
 

 

 University of Groningen

Designing responsible artificial intelligence

Steging, Cor

DOI:
10.33612/diss.1091442864

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2024

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Steging, C. (2024). Designing responsible artificial intelligence: hybrid approaches for aligning learning and
reasoning. [Thesis fully internal (DIV), University of Groningen]. University of Groningen.
https://doi.org/10.33612/diss.1091442864

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-12-2024

https://doi.org/10.33612/diss.1091442864
https://research.rug.nl/en/publications/2597c471-6803-49e2-ad56-cc11b950e7e3
https://doi.org/10.33612/diss.1091442864


DESIGNING RESPONSIBLE

ARTIFICIAL INTELLIGENCE

HYBRID APPROACHES FOR ALIGNING
LEARNING AND REASONING



This research was funded by the Hybrid Intelligence Center, a 10-year programme funded by
the Dutch Ministry of Education, Culture and Science through the Netherlands Organisation for
Scientific Research, https://hybrid-intelligence-centre.nl.

Copyright ©Cor Steging, Groningen, The Netherlands, 2024

Printed by: Proefschriftspecialist, Zaandam
ISBN: 978-94-93391-31-4
An electronic version of this dissertation is available at: https://research.rug.nl/

https://research.rug.nl/


DESIGNING RESPONSIBLE

ARTIFICIAL INTELLIGENCE

HYBRID APPROACHES FOR ALIGNING
LEARNING AND REASONING

PhD thesis

to obtain the degree of PhD at the
University of Groningen
on the authority of the

Rector Magnificus Prof. J.M.A. Scherpen
and in accordance with

the decision by the College of Deans.

This thesis will be defended in public on

Tuesday 1 October 2024 at 11.00 hours

by

Cor STEGING

born on 5 May 1995
in Delfzijl, the Netherlands



Supervisor
Prof. H.B. Verheij

Co-supervisor
Dr. S. Renooij

Assessment Committee
Prof. L.C. Verbrugge
Prof. F. Toni
Prof. T.M. van Engers



Contents

1 Introduction 1
1.1 Responsibility in Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . 1
1.2 Defining responsible behavior in AI . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Aligning learning and reasoning . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Designing responsible AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Learning to reason . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2 Reasoning by design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.3 Domain-specific design choices . . . . . . . . . . . . . . . . . . . . . 5

1.5 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.8 Data and software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9
2.1 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Key concepts in machine learning . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Developing machine learning models . . . . . . . . . . . . . . . . . . 11
2.1.3 Algorithms and techniques . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 Strengths and limitations . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Explainable AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Types of XAI methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Properties of explanations . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 SHAP and LIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Responsible AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Undesirable rationales in machine learning . . . . . . . . . . . . . . 24
2.3.2 Behavioral testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Learning sound reasoning . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Reasoning by design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Symbolic AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.2 Neurosymbolic AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 AI & Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.1 Court case predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 Modeling legal domains . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.3 AI as Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



vi CONTENTS

I Responsible Design in AI & Law 37

3 Investigating Domain-specific Design Choices in Court Case Predictions 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.4 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.1 Experiment 1: Extended replication and parts used . . . . . . . . . . 46
3.4.2 Experiment 2: Specialist vs. Generalist models . . . . . . . . . . . . . 49
3.4.3 Experiment 3: Temporal effects . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

II Learning to Reason 59

4 Domains & Datasets 61
4.1 Overview of the domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Welfare benefit domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Simplified welfare benefit domain . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Tort law domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 Article 6 of the ECHR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Availability of resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 TREI: Tailored Rationale Evaluation and Improvement 71
5.1 Introducing the TREI method . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Training the models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 TREI step 1: Measuring the performance of the model . . . . . . . . . . . . 73
5.4 TREI step 2: Creating rationale evaluation test sets . . . . . . . . . . . . . . 78
5.5 TREI step 3: Rationale evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6 TREI step 4: Improving the rationale . . . . . . . . . . . . . . . . . . . . . . . 85
5.7 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



CONTENTS vii

6 Capabilities and limitations of the TREI method 95
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Mixed training datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 Rationale improvement under imperfect conditions . . . . . . . . . . . . . 99

