ensembles of randomly oriented molecules.

It would be very interesting to be able to also apply the TRFR experiment to

a single molecule. Hence, we qualitatively determine whether such an experiment

is possible. As an approximation for the signal obtained with a single molecule

experiment, we can take the thickness d equal to the separation between two

molecules (determined by N). In our calculation for PtN2C8H12, we have d =

100 nm and N corresponding to a separation of 10 nm. Our approximation

thus implies only one order of magnitude loss of ∆θ signal when taking a single

molecule into account. We thus conclude that the signal of a TRFR experiment

applied to a single PtN2C8H12 molecule lies within the measurable range (> nrad)

which offers a strong indication that the TRFR technique can be used to probe

the spin of single molecules as well. Likewise, the TRFR technique has already

been applied successfully to probing of a single spin in a semiconductor quantum

dot[59].

3.3.3 Franck-Condon suppression of optical transitions

Although our proof-of-principle calculation was performed for (2,6-bis(amino-

methyl)phenyl)(hydrido)platinum, this particular molecule seems unfavorable for

an actual demonstration of a molecular TRFR experiment since the Franck-

Condon (FC) factor for the zero-phonon transition is extremely small (Supple-

mentary Information Sec. 3.13 (p. 85)). Using the zero-phonon transition is still

preferred to avoid a strongly disturbing coupling between the coherent spin dy-

namics and phonons. The zero-phonon-line FC factors for platinum porphyrins

are much larger (Supplementary Information Sec. 3.13), which make them promis-
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ing candidates for spintronics applications in general[45], and for a molecular

TRFR experiment in particular (Supplementary Information Sec. 3.14 (p. 86)).

3.3.4 Persistence of spin-orientation effects for symme-

tries lower than C2v

For our proof-of-principle study we have focused on a system with C2v symmetry,

for which the complexity of the description can be kept at a moderate level.

This case is also relevant since many organic molecules have a flat structure

(around the location with the optically active electrons). For molecules that

only weakly deviate from this C2v symmetry, the effects are most likely only

weakly suppressed. That is, the effects demonstrated in this chapter only fade

out gradually when one gradually distorts the C2v symmetry.

The nonzero TRFR signal in our proposal comes mainly forward due to the

strong selection rules that link particular optical polarizations to transitions from

the singlet ground state into specific triplet sublevels. More specific, since one

of the three electric dipole moments for the singlet-to-triplet transitions is zero

(directly following from the C2v symmetry), the TRFR signal shows a single spin

oscillation, originating from the quantum superposition of two triplet sublevels.

In the case of a relatively large deviation from C2v, these selection rules become

usually less strict in two ways: excitations are allowed (1) to all three sublevels,

and (2) with all polarizations (x, y, z). However, the oscillator strengths of the

different polarizations are usually not equally strong for the different sublevels. As

such, an imbalance in the populations of the triplet sublevels can still be created,

such that the TRFR signal will not be fully suppressed. Additionally, the total

TRFR signal will then consist of a sum of three oscillations with frequencies

|ωij| = |Ei − Ej|/~, with i and j two different triplet sublevel indices.

3.4 Summary and Outlook

We have derived the fundamentals of a TRFR experiment applied to organic

molecules with strong spin-orbit coupling allowing for singlet-triplet excitations.

We have shown how the optical selection rules can be exploited to induce a quan-

tum superposition of triplet sublevels of the excited state of the molecular system,

using an ultrashort pump pulse. We have derived how the polarization of an op-

tical probe pulse is affected upon transmission, from which the requirements for

polarization rotation follow. As a proof-of-principle calculation, the metal-organic
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complex (2,6-bis(aminomethyl)phenyl)(hydrido)platinum has been considered to

study the possibility of a molecular TRFR experiment. Using the results of

ab initio calculations, we have calculated the time dependence of the polariza-

tion rotation angle and of the expectation value of the total electronic angular

momentum. Both oscillate in phase with a frequency corresponding to the sub-

level splitting, implying that the oscillation of polarization rotation is a suitable

measure for coherent spin dynamics. Nevertheless, metal-organic molecules like

platinum porphyrins seem better candidates for a molecular TRFR experiment

because of their larger Franck-Condon factors for the zero-phonon transition.

Using the TRFR technique to study triplet-exciton spin dynamics in organic

molecules offers an interesting tool for probing material properties and new func-

tionalities. An obvious example is a study of the lifetime of coherent spin dynam-

ics, and the TRFR technique also allows for studying (extremely small or zero)

energy splittings between triplet sublevels. Such studies are useful for judging

whether the molecules can be applied in spintronic or quantum information ap-

plications via light-induced spin orientation, or sensors based on spin dynamics.
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Supplementary Information (SI)

3.6 SI: Principles of the TRFR technique for an

idealized Π−system

We give here the theoretical basis of the Time-Resolved Faraday Rotation (TRFR)

technique (main text Fig. 3.1) as applied to the artificial system of Fig. 3.5 which

contains a single electron and where a weak magnetic field is applied in the z-

direction. For the sake of simplicity, we assume that the levels |3〉 and |4〉 lie

significantly lower than the levels |1〉 and |2〉. As such, this system closely resem-

bles quantum wells with a zinc-blende band structure having a conduction band

that is derived from s-like atomic states and a valence band from p-like states.

For such quantum wells, the concept of spin injection is discussed by Fox[10] (2nd

ed., chapter 6.4.5).

The TRFR technique is a pump-probe technique, where a resonant pump

pulse induces spin polarization and where the polarization rotation of a detuned

(usually linearly polarized) probe pulse is measured as a function of delay time, as

a measure for the spin dynamics of the system. We will assume that the photon

energy of both the pump and probe pulses equals Eph = E+−E2 = E−−E1. As

such, we can neglect |3〉 and |4〉, implying that the system behaves as a four-level

Π-system. The physics behind the TRFR technique as applied to a Π-system

(Fig. 3.5) offers a useful basis for this technique applied to V -systems like the

singlet-triplet system on which the rest of this work focuses. Note that if the

energies E3 and E4 would be equal to E1 and E2, the system would resemble

direct gap III-V semiconductors (Fox[10], 2nd ed., chapter 3.3.7). As such, the

concept of spin injection becomes slightly more complicated. Now, σ+ and σ−

also allow for the transitions |3〉x → |+〉x and |4〉x → |−〉x respectively, though

with a probability three times as small as the transitions depicted in Fig. 3.5.

For direct gap III-V semiconductors, one can therefore induce at most 50% spin

polarization.
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Figure 3.5: Selection rules for circularly polarized light for an isolated sys-

tem closely resembling a quantum well with the zinc-blende band struc-

ture. Using ultrashort pulses (with a Heisenberg uncertainty in Eph larger than

the Zeeman splittings), the optical selection rules apply to the quantization axis de-

fined by the x-direction in which the pulses propagate (whereas the magnetic field

is in the z-direction). For the sake of simplicity, we assume that the probe light is

close to resonance with the transition to the states |1〉 and |2〉 such that we can ne-

glect |3〉 and |4〉, implying that the system behaves as a four-level Π-system. Hence,

the only nonzero transition dipole moments are µσ
+

−1 = −e x〈−|σ+|1〉x ≡ −ed1 and

µσ
−

+2 = −e x〈+|σ−|2〉x ≡ −ed2. Spin polarization in the excited state is induced with

a circularly polarized pump pulse (σ− = ŷ−iẑ√
2

) which prepares the system in the state

|+〉x (see Eq. (3.1)), where we assume full absorption for a system having initially

only |2〉x populated. Directly after excitation, the wave function is given by |+〉x. A

magnetic field in the z-direction induces population transfer to |−〉x. Accordingly, the

wave function is given by Eq. (3.6) as a function of time. The polarization rotation

of a linearly polarized probe pulse (originating from a different refractive index for its

circular components) as a function of the delay time ∆t is a suitable measure for the

spin dynamics.

Let us consider (for the system in Fig. 3.5) a circularly polarized pump pulse

propagating in the x-direction (corresponding to the so-called Voigt geometry,

i.e. perpendicular to the magnetic field) with polarization σ− = ŷ−iẑ√
2

. Using

ultrashort laser pulses (with a Heisenberg uncertainty in Eph larger than the

Zeeman splittings), the optical selection rules apply to the quantization axis

defined by the propagation direction. For light propagating in the x-direction,

the relevant transition dipole moments for the system of Fig. 3.5 are µσ
+

−1 =

−e x〈−|σ+|1〉x ≡ −ed1 and µσ
−

+2 = −e x〈+|σ−|2〉x ≡ −ed2. Note that µσ
−
−1 ,

µσ
+

+2, µ−2 and µ+1 are zero according to the selection rules. Let us assume that

the electron initially populates |2〉x. Assuming full absorption, the pulse spin
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polarizes the system such that only the state |+〉x is populated, We use a subscript

x to refer to the optical {|+〉x, |−〉x}-basis, and z to refer to the {|+〉z, |−〉z}-basis.

Let us define for the wave function at time t = 0

|ψe(t = 0)〉 = |+〉x =
|+〉z + |−〉z√

2
(3.1)

The corresponding spin polarization amounts Π = 1, according to

Π =

∣∣∣∣N(+)−N(−)

N(+) +N(−)

∣∣∣∣ (3.2)

Due to the magnetic field, the spin undergoes a Larmor precession, since |+〉x is

not an eigenstate of the Hamiltonian. As a function of time, the wave function

is given by (neglecting decay processes)

|ψe(t)〉 =
e−iE+t/~|+〉z + e−iE−t/~|−〉z√

2
(3.3)

After multiplication with a global phase factor, and defining Ω = E+−E−
~ , this

yields

|ψe(t)〉 =
|+〉z + eiΩt|−〉z√

2
(3.4)

For a TRFR experiment, the polarization rotation ∆θ of a linearly polarized

pump pulse is recognized to be a measure for the amount of spin polarization.

Spin dynamics is studied experimentally by measuring ∆θ as a function of the

delay time ∆t between the pump and probe. Let us derive ∆θ(∆t) for a probe

pulse propagating in the x-direction with Ein = E0ŷ. The origin of a polarization

rotation lies in a different (real part of the) refractive index for the circularly

polarized components of the probe pulse. Written as a superposition of circular

components, we have ŷ = σ++σ−√
2

. Note that the probe pulse is detuned in order

to prevent population transfer. Since the selection rules for electronic dipole

transitions apply in the optical basis, let us perform the transformation |ψe(t)〉z →
|ψe(t)〉x using the transformation matrix

USz→Sx =

[
1√
2

1√
2

1√
2
− 1√

2

]
(3.5)

This yields

|ψe(t)〉 =
1 + eiΩt

2
|+〉x +

1− eiΩt

2
|−〉x (3.6)
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To determine the refractive indices, let us first consider the linear susceptibility

tensor χ̃(1), with components given by Boyd[54] (3rd Ed. Eq. (3.5.18))

χ̃
(1)
ij (ωp) =

N

ε0~
∑
nm

ρ(0)
mm

[
µimnµ

j
nm

(ωnm − ωp)− iγnm
+

µinmµ
j
mn

(ωnm + ωp) + iγmn

]
(3.7)

where we use a tilde to denote a complex number. Here, we consider an ensemble

with N the number density of isolated systems (each represented by Fig. 3.5),

ε0 = 8.854... · 10−12 F m−1 is the vacuum permittivity, ~ = 1.054... · 10−34 J s is

Planck’s constant, ρ
(0)
mm is the first term in a power series for the diagonal elements

of the density matrix, µien = −e〈ψe(t)|i|ψn〉 is the i-component of the transition

dipole moment (with i = x, y, z), ωmn = (Em−En)/~ is the transition frequency,

ωp is the probe laser frequency, and γ is the damping rate. Note that in Eq. (3.7)

ε0 should be omitted when using Gaussian units (as in older editions of Boyd)

instead of SI-units.