6.3.1 Small training datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.2 Inconsistencies in training datasets . . . . . . . . . . . . . . . . . . . 102
6.3.3 Missing values in training datasets . . . . . . . . . . . . . . . . . . . . 104

6.4 Application of the TREI method . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4.1 Design choices and limitations . . . . . . . . . . . . . . . . . . . . . . 106
6.4.2 Rationales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4.3 Related approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4.4 The TREI method in practice . . . . . . . . . . . . . . . . . . . . . . . 107

6.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

III Sound Reasoning by Design 111

7 Sound Legal Textual Entailment 113
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.3 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3.1 Large language model . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.3.2 Manually crafted ADFs . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3.3 Artificially generated ADFs . . . . . . . . . . . . . . . . . . . . . . . . 120

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4.1 Performance in COLIEE . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4.2 System analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.4.3 Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.4.4 Investigating the effect of knowledge . . . . . . . . . . . . . . . . . . 125

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

IV Discussion and Conclusion 129

8 Discussion and Conclusion 131
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.3.1 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.3.2 Learning-to-reason vs. reasoning-by-design . . . . . . . . . . . . . . 136

8.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.5 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



viii CONTENTS

V Appendices 143

A Additional materials Chapter 3 (Part I) 145
A.1 Model specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.2 Temporal effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B Additional materials Chapters 4, 5, 6 (Part II) 153
B.1 LIME and SHAP plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
B.2 ADF for Article 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

C Additional materials Chapter 7 (Part III) 159
C.1 ADFs for legal articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Glossary 163

Bibliography 165

Summary 177

Samenvatting 181

Acknowledgements 185



1
INTRODUCTION

In the 1797 poem “Der Zauberlehrling” by Johann Wolfang von Goethe, a young sorcerer’s
apprentice is left alone in the workshop of his teacher: a powerful sorcerer who entrusted
his apprentice to perform chores while he is away (Goethe 1797). Weary of the laborious
task of fetching water, the apprentice decides to enchant a broom to undertake the job,
dabbling in magic well beyond his expertise. While the broom initially performs the
task as expected, it does not stop fetching water when the basin is full. Desperate to
stop the relentless flow of water, the apprentice tries to stop the broom, but he does not
possess the knowledge to do so. Even splitting the broom in two with an axe does not
stop it, but instead it only creates more brooms, doubling the speed at which the water
is fetched. As the workshop floods with more and more water, the apprentice cries out:
“The spirits that I summoned, I now cannot rid myself of again”. At this point, the sorcerer
returns and breaks the spell, warning his apprentice against engaging in things he does
not understand.

1.1. RESPONSIBILITY IN ARTIFICIAL INTELLIGENCE

Recent advances in Artificial Intelligence have taken the world by storm. Modern machine
learning techniques, combined with the ever-growing availability of big data, has resulted
in AI systems that can effectively mimic aspects of human intelligence. There are AI
assistants that can recognize and process human speech, and can respond with adequate
information in natural language. We have self-driving cars that are said to be safer than
human drivers and are expected to be able to reduce accidents and traffic jams (Badue
et al. 2021). Recent developments of generative AI have also brought us systems that can
generate images, videos and texts that are nearly indiscernible from their non-artificial
counterparts (Feuerriegel et al. 2024). Not only do these AI systems perform well, but they
have become readily available to the general public and are thus becoming integrated
into our societies. While AI’s disruption of society is not exclusively positive or negative, it
does raise a number of issues regarding responsibility.

1
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Consider the example from 2023, where a respected lawyer used the chatbot ‘Chat-
GPT’ 1 to prepare for a filing. 2 Unbeknownst to him, the cases that ChatGPT provided to
the lawyer were fake; the chatbot had "hallucinated" cases that did not exist. By now it is
widely known that ChatGPT and the likes suffer from the hallucination problem, which
can be described as generating unfaithful or nonsensical text (Ji et al. 2023). When the
court found out about the fake cases, they dismissed the filing and considered sanctions
for the lawyer. The lawyer himself did not know that generative AI models could generate
fake cases, and at no point did ChatGPT inform him that the cases may be fake. In fact,
when asked about the cases, ChatGPT doubled down and confirmed to the lawyer that
the cases did exist, and the lawyer believed it. Just as the sorcerer‘s apprentice, the lawyer
meddled with things he did not truly understand and suffered the consequences, even if
his intentions were pure.