When the probe pulse arrives at the sample, the system (Fig. 3.5) populates

the excited state given by Eq. (3.6). This implies that ρ
(0)
ee = 1, whereas ρ

(0)
11 =

ρ
(0)
22 = 0. Since the levels |1〉x and |2〉x are empty, only the (detuned) downward

transitions |−〉x → |1〉x and |+〉x → |2〉x are relevant for the description of the

polarization rotation (since an upward transition with the probe is impossible

with zero population in the lower states). This implies that the second term in

Eq. (3.7) corresponds to resonance and is the so-called rotating term, whereas the

first term is the counter-rotating one and can be omitted. Hence, we can write

the components of the linear susceptibility tensor χ̃(1) to a good approximation

as

χ̃
(1)
ij (ωp) =

N

ε0~

2∑
n=1

µineµ
j
en

∆p,ne + iγne
(3.8)

where we define ∆p,ne = ωne + ωp. The eigenvectors of χ̃(1) are the so-called

principal axes. For a probe pulse propagating in the x-direction, we can neglect

the x-components of χ̃(1). The other two principal axes turn out to be σ+ = ŷ+iẑ√
2

and σ− = ŷ−iẑ√
2

, with corresponding transition dipole moments

µσ
+

e1 = −e x〈ψe(∆t)|σ+|1〉x = −e1− e−iΩ∆t

2
d1 =

(
µσ

+

1e

)∗
(3.9)

µσ
−

e2 = −e x〈ψe(∆t)|σ−|2〉x = −e1 + e−iΩ∆t

2
d2 =

(
µσ
−

2e

)∗
(3.10)

In the {σ+, σ−}-basis the only nonzero components of χ̃(1) are

χ̃
(1)

σ+σ+ =
N

ε0~
µσ

+

1e µ
σ+

e1

∆p,1e + iγ1e

=
N

ε0~
e2|d1|2

∆p,1e + iγ1e

1− cos(Ω∆t)

2
(3.11)
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χ̃
(1)

σ−σ− =
N

ε0~
µσ
−

2e µ
σ−
e2

∆p,2e + iγ2e

=
N

ε0~
e2|d2|2

∆p,2e + iγ2e

1 + cos(Ω∆t)

2
(3.12)

Assuming d1 = d2 ≡ d0, ∆p,1e = ∆p,2e ≡ ∆p and γ1e = γ2e ≡ γ allows us to write

χ̃(1) =
Ne2|d0|2

ε0~
∆p − iγ
∆2
p + γ2

[
1−cos(Ω∆t)

2
0

0 1+cos(Ω∆t)
2

]
(3.13)

Clearly, χ̃(1) depends on ∆t. However, since χ̃(1) is diagonal (independent of ∆t),

the principal axes do not depend on ∆t. It is important to realize that we have

considered a Π-system here. In Section 3.8 we will consider a V -system for which

the principal axes turn out to oscillate as a function of ∆t.

To determine how the circular components of a linear probe are affected upon

transmission, we have to consider their refractive indices. The refractive index is

given by[54]

ñj =

√
1 + χ̃

(1)
jj ≈ 1 +

1

2
χ̃

(1)
jj (3.14)

where the latter approximation is valid for
∣∣∣χ̃(1)

jj

∣∣∣ << 1. We assume that the probe

is sufficiently detuned from the |−〉 → |1〉 and |+〉 → |2〉 transitions, such that

the imaginary part of χ̃(1) can be neglected, and with that population transfer

as well (as explained in Section 3.7). From Eq. (3.13) and Eq. (3.14) it follows

that the difference between the real parts of the refractive indices amounts

∆n ≡ nσ− − nσ+ ≈ Ne2|d0|2

ε0~
∆p

∆2
p + γ2

cos(Ω∆t)

2
(3.15)

To describe how the probe pulse is affected by the sample, one should consider

the Jones matrix J{σ+, σ−}, which performs the following transformation

Eout{σ+, σ−} = J{σ+, σ−}Ein{σ+, σ−} = J{σ+, σ−}

[
E0/
√

2

E0/
√

2

]
(3.16)

The Jones matrix is given by

J{σ+, σ−} =

[
eiΛnσ+ 0

0 eiΛnσ−

]
(3.17)

which expresses the retardation of (light polarized along) principal axis ĵ by Λnj
where Λ ≡ 2πd/λ, with d the thickness of the sample and λ the wavelength of
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the light[16]. It is more convenient to multiply the Jones vector with the global

phase factor e−iΛnσ+ which gives for Eq. (3.16)

Eout{σ+, σ−} =
E0√

2

[
1

eiΛ∆n

]
(3.18)

To determine the polarization rotation we follow the circular complex-plane rep-

resentation of polarized light as defined in the book of Azzam and Bashara[16].

In line with Eq. (1.92) of [16] we define the ratio

κ = Eσ+/Eσ− (3.19)

where we use κ in contrast to [16] (which uses χ). From Eq. (1.95) of [16] we

adopt the expression for the azimuth θ

θ = −arg(κ)

2
(3.20)

For the incoming and outcoming probe, Eq. (3.19) yields κin = 1 and κout =

e−iΛ∆n, corresponding to θin = 0 and θout = Λ∆n
2

respectively, according to

Eq. (3.20). The polarization rotation (optical rotation angle) ∆θ is now given by

∆θ = θout − θin (3.21)

which gives ∆θ = πd∆n
λ

, with ∆n proportional to cos(Ω∆t) as given by Eq. (3.15).

Measuring ∆θ as a function of ∆t will show an oscillation with angular frequency

Ω = E+−E−
~ and amplitude

max(∆θ) =
πd

2λ

Ne2|d0|2

ε0~
∆p

∆2
p + γ2

(3.22)

In literature[13, 46] this oscillation of the polarization rotation is recognized to

be a suitable measure for the Larmor spin precession in the excited state, since

the angular frequency is the same for both oscillations. The reader is referred to

the book of Cohen-Tannoudji, Diu and Laloë[5] for a derivation of the oscillation

of a Larmor spin precession of a spin 1/2 in the presence of a uniform magnetic

field: for a spin initially populating the state |+〉x, the angular frequency of the

time-variation of the expectation value 〈Sx〉 equals the energy splitting between

the sublevels (in units of ~) induced by the field.

So far, we considered an ensemble of isolated Π-systems (with number density

N), where each system is represented by Fig. 3.5. Let us now shortly elaborate

on how to theoretically describe a TRFR experiment applied to a coherently
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coupled ensemble of Π-systems (with number density N). We will see that also

the upward transitions affect the probe polarization and contribute to the total

TRFR signal.

A pump pulse driving the upward transition |2〉x → |+〉x does not only induce

electron spin polarization in the state |+〉x. Simultaneously, the hole spin in the

state |2〉x (mJ = 3/2) is polarized. However, e.g. in III-V direct gap semicondu-

tors the corresponding hole spin dynamics in the valence band is usually neglected

(i.e. an equal distribution of the valence band states is assumed) because of the

fast thermalization (particularly because the valence bands with mJ = −1/2, 1/2

lie closeby), happening on a much shorter timescale than the conduction band’s

electron spin dynamics. Nevertheless, the probe polarization will be affected also

by the (detuned) upward transitions |1〉x → |−〉x and |2〉x → |+〉x, since the hole

spin in the conduction band is polarized as well. Here, the reader is referred to

Fig. 3.5, but one should now understand the bars as bands. Also, there is now

(partial) population in the valence band states (|1〉x up to |4〉x). Particularly

interesting is the case where thermalization of the valence band states does not

occur faster than the spin dynamics in the conduction band, as can e.g. be real-

ized for quantum wells with a zinc-blende band structure where the valence band

states |3〉x and |4〉x lie sufficiently low. Accordingly, Larmor spin precession hap-

pens also in the valence band, accompanied by population transfer between the

bands with mJ = −3/2 and 3/2. Correspondingly, one can write down a time-

dependent ground state (analogous to Eq. (3.6)) and follow the procedure as

above for calculation of the refractive indices and resulting polarization rotation

for a linearly polarized probe pulse.

One might wonder whether the contributions from the downward and upward

transitions do not cancel. To show that this is not the case, let us consider the

case where the probe pulse arrives at the sample directly after spin polarization

with the pump pulse, i.e. ∆t = 0. Let us consider the contributions separately

by considering first (Case I) an artificial system as in Fig. 3.5, with only |+〉x
populated, i.e. ρ

(0)
++ = 1, and secondly (Case II) an artificial system as in Fig. 3.5,

with only |1〉x populated, i.e. ρ
(0)
11 = 1.

Case I: ρ
(0)
++ = 1. This case simply follows from the theory above, where we

can substitute ∆t = 0 in Eq. (3.6) and replace the subscript e by + in Eq. (3.8).

It follows that the only nonzero component of χ̃(1) is

χ̃(1)
σ−σ−(ωp) =

N

ε0~
µ
σ−
2+µ

σ−
+2

(ω2+ + ωp) + iγ2+

=
N

ε0~
|µ|2

∆p + iγ
=

N

ε0~
|µ|2 ∆− iγ

∆2
p + γ2

(3.23)

where we have defined (in line with the theory above) ∆p ≡ ω2+ + ωp where
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ω2+ = (E2 − E+)/~ < 0. Also, we assume γ2+ = γ−1 ≡ γ and µ
σ−
2+ = µ

σ+
1− ≡ µ.

Case II: ρ
(0)
11 = 1. For this case the wave function is given by |1〉x. For the linear

susceptibility this implies that the first term in Eq. (3.6) corresponds to resonance

and is the so-called rotating term, whereas the second term is the counter-rotating

one and can be omitted. It follows that the only nonzero component of χ̃(1) is

χ̃(1)
σ+σ+

(ωp) =
N

ε0~
µ
σ+
1−µ

σ+
−1

(ω−1 − ωp)− iγ−1

=
N

ε0~
|µ|2

−∆p − iγ
=

N

ε0~
|µ|2−∆ + iγ

∆2
p + γ2

(3.24)

where ω−1 = (E− − E1)/~ > 0. Also, we have ω−1 = −ω2+, which implies

ω−1 − ωp = −∆p.

We see that χ̃
(1)
σ+σ+(ωp) in Eq. (3.24) equals −χ̃(1)

σ−σ−(ωp) in Eq. (3.23). For

a coherent ensemble (e.g. a quantum well with a zinc-blende band structure) of

the systems in Fig. 3.5 one might have that both the downward and upward

transitions contribute to the total TRFR signal, thereby resembling Case I and

Case II simultaneously. Considering the extreme (i.e. ρ
(0)
mm = 1) cases of Eq. (3.23)

and Eq. (3.24), following Eq. (3.14) and Eq. (3.15) shows that at ∆t = 0 the

total TRFR amplitude can become twice the value of Eq. (3.22). In practice, one

will not realize ρ
(0)
mm = 0, 1 (i.e. completely full or empty bands) for a coherent

ensemble. The total TRFR signal will therefore be mitigated, but it is important

to realize that both the downward and upward transitions can contribute to a

polarization rotation of the probe pulse.

3.7 SI: Fundamentals of a molecular TRFR ex-

periment

Let us study here the theoretical application of the Time-Resolved Faraday Ro-

tation (TRFR) technique (main text Fig. 3.1) to a model system (main text

Fig. 3.2) in the absence of a magnetic field. The system consists of the states

|ψg〉, |ψ1〉, |ψ2〉 and |ψ3〉, with energies Eg, E1, E2 and E3, respectively, with

Eg = 0. The only nonzero components of the transition dipole moments related

to |ψg〉 are µy1g = −e〈ψ1|y|ψg〉 = −ed1 and µz3g = −e〈ψ3|z|ψg〉 = −ed3, with e the

elementary charge. Considering absorption, the system behaves therefore as a

three-level V -system where |ψ2〉 can be neglected, but it is nevertheless displayed

(main text Fig. 3.2) since in this work the excited state levels are sublevels of

a triplet. In this regard it is interesting to mention the V -system of a GaAs

quantum well, which has been studied theoretically[60] and for which electron

spin dynamics experiments have been performed[61, 62]. In these experiments,
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a magnetic field ensures Larmor spin precession. Although we do not consider a

magnetic field, most of the theory of Sections 3.7 and 3.8 can be directly applied

to this V -system.

Although ultrashort pulses with a substantial energy uncertainty will be con-

sidered, monochromatic waves are assumed, for which (by definition) the time

variation of the electric (field) vector E is exactly sinusoidal. Usually within the

Jones formalism[63], the electric vector is denoted as E = Exx̂+Eyŷ, with x̂ and

ŷ the orthonormal Jones unit vectors. In this work however, the propagation of

light will be taken along the x-direction, such that the electric vector has nonzero

components only in the y and z-direction.

At t = 0, an ultrashort pump pulse, for which the electric vector is given by

Epump = αẑ + βŷ (with α and β in general complex), excites the system of main

text Fig. 3.2a to |ψe〉, being a superposition of the states |ψ1〉 and |ψ3〉. The

following assumptions are made: (i) Before the pump arrives, only |ψg〉 is pop-

ulated, (ii) the photon energy is Eph = E3+E1

2
, with (iii) a quantum uncertainty

σEph > |E3−E1|, where a block function is assumed for the intensity distribution

of the pulse instead of a Gaussian, and (iv) only |ψe〉 is populated after excitation

with the pump pulse (i.e. full absorption).

Consider a sample, consisting of a homogeneous ensemble of these model

systems with number density N . To ensure that the systems are well isolated

from each other, N should be relatively small, which can be realized by putting

the molecules in a molecular host crystal (i.e. a matrix) or liquid host (i.e. in

solution), which should be transparent to the pump and probe pulse, or taking

an ensemble of molecules in gas phase. In our derivation (Sec. 3.8 and 3.9)

and calculations (Sec. 3.10) we will first assume that all molecules are oriented

similarly, which can be realized via a (solid) host crystal. Later (Sec. 3.15),

we will show that a net TRFR signal can even be obtained for an ensemble of

randomly oriented molecules. Considering the host crystal, we assume that (iv) is

satisfied for each system of the ensemble. In practice, it is sufficient when the vast

majority of the systems satisfies (iv). Still, this will usually require the tuning

of a very intense pump pulse, given the typical small transition dipole moment

between ground and excited state. It is assumed that each system is evolving

according to Eq. (3.27). After a delay time ∆t, the sample is illuminated with

an ultrashort probe pulse (also obeying assumptions (ii) and (iii)) for which the

electric vector is given by Ein = δẑ+εŷ, to which we refer as the incoming probe.

Given the small transition dipole moment, the probability for a created exciton

to recombine during the delay time between pump and probe is small as well.
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Hence, it is reasonable to assume that the system has still no population in |ψg〉
once the probe pulse arrives at the sample (main text Fig. 3.2b). If one would

now take a resonant probe pulse, all population would be transferred to |ψg〉 via

stimulated emission, which is unfavourable in view of the lifetime of the spin

dynamics. In this work therefore, we will assume that we are allowed to consider

only the dispersion (related to stimulated emission). This implies neglecting∣∣∣Im{χ̃(1)
ij

}∣∣∣ with respect to
∣∣∣Re
{
χ̃

(1)
ij

}∣∣∣, with χ̃(1) the linear susceptibility tensor

(see Eq. (3.29), as adapted from Boyd[54]). This can be realized by taking an off-

resonant probe pulse (as illustrated in Fig. 3.2b) having a detuning ∆p = ωge+ωp
(with ωge = (Eg −Ee)/~ < 0 the transition frequency and ωp > 0 the probe laser

frequency). Since χ̃
(1)
ij is proportional to ∆p−iγ

∆2
p+γ2

, we can neglect
∣∣∣Im{χ̃(1)

ij

}∣∣∣ if we

ensure |∆p| >> γ, which for the remaining real part implies ∆p

∆2
p+γ2

≈ ∆−1
p . It is

also instructive to plot the real and imaginary part of χ̃
(1)
ij as a function of ωp

(Boyd[54], 3rd ed., Fig. 3.5.1), illustrating that the tails of Im
{
χ̃

(1)
ij

}
fall off faster

than the ones of Re
{
χ̃

(1)
ij

}
. Note that we have defined the excited state |ψe〉 being

a superposition of |ψ1〉 and |ψ3〉. However, it is somewhat misleading to consider

for the calculation of ∆p an energy Ee, since |ψe〉 is not an eigenstate of the

Hamiltonian (naturally, one would take the expectation value Ee = 〈ψe|H|ψe〉).
Strictly speaking, a probe laser has a different detuning with respect to the levels

|ψ1〉 and |ψ3〉. However, we will use one and the same value for ∆p for both

|ψ1〉 and |ψ3〉 (within the calculation of χ̃(1) for a superposition of |ψ1〉 and |ψ3〉),
which is a reasonable assumption if we take |∆p| >> |E3 − E1|/~.

To explain the requirements for the polarization rotation ∆θ to oscillate as

a function of the delay time ∆t, both the general (Section 3.8) and an idealized

(Section 3.9) scenario are considered.

3.8 SI: Polarization rotation for a TRFR exper-

iment applied to a V -system

Here we derive the polarization of an ultrashort detuned probe pulse (Ein =

δẑ + εŷ), as a function of the delay time ∆t after the arrival of an ultrashort

pump pulse (Epump = αẑ + βŷ), for a model system as in main text Fig. 3.2

(nonzero µy1g and µz3g).

For the general case of full absorption of a pump pulse having Epump = ξx̂ +

βŷ+αẑ, for a system initially populated in |ψi〉, the state directly after a coherent
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excitation becomes

|ψ(t = 0)〉 = C
∑
n

〈ψn|ξx+ βy + αz|ψi〉|ψn〉 (3.25)

with n the amount of involved excited state levels, and C the normalization

factor. It is assumed that the pump pulse has an equal intensity for all energies

En − Ei (block pulse).

In our case, the superposition of states directly after excitation becomes

|ψe(t = 0)〉 =
βd1|ψ1〉+ αd3|ψ3〉√
|βd1|2 + |αd3|2

(3.26)

According to the time-dependent Schrödinger equation, this wave function evolves

as

|ψe(t)〉 =
e−iE1t/~βd1|ψ1〉+ e−iE3t/~αd3|ψ3〉√

|βd1|2 + |αd3|2
(3.27)

For convenience, Eq. (3.27) is multiplied with the global phase factor eiE1t/~ to

give

|ψe(t)〉 =
βd1|ψ1〉+ eiΩtαd3|ψ3〉√
|βd1|2 + |αd3|2

(3.28)

with Ω ≡ ω13 = (E1 − E3)/~.

The polarization of a probe pulse upon transmission, i.e. Eout, might be af-

fected, which follows from considering the linear susceptibility tensor χ̃(1). As-

suming that for each system only |ψe(t)〉 is populated (Fig. 3.2b), following

Boyd[54] (3rd ed., Eq. (3.5.20)) gives

χ̃
(1)
ij (ωp) =

N

ε0~
∑
n

[
µienµ

j
ne

∆′p,ne − iγne
+

µineµ
j
en

∆p,ne + iγne

]
(3.29)

where we use a tilde to denote a complex number. Here, N is the system’s number

density, ε0 = 8.854... ·10−12 F m−1 is the vacuum permittivity, ~ = 1.054... ·10−34

J s is Planck’s constant, µien = −e〈ψe(t)|i|ψn〉 with i = x, y, z, ∆′p,ne = ωne − ωp
and ∆p,ne = ωne + ωp with ωp the probe laser frequency, γne is the damping rate.

Note that in Eq. (3.29) ε0 should be omitted when using Gaussian units (as in

older editions of Boyd[54]) instead of SI-units.

Assuming that the laser can only address the ground state (via stimulated

emission), we can drop the summation sign and substitute g for n, which yields

χ̃
(1)
ij (ωp) =

N

ε0~

[
µiegµ

j
ge

∆′p − iγ
+

µigeµ
j
eg

∆p + iγ

]
(3.30)
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where we have dropped the subscript n for ∆p, ∆′p and γ. Since the transi-

tion frequency ωge = (Eg − Ee)/~ < 0 (and ωp > 0), only the second term

in Eq. (3.30) can become resonant, and is therefore the rotating term (and the

first the counter-rotating term). Within this rotating wave approximation the

first term is therefore neglected when ωp is nearly resonant with the transition

frequency ωge. To a good approximation the linear susceptibility now becomes

(after rewriting)

χ̃
(1)
ij (ωp) =

N

ε0~
µigeµ

j
eg

∆p − iγ
∆2
p + γ2

(3.31)

where the detuning ∆p = ωge + ωp is positive for ωp > |ωge| and negative when

ωp < |ωge|.
The polarization of the probe pulse upon transmission Eout is affected when

its components experience a different real part of the refractive index[16]. The

refractive index does not have a tensor representation, due to the square root

relationship with the dielectric constant[55]. Hence, speaking about refractive

index only makes sense when a transformation is performed to the basis of the

principal axes, which are the eigenvectors of χ̃(1). To determine these, we first

write down the (only nonzero) transition dipole moments

µzeg =
(
µzge
)∗

= −e〈ψe(∆t)|z|ψg〉

= −e

(
β∗d∗1〈ψ1|+ e−iΩ∆tα∗d∗3〈ψ3|√

|βd1|2 + |αd3|2

)
z|ψg〉

= −e e−iΩ∆tα∗|d3|2√
|βd1|2 + |αd3|2

(3.32)

µyeg =
(
µyge
)∗

= −e〈ψe(∆t)|y|ψg〉

= −e β∗|d1|2√
|βd1|2 + |αd3|2

(3.33)

Neglecting constant prefactors, diagonalization of χ̃(1) involves diagonalization of

the matrix[
µzgeµ

z
eg µzgeµ

y
eg

µygeµ
z
eg µygeµ

y
eg

]
=

e2

|βd1|2 + |αd3|2

[
|α|2|d3|4 eiΩ∆tβ∗α|d1|2|d3|2

e−iΩ∆tβα∗|d1|2|d3|2 |β|2|d1|4

]
(3.34)