Due to the wide-spread usage of AI, responsibility has thus become an important issue
in the field of AI and in society in general. Responsibility in AI is a multi-faceted issue,
ranging from social to technical (Dignum 2019). For example, in situations such as with
the lawyer or the sorcerer’s apprentice, there is the issue of responsibility gaps (Hindriks
and Veluwenkamp 2023): who is responsible when things go wrong? Is it the user, the
designer of the system or the system itself? On the technical side, there can be issues
regarding the AI systems themselves, such as inherent biases or problems regarding fair-
ness (Mehrabi et al. 2021). These internal issues are often difficult to detect, and can make
the AI system behave in an undesired manner, much like the brooms in the Sorcerer’s
Apprentice story that did not stop fetching water, or like ChatGPT that hallucinated cases
in the story of the lawyer.

In this thesis, we direct our attention towards the technical aspect of responsible AI
and on the design of systems that behave as desired. The desired behavior of AI systems
can be hard to define, and making an AI system behave accordingly is often a difficult
challenge as well. Even so, the design of responsible AI is a necessary challenge that must
be undertaken.

1.2. DEFINING RESPONSIBLE BEHAVIOR IN AI

For our intents and purposes, we define a responsible AI system as one that behaves as
desired. With behavior, we mean the output of the AI system as a response to a particular
input. This abstract definition raises two important successive issues:

Issue 1: We need a definition of desired behavior in AI systems.

Issue 2: We need to ensure that AI systems behave as desired.

Issue 1 raises a normative question about how we, as a society, want the AI system to
behave. Not only can this be difficult to define, but it can also be hard to answer in a single
definitive way, as it can be deeply rooted in philosophical questions about morality. In
specific use cases, however, the question can be answered, at least partially. The answer

1https://chatgpt.com
2https://www.nytimes.com/2023/06/08/nyregion/lawyer-chatgpt-sanctions.html

https://chatgpt.com
https://www.nytimes.com/2023/06/08/nyregion/lawyer-chatgpt-sanctions.html
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to the first question can then be a set of rules or guidelines that the AI should adhere to.
For example, a robot vacuum cleaner should adhere to rules such as: ‘clean the house’,
‘do not break anything’, and ‘return to the charging dock once your job is complete of if
your battery needs recharging’. A robot vacuum cleaner that adheres to those rules can be
said to behave responsibly.

Issue 2 assumes that we have established what the desired behavior should be. En-
suring that the AI system actually behaves as such is not always trivial (Akata et al. 2020).
Many AI systems use machine learning algorithms to learn their behavior based on exam-
ples from the past. The exact modelled behavior that results from this learning process
often remains unknown, and can result in artifacts such as the hallucinations mentioned
in the story with the lawyer.

A parallel can be drawn between Issue 2 and the Sorcerer’s Apprentice story as well. In
the poem, the apprentice knew what behavior he desired the broom to have, but the final
resulting behavior did not match his expectations. The broom performed its job exactly
as specified, yet its behavior did not match the actual desires of the apprentice. In a way,
the Sorcerer’s Apprentice story could be considered as an example of underspecification,
where the apprentice did not possess the knowledge or insight to understand the risks and
dangers, and was therefore unable to specify what the exact behavior of the broom should
have been. One could say that it was an oversight in the design process. This suggests that
expert knowledge of the domain or task is essential in the design of autonomous systems.

Next to underspecification, there is also the problem of definability: it is often not
possible to explicitly define what the behavior of a system should be. This is then directly
related to Issue 1, about defining desired behavior. The notion of ‘fetching water’ might
seem relatively straight-forward to a human being, but for an AI system without any
background knowledge, such a notion is incredibly abstract and the system would require
many additional details in order to complete the task. In order to make the AI system
behave according to notions that are difficult to describe but easy to demonstrate, such as
fetching water, we may use machine learning techniques where we let the AI system learn
the correct behavior from examples. With machine learning, we can thus let AI systems
learn to behave in a certain way without having to explicitly define the entire domain and
task. For example, while it is nearly impossible to accurately and explicitly define what a
cat is, an AI system that employs machine learning can learn to recognize cats based on
examples.