One obtains the eigenvalues λ1 = 0 and λ2 = |β|2|d1|4 + |α|2|d3|4 after diagonal-
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ization of the latter matrix, i.e. solving∣∣∣∣∣ |α|2|d3|4 − λ eiΩ∆tβ∗α|d1|2|d3|2

e−iΩ∆tβα∗|d1|2|d3|2 |β|2|d1|4 − λ

∣∣∣∣∣ = 0 (3.35)

The corresponding (normalized) eigenvectors ẑ′ and ŷ′ are the principal axes that

we are looking for. For λ1 = 0 we have[
|α|2|d3|4 eiΩ∆tβ∗α|d1|2|d3|2

e−iΩ∆tβα∗|d1|2|d3|2 |β|2|d1|4

][
z′1
z′2

]
= 0 (3.36)

which implies

z′1
z′2

= −eiΩ∆tβ
∗|d1|2

α∗|d3|2
(3.37)

Normalization yields for the first principal axis

ẑ′ =
−eiΩ∆tβ∗|d1|2ẑ + α∗|d3|2ŷ√
|β|2|d1|4 + |α|2|d3|4

(3.38)

which is clearly time-dependent. For λ2 = |β|2|d1|4 + |α|2|d3|4 we have[
−|β|2|d1|4 eiΩ∆tβ∗α|d1|2|d3|2

e−iΩ∆tβα∗|d1|2|d3|2 −|α|2|d3|4

][
y′1
y′2

]
= 0 (3.39)

which implies

y′1
y′2

= eiΩ∆tα|d3|2

β|d1|2
(3.40)

Normalization yields for the second time-dependent principal axis

ŷ′ =
eiΩ∆tα|d3|2ẑ + β|d1|2ŷ√
|β|2|d1|4 + |α|2|d3|4

(3.41)

Note that the third principal axis x̂ remains unaffected (if the x-component of

Epump equals zero) and will therefore not be taken into account anymore. De-

termining the polarization of the probe pulse upon transmission is based on de-

termining the refractive indices of these time-dependent principal axes. In the

inertial frame of these principal axes, i.e. the {ẑ′, ŷ′}-basis, the only nonzero

element of χ̃(1) is the eigenvalue

χ̃
(1)
y′y′ =

N

ε0~
µy
′

geµ
y′

eg

∆p − iγ
∆2
p + γ2

(3.42)
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where

µy
′

geµ
y′

eg = e2 |β|2|d1|4 + |α|2|d3|4

|βd1|2 + |αd3|2
(3.43)

In general, the complex refractive index of principal axis ĵ is given by

ñj =

√
1 + χ̃

(1)
jj ≈ 1 +

1

2
χ̃

(1)
jj (3.44)

where the latter approximation is valid for
∣∣∣χ̃(1)

jj

∣∣∣ << 1. In our case we have

ñy′ ≈ 1 + 1
2
χ̃

(1)
y′y′ and ñz′ = 1. Since the refractive index differs in one direction,

the sample behaves as a (singly) birefringent material. To describe how the probe

pulse is affected by the sample, one should consider the Jones matrix J{ẑ, ŷ},
which performs the following transformation

Eout{ẑ, ŷ} = J{ẑ, ŷ}Ein{ẑ, ŷ} = J{ẑ, ŷ}

[
δ

ε

]
(3.45)

To build J{ẑ, ŷ} we first build J{ẑ′, ŷ′}, which describes how a probe pulse in

the {ẑ′, ŷ′}-basis is affected, i.e.

Eout{ẑ′, ŷ′} = J{ẑ′, ŷ′}Ein{ẑ′, ŷ′} (3.46)

The Jones matrix is given by

J{ẑ′, ŷ′} =

[
eiΛnz′ 0

0 eiΛny′

]
(3.47)

which expresses the retardation of (light polarized along) principal axis ĵ by Λnj
where Λ ≡ 2πd/λ, with d the thickness of the sample and λ the wavelength of the

light[16]. Note that we consider here only the real part of the complex refractive

index, which is valid for a sufficiently detuned probe pulse. In Section 3.7 we

therefore required |∆p| >> γ, implying ∆p−iγ
∆2
p+γ2

≈ ∆−1
p . It is convenient to define

∆n ≡ ny′ − nz′ ≈
N

2ε0~∆p

e2 |β|2|d1|4 + |α|2|d3|4

|βd1|2 + |αd3|2
(3.48)

Multiplication of the Jones matrix with the global phase factor e−iΛnz′ gives

J{ẑ′, ŷ′} =

[
1 0

0 eiΛ∆n

]
(3.49)
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The eigenvectors of the Jones matrix are called eigenpolarizations, which are

equivalent to the principal axes. As it should, the Jones matrix in Eq. (3.47)

satisfies the requirement that the eigenpolarizations correspond to the two po-

larization states that pass through the optical system unaffected[16]. However,

since the polarizations have different retardations, the resulting polarization of a

passing light pulse consisting of a superposition of the principal axes might be

affected. In this work, polarization rotation is considered in particular, which

implies for linearly polarized light a rotation of the plane in which the electric

field component oscillates.

The Jones matrix J{ẑ, ŷ} is obtained using the transformation matrix T which

has as its columns the unit vectors ẑ′{ẑ, ŷ} (Eq. 3.38) and ŷ′{ẑ, ŷ} (Eq. 3.41),

respectively. Let us build the matrices T and T † that perform a transformation

from the {ẑ′, ŷ′}-basis to the {ẑ, ŷ}-basis and back, respectively.

T =
1√

|β|2|d1|4 + |α|2|d3|4

[
−eiΩ∆tβ∗|d1|2 eiΩ∆tα|d3|2

α∗|d3|2 β|d1|2

]
(3.50)

where the conjugate transpose is given by

T † =
1√

|β|2|d1|4 + |α|2|d3|4

[
−e−iΩ∆tβ|d1|2 α|d3|2

e−iΩ∆tα∗|d3|2 β∗|d1|2

]
(3.51)

of which the columns consist of the unit vectors ẑ{ẑ′, ŷ′} and ŷ{ẑ′, ŷ′}, respec-

tively, i.e.

ẑ = e−iΩ∆t−β|d1|2ẑ′ + α∗|d3|2ŷ′√
|β|2|d1|4 + |α|2|d3|4

(3.52)

ŷ =
α|d3|2ẑ′ + β∗|d1|2ŷ′√
|β|2|d1|4 + |α|2|d3|4

(3.53)

Altogether the Jones matrix of Eq. (3.45) becomes

J{ẑ, ŷ} = TJ{ẑ′, ŷ′}T †

= j0

[
−eiΩ∆tβ∗|d1|2 eiΩ∆tα|d3|2

α∗|d3|2 β|d1|2

][
1 0

0 eiΛ∆n

][
−e−iΩ∆tβ|d1|2 α|d3|2

e−iΩ∆tα∗|d3|2 β∗|d1|2

]

= j0

[
jzz jzy
jyz jyy

]
(3.54)
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where

j0 ≡
1

|β|2|d1|4 + |α|2|d3|4

jzz ≡ eiΛ∆n|α|2|d3|4 + |β|2|d1|4

jzy ≡ eiΩ∆t
(
eiΛ∆n − 1

)
β∗α|d1|2|d3|2

jyz ≡ e−iΩ∆t
(
eiΛ∆n − 1

)
βα∗|d1|2|d3|2

jyy ≡ eiΛ∆n|β|2|d1|4 + |α|2|d3|4

(3.55)

Substitution into Eq. (3.45) yields the following components

Eout,z = j0

(
eiΩ∆t

(
eiΛ∆n − 1

)
P1 + eiΛ∆nP2 + P3

)
Eout,y = j0

(
e−iΩ∆t

(
eiΛ∆n − 1

)
Q1 + eiΛ∆nQ2 +Q3

) (3.56)

with

P1 = β∗αε|d1|2|d3|2

Q1 = βα∗δ|d1|2|d3|2

P2 = |α|2δ|d3|4

Q2 = |β|2ε|d1|4

P3 = |β|2δ|d1|4

Q3 = |α|2ε|d3|4

To determine the polarization rotation we follow the Cartesian complex-plane

representation of polarized light, according to the book of Azzam and Bashara[16].

Using Eq. (1.77) of [16], we define the ratio

κ = Ey/Ez (3.57)

where we use κ in contrast to [16] (which uses χ). In line with Eq. (1.86) of [16],

we adopt the expression for the azimuth θ

tan(2θ) =
2 Re{κ}
1− |κ|2

(3.58)

which implies

θ =
1

2
tan−1

(
κ∗ + κ

1− κ∗κ

)
(3.59)

Note that the tan−1 function returns a value in the range (−π/2, π/2). In practice

therefore, to return a value for θ in the range (−π, π], we actually use the atan2

function (as implemented in most programming languages), i.e.

θ =
1

2
atan 2 (κ∗ + κ, 1− κ∗κ) (3.60)
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The polarization rotation (optical rotation angle) ∆θ is now given by

∆θ = θout − θin (3.61)

From Eq. (1.87) of [16] we obtain for the ellipticity angle ε

sin(2ε) =
2 Im{κ}
1 + |κ|2

(3.62)

which implies

ε =
1

2
sin−1

(
i
κ∗ − κ
1 + κ∗κ

)
(3.63)

3.9 SI: Idealized TRFR scenario for a V -system

Let us consider the simplest model example (with reference to main text Fig. 3.2)

that satisfies the conditions for the TRFR experiment, i.e. transition dipole mo-

ments d1 = d3 ≡ d0 and real-valued α = β = δ = ε ≡ E0/
√

2, i.e. Epump = Ein =

E0
ẑ+ŷ√

2
(main text Fig. 3.1). From Eq. (3.28) it follows that

|ψe(t)〉 =
|ψ1〉+ eiΩt|ψ3〉√

2
(3.64)

with Ω ≡ ω13 = (E1 − E3)/~. Assuming that ωp is nearly resonant with the

transition from |ψe(t)〉 to |ψg〉, i.e. with the transition frequency ωge = (Eg −
Ee)/~ < 0, the only nonzero eigenvalue of χ̃(1) is to a good approximation given

by[54]

χ̃
(1)
y′y′(ωp) ≈

N

ε0~
e2|d0|2

∆p − iγ
∆2
p + γ2

(3.65)

where the tilde denotes a complex number, ∆p = ωge + ωp the detuning and γ

the damping rate. The eigenvectors of χ̃(1) are the principal axes

ẑ′ =
eiΩ∆tẑ + ŷ√

2
(3.66)

ŷ′ =
−eiΩ∆tẑ + ŷ√

2
(3.67)

as obtained from Eq. (3.38) and (3.41), respectively. The polarization of the

probe pulse upon transmission (to which we refer as the outcoming probe) is

given by Eq. (3.56), which for this idealized scenario becomes

Eout{ẑ, ŷ} =
E0

2
√

2

[
eiΩ∆t

(
eiΛ∆n − 1

)
+ eiΛ∆n + 1

e−iΩ∆t
(
eiΛ∆n − 1

)
+ eiΛ∆n + 1

]
(3.68)
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where Λ ≡ 2πd/λ, d the thickness of the sample, λ the wavelength of the light,

and ∆n ≈ Re
{
χ̃

(1)
y′y′

}
/2 as follows from Eq. (3.48).

At one and three quarters of the period of oscillation P = 2π/Ω (or at any

multiple of P later), the principal axes are circular. Let us consider the case

∆t = 1
4
P with principal axes

ẑ′(∆t =
1

4
P ) =

iẑ + ŷ√
2

(3.69)

ŷ′(∆t =
1

4
P ) =

−iẑ + ŷ√
2

(3.70)

Since these circular principal axes experience different refractive indices, the po-

larization of a linear probe pulse will be (maximally) rotated upon interaction

with the sample when the probe pulse arrives at delay time ∆t = 1
4
P . To de-

rive the expression for the optical rotation angle, ∆t = 1
4
P is substituted into

Eq. (3.68), which yields the following real components after multiplication with

the global phase factor e−iΛ∆n/2

Ez,out(∆t =
1

4
P ) = E0 cos

(
Λ∆n

2
+
π

4

)
(3.71)

Ey,out(∆t =
1

4
P ) = E0 sin

(
Λ∆n

2
+
π

4

)
(3.72)

For the case of a Jones vector with real components, the azimuth θ is directly

obtained from

θ = tan−1

(
Ey
Ez

)
(3.73)

With the electric vector of the incoming probe given by Ein = E0
ẑ+ŷ√

2
, and the

outcoming probe pulse by Eq. (3.71) and (3.72), the optical rotation angle at

∆t = 1
4
P is given by

∆θmax = tan−1

(
sin
(

Λ∆n
2

+ π
4

)
cos
(

Λ∆n
2

+ π
4

))− π

4

=
Λ∆n

2
=
πd∆n

λ

(3.74)

This is the well-known expression for the optical rotation angle of linearly polar-

ized light in case of circular principal axes. Analogously, at ∆t = 3
4
P , one finds

∆θ = −∆θmax.
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3.10 SI: TRFR model results and discussion

As long as the polarization of the probe remains to a good approximation linear

(i.e. small ellipticity angle), ∆θ behaves as a sinusoid with angular frequency Ω

and amplitude ∆θmax as a function of the delay time ∆t. See main text Fig. 3.4

for an example of such oscillation of ∆θ, using the following input parameters:

Polarization parameters α = β = δ = ε = 1/
√

2, i.e. Êpump = Êin = ẑ+ŷ√
2

;

Transition dipole moments d1 = 0.0003− i0.0112 and d3 = 0.0063 (atomic units);

Triplet sublevel splitting E3 − E1 = 20 meV (30 THz angular frequency); Probe

wavelength λ = 349 nm (ωp
2π

= 846 THz) based on Ee − Eg = 3.55 eV; Detuning

∆p = −60 meV = 14.5 THz. Note that this value is assumed to satisfy the

requirements |∆p| >> γ and |∆p| >> |E3−E1|/~ (Section 3.7). Also, we neglect

the effect of detuning on λ (the probe’s wavelength) since it amounts only 1.7% of

the probe’s frequency; Sample thickness d = 100 nm; Number density N = 1024

m-3, corresponding to 1 molecule per 1000 nm3. This is considered to be small

enough to prevent the molecules from affecting each other, given that the length

of the molecule is 7.5 Å along the C2-axis (main text Fig. 3.1), according to the

scalar relativistic calculation of the ground state geometry (Table 3.1 (right)).

This number density corresponds to on average 1 molecule per 10 nm, i.e. 10

molecules along the thickness d.

Substituting these parameters into Eq. (3.42) gives Re
{
χ̃

(1)
y′y′

}
≈ −8.92 · 10−8

for which the absolute value is much smaller than 1, which allows to use Eq. (3.44)

for the approximation of ny′ . Using Eq. (3.48), we obtain ∆n = Re
{
χ̃

(1)
y′y′

}
/2 ≈

−4.46 · 10−8, which is substituted into Eq. (3.56). Following Eq. (3.57)−(3.61),

we calculate ∆θ(∆t), as is depicted in main text Fig. 3.4. The ellipticity angle of

the outcoming probe is calculated with Eq. (3.63). The ellipticity angle change

is given by ∆ε = εout − εin. Since the incoming probe is linear, we have εin = 0.

The ellipticity angle change turns out to be constant as a function of ∆t, i.e.

∆ε ≈ −3.28 ·10−8 rad. Moreover, this change turns out to be small enough, to be

allowed to assume that the outcoming probe pulse remains linear. This follows

from calculating

θout ≈ tan−1

(
|Eout,y|
|Eout,z|

)
(3.75)

which to a good approximation equals the exact calculation of Eq. (3.59). Eq. (3.75)

also illustrates for the case of a small ellipticity angle change, that the azimuth

can be determined experimentally by simply measuring the intensity of the out-
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coming probe in the directions ŷ and ẑ, i.e.

θout ≈ tan−1

(√
Iy
Iz

)
(3.76)

Let us consider the ideal scenario (d1 = d3 and real-valued α = β = δ = ε), to

evaluate some pathways to come up with an ideal molecular sample for a TRFR

experiment. The signal is affected by different parameters, of which we consider

the ones that can be adjusted relatively easily:

(i) ∆θ is proportional to ∆n (Eq. (3.74)), which is proportional to the linear

susceptibility (Eq. (3.65)) and depends therefore quadratically on the transition

dipole moment (and thus linearly on the oscillator strength). Taking a molecule

with larger transition dipole moments (which requires larger SOC) will thus sig-

nificantly increase the amplitude of oscillation. One should keep in mind here that

the probability for exciton recombination also increases with increasing transition

dipole moments, which implies a decreasing lifetime. Hence, the most suitable

molecule for a TRFR experiment satisfies a trade-off between a) large enough

SOC to be able to measure ∆θ, and b) not too large SOC in order to have large

lifetime.

(ii) ∆θ depends linearly on the number density N , since ∆n (Eq. (3.74)) is

proportional to N .

(iii) ∆θ depends linearly on the thickness d (Eq. (3.74)).

(iv) ∆θ depends strongly on the detuning ∆p, since ∆θ is proportional to
∆p

∆2
p+γ2

, which equals approximately ∆−1
p for |∆p| >> γ (which is required to pre-

vent population transfer). Since we take ∆p = 3(E3 − E1) (assumed to satisfy

equal detuning for both sublevels), we can increase the signal by decreasing the

energy splitting (as long as |∆p| >> γ is satisfied). Since we consider isolated

molecules that individually contribute to the total TRFR signal, we should con-

sider single molecules for typical values of the damping rate γ. In general, the

width of an absorption line is given by two times γ. Typical absorption line

widths of single molecules are in the order of (tens of) MHz[64]. As a rule of

thumb, the order of magnitude of the energy splitting for a molecular TRFR ex-

periment should thus be at least 100 MHz. Regarding ∆p it is also useful to note

that when working with an ensemble of systems it is wise to take ∆p = ωge + ωp
negative, i.e. ωp < |ωge|. The reason for this is that for positive ∆p one might

induce unwanted excitations with the probe for systems still having the ground

state populated to an excited state that lies slightly above the lowest triplet state.

Consequently, this reduces the intensity of the probe laser and the amplitude of



3.10 SI: TRFR model results and discussion 77

the TRFR signal. However, if it is ensured that the vast majority of systems has

been excited already (with an intense pump pulse), this will only have a small

effect. When this effect is neglected, taking a detuning of −∆p shifts the TRFR

signal half a period (main text Fig. 3.4) with respect to ∆p. Here it is assumed

again that we can neglect the effect of detuning on λ (the wavelength of the probe

pulse) when substituting λ into Eq. (3.61) (through Eq. (3.56)) for the calculation

of ∆θ.

Let us vary the input parameters to calculate how the signal (∆θ) depends

on them. Consider the same input parameters as in main text Fig. 3.4. For

PtN2C8H12 the calculated splitting between |ψ1〉 and |ψ3〉 is 4.8 THz. If we

consider a splitting of 4.8 MHz instead, and γ = 1 MHz, we have Re
{
χ̃

(1)
y′y′

}
≈

−0.089. Since
∣∣∣Re
{
χ̃

(1)
y′y′

}∣∣∣ << 1 is not valid now, we should take the exact

expression for ∆n, using the exact part of Eq. (3.44). The oscillation of ∆θ(∆t)

is still approximately sinusoidal, but the approximation of Eq. (3.75) deviates

about 2.5% from using the exact Eq. (3.59). This deviation illustrates that the

outcoming probe cannot be assumed to be linearly polarized anymore. This is

directly reflected by the ellipticity angle change ∆ε, which as a function of ∆t

shows a sine with equilibrium value 0.034 rad and amplitude 0.4 mrad. However,

4.8 MHz does not satisfy our rule of thumb to take at least a splitting of 100

MHz, implying that |∆p| >> γ is usually not satisfied. Hence, one should expect

to have a small signal lifetime due to population transfer to the ground state.

Therefore, it will be very challenging to experimentally observe an oscillation of

∆θ for a sample having such parameters.

The amplitudes of oscillation of both ∆θ and ∆ε become much larger when

we besides increase the transition dipole moments. Taking it 102 times as large

(molecules like e.g. Ir(ppy)3[52] have such large transition dipole moments), to-

gether with a splitting 103 times as small with respect to the original parameters

(main text Fig. 3.4), shows a non-sinusoidal behavior for ∆θ and a nonzero equi-

librium value. Still, ∆ε oscillates sinusoidally. This illustrates that in the extreme

case when we do not satisfy
∣∣Re
{
χ̃(1)
}∣∣ << 1, that the oscillation of ∆θ is not

suitable as a measure for the oscillation of 〈J〉 (t), but one might consider to

measure ∆ε(∆t) instead.

We have shown that the TRFR experiment can be applied to molecules with-

out using a magnetic field. This requires that there is a so-called zero-field split-

ting (ZFS), which is usually defined in terms of the so-called D- and E-parameter.

In some cases one might want to perform the TRFR experiment at nonzero mag-

netic field, e.g. to study magnetic field dependence. Particularly interesting for
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this seem molecules with two sublevels of the lowest triplet excited state being

degenerate (E = 0), combined with large transition dipole moments between the

ground state and these sublevels. There are numerous examples of molecules

with E = 0, while D is nonzero, i.e. the splitting between these sublevels and the

third (e.g. Ir(ppy)3[52]). The D-parameter directly depends on the amount of

SOC. Depending on the symmetry of the molecule, E can be zero, which simul-

taneously allows to obtain large transition dipole moments by choosing a system

with large SOC. One might now use a small magnetic field to slightly separate

the degenerate sublevels. One should still ensure that the splitting is significantly

larger than the damping rate γ.

When choosing a molecule for performing the TRFR experiment, one should

also consider the following. Depending on the polarization and frequency of the

light, one might excite to a superposition of more than two triplet sublevels.

Consequently, the oscillation consists of a sum of sines with frequencies |ωij| =

|Ei − Ej|/~ for levels for which 〈ψi|J|ψj〉 is nonzero.

3.11 SI: Computational details and methods

In this work, we study as a function of time the oscillation of the polarization

rotation ∆θ and of the expectation value of the total angular momentum J

for PtN2C8H12 in case of a superposition of two triplet sublevels (Fig. 3.2a).

The former requires i.a. the calculation of transition dipole moments between

the ground state and excited state sublevels, whereas the latter also requires

total angular momentum integrals. An accurate but costly way to calculate

these is the use of the Complete Active Space SCF (CASSCF) and the sec-

ond order perturbative correlation (CASPT2) methods combined with the re-

stricted active space state interaction (RASSI) method to include SOC. This

combined CASSCF/CASPT2/RASSI–SO method has been introduced by Roos

and Malmqvist[17, 18].

To obtain the ground state geometry of PtN2C8H12, a scalar relativistic den-

sity functional theory (DFT) calculation (using the one-component formulation

of the zeroth-order regular approximation (ZORA)[65–68]) is performed with the

Amsterdam Density Functional (ADF) program[31, 32], where the B3LYP[69]

functional and TZP[70–72] basis set are used. According to this calculation, the

lowest energy conformation of the molecule has C2 symmetry (to which is referred

as the C2 geometry (Table 3.1 (left))), for which no imaginary frequencies are ob-

tained. In view of computational efficiency for the CASSCF/CASPT2/RASSI–SO
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method however, the C2v geometry (Table 3.1 (right)) is assumed to represent

the ground state although it possesses two imaginary frequencies, i.e. 65i and 78i

cm-1, having symmetry b1 and a2, respectively, corresponding to vibrations that

lower the symmetry from C2v to Cs and C2, respectively. This approach seems

reasonable when the molecule is at room temperature, since the calculated energy

difference between the two geometries amounts 22 meV. Also, the UV-Vis spec-

tra for both geometries are calculated via time-dependent DFT (TDDFT)[73–

76] (using ZORA) including SOC perturbatively[30]. No significant differences

are obtained (Fig. 3.6). Hence, we conclude that we can safely assume the C2v

geometry for the ground state.

We have applied the CASSCF/CASPT2/RASSI–SO method to the PtN2C8H12

molecule, using the MOLCAS[23] software using ANO-RCC[38, 77, 78] basis sets

(contracted for Pt to 8s7p5d2f , for N to 4s3p1d, for C to 4s3p1d, for H to 3s1p)

and the Douglas-Kroll method[79]. The first stage of the method is a CASSCF

calculation. The selected CAS is given in Fig. 3.7, where also the labeling of

the molecular orbitals (MOs) is explained. The lower lying inactive MOs are

doubly occupied (31, 10, 5 and 21 MOs for the symmetries a1, b1, a2 and b2,
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Figure 3.6: Excitation spectra as determined from TDDFT calculations, for

the C2 and C2v geometry of PtN2C8H12.
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respectively). The Hartree-Fock configuration is (1a1)2...(34a1)2(1b1)2...(13b1)2

(1a2)2...(7a2)2(1b2)2...(22b2)2. Within our CASSCF calculation, 18 active elec-

trons are distributed over 14 MOs. We have performed a state averaged CASSCF,

calculating the 10 lowest roots for each symmetry. This results in 80 roots, which

we call spin-free states in line with Molcas. The oscillator strengths between the

excited spin-free states and the ground state 11A1 are depicted in red in Fig. 3.8.

Since SOC is not considered within this calculation, excitations from the singlet

ground state can only take place to singlet excited states.

Using the CASSCF wave function, a CASPT2 calculation is performed to ob-

tain a second order perturbation estimate of the correlation energy. The resulting

energies are taken as an input for the RASSI method.

This work considers a direct excitation for PtN2C8H12 when initially popu-

lated in the singlet ground state |ψg〉, to a superposition of two sublevels of the

Occupied Unoccupied 
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32a1
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33a1
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8a2
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Figure 3.7: Selected molecular orbitals (MOs) for the Complete Active

Space (CAS) of PtN2C8H12.
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Figure 3.8: Excitation spectrum on semi-log scale, as obtained from ab initio

calculations for the spin-orbit states (with SOC) and the spin-free states (without

SOC). The height of the bars correspond to the oscillator strength for a transition

from the ground state. The curves are intended as a guide to the eye, representing

the excitation spectra broadened by Gaussians with σ = 0.02 eV. This work considers

the lowest triplet (encircled), for which excitation is allowed to only two of the three

sublevels (Fig. 3.9). Note that all nonzero f -values below 5.2 eV are contained in this

plot.

lowest triplet excited state. SOC induces mixing of triplets into singlets and vice

versa, which allows for excitations between them. In line with Molcas, we use

the term spin-orbit to refer to the eigenbasis obtained after diagonalization of the

Hamiltonian that includes the SOC term, which is performed within the RASSI

method. Strictly speaking, because of the mixing one should not speak about

singlet and triplet states anymore within the spin-orbit basis, but one usually

does because the hybridised spin-orbit states often resemble the original spin-free

states.

The RASSI calculation gives the spin-orbit states as a linear combination

of spin-free states. Table 3.3 tabulates the main contributions of the four lowest

spin-orbit states, where the corresponding transitions between MOs are tabulated

in Table 3.2. Particularly interesting are the singlets mixed into the triplets and

vice versa, since these are the contributions that give nonzero transition dipole

moments between the ground and excited states and therefore enable a transition.
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Table 3.1: Atomic coordinates (Å) for the C2 (left) and C2v (right) geometry of

PtN2C8H12.

Atom X Y Z

Pt 0.000000 0.000000 -0.045142

N -0.191499 2.057399 -0.390104

N 0.191499 -2.057399 -0.390104

C 0.000000 0.000000 -2.046215

C -0.036646 -1.215345 -2.727430

C 0.036646 1.215345 -2.727430

C 0.026445 1.220441 -4.122237

C -0.026445 -1.220441 -4.122237

C 0.000000 0.000000 -4.807534

C 0.143797 2.430631 -1.828603

C -0.143797 -2.430631 -1.828603

H 0.000000 0.000000 -5.891159

H 0.047114 2.146972 -4.688039

H -0.047114 -2.146972 -4.688039

H -0.496914 3.257069 -2.147392

H 0.496914 -3.257069 -2.147392

H 1.170515 2.801231 -1.816104

H -1.170515 -2.801231 -1.816104

H 1.164990 -2.276992 -0.194498

H -1.164990 2.276992 -0.194498

H -0.363756 -2.615608 0.250989

H 0.363756 2.615608 0.250989

H 0.000000 0.000000 1.623945

Atom X Y Z

Pt 0.000000 0.000000 -0.046962

N 0.000000 2.066477 -0.365512

N 0.000000 -2.066477 -0.365512

C 0.000000 0.000000 -2.044076

C 0.000000 -1.215513 -2.727191

C 0.000000 1.215513 -2.727191

C 0.000000 1.219696 -4.122133

C 0.000000 -1.219696 -4.122133

C 0.000000 0.000000 -4.807861

C 0.000000 2.448529 -1.845813

C 0.000000 -2.448529 -1.845813

H 0.000000 0.000000 -5.891569

H 0.000000 2.146459 -4.688100

H 0.000000 -2.146459 -4.688100

H -0.877938 3.072293 -2.029768

H 0.877938 3.072293 -2.029768

H 0.877938 -3.072293 -2.029768

H -0.877938 -3.072293 -2.029768

H 0.811887 -2.467017 0.094995

H -0.811887 -2.467017 0.094995

H -0.811887 2.467017 0.094995

H 0.811887 2.467017 0.094995

H 0.000000 0.000000 1.624375

As can be seen in Table 3.3, spin-orbit state |ψg〉 has contributions from spin-free

states 23B2 and 13A2, |ψ1〉 from 11B2, and |ψ3〉 from 21A1.

The oscillator strengths between the excited spin-orbit states and the ground

state |ψg〉 are depicted in blue in Fig. 3.8. The oscillator strengths corresponding

to the lowest triplet are encircled. The corresponding nonzero components of the

transition dipole moments are 〈ψ1| y |ψg〉 ≈ 0.0003 − i0.0112 and 〈ψ3| z |ψg〉 ≈
0.0063 in atomic units. In other words, a transition from |ψg〉 is allowed only

with y and z polarized light to state |ψ1〉 and |ψ3〉 respectively, but forbidden to

state |ψ2〉 (Fig. 3.9).
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Table 3.2: Lowest spin-free states (SFSs) for PtN2C8H12. For the SFSs with im-

portant contributions to the states |ψg〉, |ψ1〉, |ψ2〉 and |ψ3〉 (Table 3.3), the main MO

configurations are given as well, corresponding to transitions between the MOs depicted

in Fig. 3.7.

SFS Energy (eV) Conf., Weight Conf., Weight

11A1 0.00 Hartree-Fock, 0.92

13B1 3.78 13b1 ⇒ 35a1, 0.76

13A1 3.91 13b1 ⇒ 14b1, 0.42 7a2 ⇒ 8a2, 0.34

13A2 3.99 6a2 ⇒ 35a1, 0.85

23A1 4.03 33a1 ⇒ 35a1, 0.77

13B2 4.06 22b2 ⇒ 35a1, 0.85

11B1 4.08 13b1 ⇒ 35a1, 0.65

23B2 4.18 13b1 ⇒ 8a2, 0.64

21A1 4.27 33a1 ⇒ 35a1, 0.80

33A1 4.42 7a2 ⇒ 8a2, 0.43 13b1 ⇒ 14b1, 0.33

31A1 4.47 34a1 ⇒ 35a1, 0.53 34a1 ⇒ 36a1, 0.26

11B2 4.48 22b2 ⇒ 35a1, 0.50 13b1 ⇒ 8a2, 0.21

Table 3.3: Main contributions for PtN2C8H12 of the four lowest spin-orbit states

(SOSs) in terms of the spin-free states (SFSs) for which the MO configurations are

tabulated in Table 3.2.

SOS Energy (eV) SFS, Weight SFS, Weight SFS, Weight

|ψg〉 0.00 11A1, 0.97 23B2, 0.015 13A2, 0.0081

|ψ1〉 3.544 13B1, 0.61 13A1, 0.33 11B2, 0.042

|ψ2〉 3.558 13B1, 0.59 13A1, 0.33 23B2, 0.066

|ψ3〉 3.564 13B1, 0.59 13A2, 0.21 23B2, 0.17

21A1, 0.011

3.12 SI: Symmetry analysis

The aforementioned optical selection rules (Fig. 3.9) can also be obtained from

group theoretical arguments. Here, we discuss two different approaches to come

to the same conclusion.

Approach (1): The states |ψ1〉, |ψ2〉 and |ψ3〉 mainly originate from spin-

free state 13B1 (Table 3.3). SOC has allowed this state to mix with singlets
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Figure 3.9: Energy diagram illustrating the effect of SOC on optical selec-

tion rules of originally forbidden singlet-triplet transitions. When SOC is not

taken into account, the lowest triplet excited state of PtN2C8H12 has B1 symmetry.

Due to SOC, three separate sublevels |ψ1〉, |ψ2〉 and |ψ3〉 are obtained, having A2, B2

and A1 symmetry, respectively. It is assumed here that the ground state has C2v ge-

ometry. Excitations from the ground state can only take place to |ψ1〉 and |ψ3〉 with y

and z polarized light respectively, whereas a transition to state |ψ2〉 is forbidden.

having symmetry A1, A2 and B2, as follows from the transformation of rotations,

i.e. B2(Rx) + B1(Ry) + A2(Rz) within C2v. Since the electric-dipole moment

operator transforms as B1(x) +B2(y) +A1(z) within C2v, it directly follows that

excitations from the ground state are allowed to the lowest triplet only with y

and z polarization (Fig. 3.9). Besides this contribution from singlets mixed into

the lowest triplet (mainly 11B2 for |ψ1〉 and 21A1 for |ψ3〉), also triplets mixed into

the ground state contribute to the mentioned transition dipole moments (mainly

23B2 and 13A2), as tabulated in Table 3.3.

Approach (2): The orbital part of the lowest triplet has B1 symmetry. Let

us now determine the symmetry of the triplet sublevels. In this regard it is

convenient to consider the triplet spin functions Tx, Ty and Tz, defined as

Tx =
T−1 − T+1√

2
=
β1β2 − α1α2√

2
(3.77)

Ty = i
T−1 + T+1√

2
= i

β1β2 + α1α2√
2

(3.78)

Tz = T0 =
α1β2 + β1α2√

2
(3.79)

with αi and βi corresponding to the up and down spin of electron i respectively.

Tx, Ty and Tz transform as rotations. For C2v symmetry these are B2, B1 and

A2 for Tx, Ty and Tz, respectively. Taking the direct product between the orbital

part (B1) and the spin part (B2, B1 and A2) implies that the sublevels have

symmetry A2, A1 and B2, respectively. To determine the possible excitations,
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one considers that x, y and z transform in C2v as B1, B2 and A1 respectively.

From the A1 ground state one can thus only excite to levels having symmetry B1,

B2 and A1, in order to let the integral 〈ψe|D |ψg〉 be nonzero. Hence, excitations

from the ground state to the lowest triplet excited state can only take place for

the B2 and A1 sublevels, when the system interacts with y and z polarized light

respectively, whereas a transition to the B1 sublevel is forbidden.

Table 3.4: FC-factors for 0-0 transition of different metal-organic molecules,

as obtained from DFT calculations.

Molecule FC-factor of 0-0 transition

PtN2C8H12 < 10−6

PtP (D4h ground and excited state) 0.43

PtP (D4h ground and C2h excited state) 0.26

PtPπ (D4h ground and excited state) 0.44

3.13 SI: Franck-Condon factors

The molecular TRFR experiment that we have introduced is based on measuring

the triplet spin dynamics of a superposition of two electronic excited state sub-

levels (created by an on-resonance pump laser and probed via a probe laser that

is slightly detuned with respect to the singlet-triplet transition). One should real-

ize that electrons can couple to vibrations, implying that each electronic sublevel

has a series of vibronic states. The Franck-Condon principle states that an elec-

tronic transition most likely occurs between vibronic states that have comparable

geometry[35]. Creating and probing the excited state superposition is thus only

possible if there is good vibrational overlap between the lowest vibronic sublevels

of the electronic ground and excited state sublevels, for which the corresponding

transition is commonly referred to as the 0-0 transition. In other words, the ge-

ometry should not distort too much upon excitation (within the timescale of the

spin dynamics).

To study the geometry relaxation of the excited state, we have calculated the

so-called Franck-Condon (FC) factors (a measure for the strength of a vibronic

transition) for a series of vibronic states, of which we only report the 0-0 transition

(for three molecules, Table 3.4). These FC-factors have been determined via DFT

calculations with the ADF program[31, 32], using a B3LYP[69] functional and
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ba

Figure 3.10: Platinum porphyrins, with a, an unsubstituted platinum porphyrin

(PtP), and b, a π-extended platinum porphyrin (PtPπ). The platinum atom (white)

is surrounded by nitrogen atoms (blue), which are surrounded by carbon (grey) and

hydrogen (white) atoms.

TZP[70–72] basis set. Geometry optimizations and frequency calculations have

been performed for both the singlet ground state (restricted DFT) and triplet

excited state (unrestricted DFT).

Unfortunately, the geometry distortion turns out to be significant for the

PtN2C8H12 molecule that we consider in this work. This particularly follows from

the fact that the FC-factor is extremely small for the 0-0 transition (Table 3.4).

Although the detailed analysis for PtN2C8H12 in our work is useful as a proof of

principle for a molecular TRFR experiment, for a practical realization we should

thus look for other candidate molecules.

The FC-factor of the 0-0 transition of a metal-organic molecule is typically

large when the metal atom is well surrounded by the ligands. We found large

FC-factors (Table 3.4) for the 0-0 transition of unsubstituted porphine platinum

(to which we refer as PtP, Fig. 3.10a) and of a π-extended porphine platinum

(to which we refer as PtPπ, Fig. 3.10b). Such a π-substitution is particularly

interesting for manipulation of the transition energy of the molecule, since this

wavelength was shown to increase (more than 200 nm) for an increasing number

of fused-aromatic rings[80].

3.14 SI: Optical selection rules of platinum por-

phyrins

Platinum porphyrins are promising candidates for a molecular TRFR experiment.

Diaconu et al. observed magnetic circular dichroism (different absorption for left

and right circularly polarized light in a magnetic field) within the zero-phonon

region of platinum porphyrins in organic hosts[45]. Their work summarizes polar-
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Figure 3.11: Energy diagram illustrating for PtP the effect of SOC and

a Jahn-Teller (J-T) distortion on the optical selection rules of originally

forbidden singlet-triplet transitions. a, When SOC is not taken into account,

the lowest excited state of PtP is a doublet of two triplets with Eu symmetry, which

according to our calculations originates from the molecular orbital excitation a2u → eg.

b, Due to SOC, a mixing of singlets and triplets occurs. Additionaly, the sublevels of the

doublets split (labeled with a number (#) based on the energy (where 3 is a doublet)

and their symmetry is depicted as well (within D4h)). Excitations from the ground

state (D4h geometry) can only take place to state 2 and 3 with z and (x, y) polarized

light respectively, whereas the other transitions are forbidden (Table 3.5). c, After

excitation, the system will undergo a Jahn-Teller distortion, which further splits the

energy levels (Table 3.6) and the molecule gets C2h symmetry.

ization selection rules that satisfy the criteria for a molecular TRFR experiment,

and they present results with and without Jahn-Teller (J-T) and host interac-

tions.

In order to study in more detail the optical transitions between the ground

and excited state sublevels of PtP and PtPπ (Fig. 3.10), the CASSCF/CASPT2/-

RASSI–SO method is not suitable, because of the relatively large number of

atoms. Therefore, we perform TDDFT calculations (using ZORA) including SOC

perturbatively[30]. These calculations are performed with ADF using a B3LYP

functional and TZP basis set. In Table 3.5 we report for PtP (considering D4h

symmetry for both the ground and excited state geometry) the energies, oscillator

strengths f and transition dipole moments µ, for the lowest 10 excitations from

the ground state (from which the absorption spectrum can be derived).

When SOC is not taken into account, the lowest excited state of PtP is a

doublet of two triplets with Eu symmetry, which according to our calculations

originates from the molecular orbital excitation a2u → eg. Instead, Diaconu et
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Table 3.5: Transition dipole moments for the lowest 10 transitions from the

ground state for PtP as obtained from TDDFT calculations, including SOC

perturbatively (using ZORA). This calculation corresponds to the scheme in Fig. 3.11b

(J-T distortion is still neglected). The oscillator strengths f and transition dipole

moments µ determine the absorption spectrum of PtP, with their values given in atomic

units (µ-values smaller than 10−5 are neglected). D4h symmetry is considered. The

excited states are labeled with a number (#) according to the energetic ordering. States

1-5 originate from a 3Eu (which is a doublet of two triplets), and 6-10 from another 3Eu.

States 3 and 8 are each a degenerate doublet, which further split due to a Jahn-Teller

distortion (Fig. 3.11c and Table 3.6).

# Symm. E (eV) f µx µy µz

1 A1u 2.0189 0 0 0 0

2 A2u 2.0190 6.11 · 10−8 0 0 −i1.11 · 10−3

3 Eu 2.0335 1.65 · 10−6 i5.76 · 10−3 0 0

4 B1u 2.0486 0 0 0 0

5 B2u 2.0488 0 0 0 0

6 A1u 2.2202 0 0 0 0

7 A2u 2.2202 3.82 · 10−8 0 0 −i8.38 · 10−4

8 Eu 2.2328 2.96 · 10−5 i2.32 · 10−2 0 0

9 B1u 2.2457 0 0 0 0

10 B2u 2.2457 0 0 0 0

al.[45] find as the lowest excited state the other close lying 3Eu originating from

a1u → eg, which ends up as our second 3Eu (consisting of states 6-10 in Table 3.5

when SOC is included, which gives quite comparable results).

Due to SOC, a mixing of singlets and triplets occurs. Additionaly, the sub-

levels of the doublets split, as depicted in Fig. 3.11b (with the sublevels labeled

with a number (#) based on the energy (where 3 is a doublet) and their sym-

metry is depicted as well (within D4h)). Excitations from the ground state (D4h

geometry) can only take place to state 2 and 3 with z and (x, y) polarized light

respectively, whereas the other transitions are forbidden (Table 3.5). The po-

larization selection rules obtained as such seem to be promising for a molecular

TRFR experiment. A pump pulse polarized in both the z and (x, y) direction

will induce a superposition between states 2 and 3, which can be probed via the

polarization rotation upon transmission of a detuned probe pulse with similar

polarization.
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Table 3.6: Transition dipole moments for the lowest 6 transitions of PtP

as obtained from spin-unrestricted TDDFT calculations with the excited

state geometry taken as the ground state (to simulate the Jahn-Teller distor-

tion), including SOC perturbatively (using ZORA). This calculation corresponds to

the scheme in Fig. 3.11c. The oscillator strengths f and transition dipole moments µ

determine the emission spectrum of PtP, with their values given in atomic units (µ-

values smaller than 10−5 are neglected). No symmetry analysis is performed during

the TDDFT calculation. The states are labeled with a number (#) according to the

energetic ordering.

# E (eV) f µx µy µz

1 1.7616 1.08 · 10−10 0 0 4.99 · 10−5

2 1.7617 1.99 · 10−8 0 0 i6.79 · 10−4

3 1.7622 3.22 · 10−6 −8.10 · 10−3

+i7.56 · 10−4

−2.89 · 10−3

+i2.70 · 10−4

0

4 1.9997 9.98 · 10−6 −3.85 · 10−3

+i8.82 · 10−4

1.34 · 10−2

−i3.06 · 10−3

0

5 2.0003 3.18 · 10−9 0 i1.37 · 10−5 −4.06 · 10−5

+i2.51 · 10−4

6 2.0004 4.75 · 10−9 0 0 3.07 · 10−4

+i5.11 · 10−5

However, one should be aware that after excitation with a pump pulse, the

system undergoes a geometry relaxation (towards C2h), i.e. a J-T distortion

(Fig. 3.11c), which further splits the energy levels. This is no problem if the

relaxation takes place on a longer time scale than the spin dynamics. If it takes

place on a comparable timescale, the changes of the geometry and energy eigen-

states should be small to prevent quantum decoherence. From the calculation

of the FCFs we concluded already that the geometry change is relatively small

(Section 3.13). We therefore expect only a small effect on the energies of the

electronic states. To calculate the effect, we perform a spin-unrestricted TDDFT

calculation with the triplet excited state geometry taken as the ground state ge-

ometry (Table 3.6). Such an approach is common in the calculation of emission

spectra. The doublet Eu (Fig. 3.11b and Table 3.6) splits due to the J-T dis-

tortion. The optical selection rules for states #1 − 5 in Table 3.5 and #1 − 6

in Table 3.6 seem quite comparable, with more transitions allowed for the latter

case however. In case the timescales of the J-T distortion and spin dynamics

are comparable, the polarization rotation of the probe pulse is determined by
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Table 3.7: Transition dipole moments for the lowest 10 transitions from

the ground state (D4h geometry) for PtPπ as obtained from TDDFT calcu-

lations, including SOC perturbatively (using ZORA). The oscillator strengths f and

transition dipole moments µ determine the absorption spectrum of PtPπ, with their

values given in atomic units (µ-values smaller than 10−5 are neglected). No symmetry

restrictions are imposed during the TDDFT calculation. The excited states are labeled

with a number (#) according to the energetic ordering. State 7 consists mainly of a

singlet (the other states are mainly of triplet origin).

# E (eV) f µx µy µz

1 1.46716 0 0 0 0

2 1.46716 0 0 0 0

3 1.46786 3.60 · 10−5 −5.69 · 10−4 3.09 · 10−2 0

4 1.70006 1.85 · 10−4 −6.53 · 10−2 −1.10 · 10−3 0

5 1.70136 0 0 0 0

6 1.70136 0 0 0 0

7 2.13466 0.2793 2.274 3.70 · 10−2 −1.62 · 10−5

8 2.20166 0 0 0 0

9 2.20176 0 0 0 0

10 2.20246 1.50 · 10−3 1.64 · 10−1 2.60 · 10−3 0

the transition dipole moments given in Table 3.6. After having created a super-

position between states #2, 3 in Table 3.5, the probe pulse should thus address

(though slightly detuned to prevent population transfer back to the ground state)

states #2, 3 in Table 3.6. To quantify the change of states #2, 3 (in Table 3.6

with respect to #2, 3 in Table 3.5) it would be even more insightful to calculate

the overlap of the eigenstates before and after the J-T distortion, which we have

not done.

For a molecular TRFR experiment, the laser frequencies of the pump and

probe pulse should match the singlet-triplet frequency. In that regard, for a

TRFR experiment with platinum porphyrins the substitution of aromatic rings

to PtP can be useful. We have performed similar TDDFT calculations for PtPπ

(Table 3.7), which quite closely resemble the results of PtP. However, the fact

that the transition dipole moment in the z-direction remains negligible for all

states makes a TRFR experiment unpractical for PtPπ.
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3.15 SI: Ensemble of randomly oriented molecules

In our calculations we have considered a sample consisting of an ensemble of

similarly oriented molecules, illuminated at t = 0 with a linearly polarized pump

pulse having polarization Êpump = ẑ+ŷ√
2

(with respect to the molecular frame

of reference, as in main text Fig. 3.1). Let us address the following important

conclusion: the TRFR signal decreases when the sample is rotated along any

axis. In the molecular frame, the signal ultimately goes to zero when the electric

vector oscillates only along x, y or z, simply because each system ends up in

a single sublevel instead of a superposition. Interestingly, when the sample is

rotated an angle φ along x (the propagation axis of the pump), the signal does

not depend on φ if a circular instead of a linear pump is used, which might be

experimentally favourable.

Instead of using an ensemble of similarly oriented molecules, we can consider

the case of random orientations. One should keep in mind that for our derivation

to be valid, the number density N should be small enough to ensure that the

molecules are well isolated from each other. A particular example to which this

section applies is the case of an ensemble of the molecule of interest put with

random orientation in a crystalline host material. Perhaps even more interesting

would be the case of a liquid host (i.e. in solution), or the molecule of interest

put in the gas phase, since the molecules are then also well isolated. However,

in these latter cases the signal might suffer from broadening due to the larger

temperatures compared to the case of a crystalline host.

Let us consider a random ensemble of PtN2C8H12 molecules, illuminated at

t = 0 with a circular pump pulse (satisfying assumptions (i) to (iv) of Sec. 3.7,

where |ψe〉 follows from Eq. (3.26)). Within this random ensemble, molecules

having their plane parallel to the propagation axis will be excited to a single sub-

level and do therefore not contribute to the TRFR signal. Instead, any molecule

having its molecular plane exactly perpendicular to the pump propagation axis

will be excited to a superposition of sublevels and does therefore contribute to

the TRFR signal. At delay times where the signal is maximally positive or nega-

tive, these are the molecules that contribute most. At these times, all remaining

molecules (having an orientation that is neither parallel nor perpendicular to the

propagation axis) contribute to the total TRFR signal with a value that lies be-

tween zero and the maximum. Clearly, for an ensemble of randomly oriented

PtN2C8H12 molecules, a net nonzero TRFR signal is obtained (presumed that all

requirements for a TRFR experiment are satisfied). This implies that optically
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Figure 3.12: Calculation of ∆θ(∆t) for the metal-organic molecule

PtN2C8H12 (main text Fig. 3.1). Each line represents a different orientation of a

sample with molecules all oriented similarly (where the color variation is merely in-

tended for contrast). Besides, the only difference with respect to main text Fig. 3.4 is

that a circular pump pulse is considered (Êpump = −iẑ+ŷ√
2

). Clearly, for an ensemble of

randomly oriented PtN2C8H12 molecules, a net TRFR signal is obtained. More spe-

cific, the total average TRFR signal (dashed line) for such an ensemble decreases with

only a factor 2 with respect to an ensemble with all molecules oriented such that the

maximum signal is obtained (i.e. perpendicular to the incoming light).

induced spin polarization can be applied to an ensemble of randomly oriented

molecules.

To verify this conclusion with calculations, we study how ∆θ(∆t) depends

on the sample orientation with respect to the incoming pump and probe. We

calculate ∆θ(∆t) as in main text Fig. 3.4 for a sample consisting of similarly

oriented PtN2C8H12 molecules, with the only difference that a circular pump pulse

is considered (Êpump = −iẑ+ŷ√
2

) and that the sample has a random orientation,

obtained by using random values for the so-called proper Euler angles (which
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Figure 3.13: Visualization of the TRFR signal for different sample orien-

tations (with the molecules in the sample oriented similarly) for the metal-organic

molecule PtN2C8H12 (main text Fig. 3.1). We consider a circular pump pulse

(Êpump = −iẑ+ŷ√
2

) and three delay times, where for each plot the arrow corresponds

to the value of a line in Fig. 3.12 at the corresponding delay time (i.e. each arrow rep-

resents a different orientation of a sample with molecules all oriented similarly). The

color of the arrows correlates with the value of the TRFR signal at delay times ∆t (in

units of the oscillation period) equal to (a) 0, (b) 0.25, (c) 0.5. Each arrow is plot-

ted tangent to the surface of a sphere which visualizes a sample orientation where the

molecular y′′z′′ plane is parallel to the sphere and the arrow points in the z′′-direction

of the molecular frame (double primes denote the molecular frame transformed with

respect to the lab frame, where randomly selected values are used for the so-called

proper Euler angles). The incoming pump and probe pulse always propagate in the

x-direction of the lab frame. We conclude that for an ensemble of randomly oriented

molecules a nonzero TRFR signal is obtained.

can in general be used to describe the orientation of a rigid body). Each line in

Fig. 3.12 represents a different orientation of a sample with molecules all oriented

similarly (where the color variation is merely intended for contrast). The total

average equals half the maximum signal (i.e. for a molecule oriented perpendicular
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to the incoming light), confirming our statement that for an ensemble of randomly

oriented PtN2C8H12 molecules, a net TRFR signal will be obtained. Note that a

nonzero signal will also be obtained for a linear pump pulse, but this signal will

be smaller.

Fig. 3.13 is a visualization of the orientation of the sample for each of the traces

in Fig. 3.12. We consider three delay times, where for each plot the color (red:

maximal negative, blue: maximal positive) of an arrow correlates to the value

of a line in Fig. 3.12, at the corresponding delay time (each arrow represents

a different orientation of a sample with molecules all oriented similarly). We

consider delay times ∆t (in units of the oscillation period) equal to (a) 0, (b) 0.25,

(c) 0.5. For each case, an arrow pointing from the point (1,0,0) to the original

z-direction (representing a molecule with its y′′z′′ plane perpendicular to the

x-direction) is transformed using the same Euler angles used to transform the

sample (we use double primes for the molecular frame to distinguish it from the

lab frame). Accordingly, each arrow is plotted tangent to the surface of a sphere

which visualizes a sample orientation where the molecular y′′z′′ plane is parallel

to the sphere and the arrow points in the z′′-direction. The incoming pump

and probe pulse always propagate in the x-direction of the lab frame. Molecules

having their y′′z′′ plane oriented parallel to the x-direction give zero TRFR signal

at all delay times (visualized by the arrows at x = 0). Instead, molecules having

their y′′z′′ plane oriented perpendicular to the x-direction give maximal TRFR

signal when ∆t equals a multiple of a half period of oscillation (visualized by the

arrows at x = ±1). As it should, Fig. 3.13 confirms our statement that for an

ensemble of randomly oriented PtN2C8H12 molecules an oscillating TRFR signal

is obtained with nonzero amplitude.

It is important to realize that the molecular tumbling motion might affect

the TRFR experiment. In order to obtain a nonzero TRFR signal, it is required

that the orientation of the molecules at the arrival of the pump is comparable to

when the probe arrives. Following Berg[81], we take as a suitable measure for the

tumbling motion the mean square angular deviation as a function of the elapsed

time t〈
Θ2
〉

= 2Drt (3.80)

with the rotation diffusion coefficient given by

Dr =
kT

fr
(3.81)

with fr the rotational frictional drag coefficient. For PtN2C8H12, a rotation about
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an axis perpendicular to the face through the center does not affect the TRFR

signal, such that we should consider a parallel axis. For a disk (radius a), rotating

about an axis parallel to the face through the center, the drag constant amounts

fr,disk =
32

3
ηa3 (3.82)

with η the viscosity. It turns out that for a relatively small molecule like PtN2C8H12

(we assume a = 3.75 Å), we need an extremely viscous host fluid to keep the tum-

bling motion small enough. Let us as an example consider glycerol, because of

its exceptional range (10 orders of magnitude) of viscosities between its glass

temperature (Tg = 190 K) and room temperature. Between 195 and 283 K, its

viscosity η can be well estimated according to the Vogel-Fulcher-Tammann-Hesse

law[82]

η = η010
B

T−T0 (3.83)

with η0 = 7.9 × 10−8 Pa s, B = 1260 K and T0 = 118 K. At 195 K, we have

η = 1.83 × 109 Pa s. Taking the square-root of Eq. 3.80 as a measure for the

angular deviation at time t, we obtain the root-mean-square value
√
〈Θ2〉 ≈ 32

nrad for t = 0.2 ps (oscillation period of ∆θ for PtN2C8H12, main text Fig. 3.4),

which is of the same order as the polarization rotation (up to 23 nrad, see Fig. 3.12

and main text Fig. 3.4) and will therefore strongly affect the signal. Hence, in

order to perform a molecular TRFR experiment with a liquid host it would be

better to take a larger molecule (such that the tumbling motion will be decreased),

or one with a shorter oscillation period (such that the tumbling motion is on a

longer time scale than the quantum dynamics). Probably, it is more practical to

take a crystalline host, where (we have shown in this section that) the molecules

of interest can have a random orientation.
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