1.3. ALIGNING LEARNING AND REASONING

Machine learning can thus be employed in situations that are hard to define but easy
to demonstrate. However, the machine learning approach has its own issues as well. A
machine learning system will learn patterns from the examples that it is provided with,
but there is no guarantee that these are the right patterns. The system might pick up on
spurious correlations instead, and thus learn to behave in a certain way for the wrong
reasons (Bench-Capon 1993). Furthermore, many state of the art machine learning sys-
tems are considered black boxes, where the internal reasoning of the system is unknown.
While this might not seem like an issue when the system behaves as desired, it can lead to
unexpected and irresponsible behavior, such as the hallucinations of ChatGPT. Methods
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exist that aim to provide explanations for the internal reasoning of these black-box sys-
tems, but these explainable AI methods are limited in the insights that they provide (Slack
et al. 2020).

Unlike machine learning systems, symbolic AI systems do not learn from examples
and thus cannot learn undesirable behavior. Instead, their behavior is hard-coded by
human engineers as a knowledge representation of the domain, such as a set of rules
that the AI system has to follow. With an explicit knowledge representation, such as set of
rules, we know exactly how the AI system will behave in any given circumstance. Even
if mistakes or unwanted outcomes are discovered, these can in principle be repaired by
adapting the knowledge representation. Unfortunately, this requires us to exhaustively
and explicitly define the domain and task. This is not possible in many situations, such as
with images of cats or fetching water.

Symbolic AI guarantees desired behavior as it is based on hard-coded human knowl-
edge, but fails when the domain cannot be defined explicitly such as with language,
detecting cats or fetching water. Machine learning, on the other hand, can be employed
in undefinable domains through examples. Black box machine learning systems, however,
behave without explanation and are prone to learn spurious correlations and thus learn
to model the wrong behavior. Aligning the learning aspects of machine learning with
the sound reasoning of symbolic AI could be the solution when it comes to designing
responsible AI systems.

1.4. DESIGNING RESPONSIBLE AI

In this thesis, we investigate hybrid approaches that align learning and reasoning meth-
ods for the design of responsible artificial intelligence. We have defined a responsible
AI system as one that behaves according to some description or set of guidelines of the
intended behavior. To explore the hybrid design approaches, we use the following de-
scription of a responsible AI system:

A responsible AI system should make the right decisions for the right reasons and be able
to explain its decision-making in terms of those reasons.

An AI system should therefore, first of all, be able to perform well. If the system does
not make the right decisions, it cannot perform the task it was designed for. Secondly,
we want the system to use correct reasoning: to make the decisions based on the right
reasons rather than on any undesirable bias or spurious correlation. Lastly, we want the
AI system to be able to explain to a human why it made its decision, in order to build trust
and and a sense of control for the end-user.

In this thesis, we explore two hybrid approaches that align learning and reasoning to
the design of responsible AI systems, which we call the learning-to-reason approach and
the reasoning-by-design approach.
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1.4.1. LEARNING TO REASON

In the learning-to-reason approach, our goal is to induce sound reasoning in data-driven
AI systems. As many of the state-of-the-art machine learning systems are black boxes, we
cannot easily investigate their internal reasoning. A separate method would be required
to evaluate the reasoning of such a system. We are also not able to adjust the internal
reasoning of the system in order to make it as desired. What we can do, however, is
manipulate the examples from which the systems learn. By tailoring the examples from
which the machine learning systems learn, based on expert knowledge, we might be able
to adjust its reasoning.

1.4.2. REASONING BY DESIGN

In the reasoning-by-design approach, we create AI systems that are at least partially
inherently interpretable, adjustable and explainable. Symbolic AI systems, where the
desired behavior is hard-coded based on human knowledge, would be an example of such
a reasoning-by-design approach. However, we already mentioned that in many tasks,
such as vision or text, symbolic AI systems cannot be used as effectively as machine learn-
ing systems. By combining symbolic architectures and machine learning architectures,
referred to as neurosymbolic AI, we might be able to create a system that can perform well
and do so for the right reasons.

1.4.3. DOMAIN-SPECIFIC DESIGN CHOICES

One additional aspect of designing responsible AI is to understand the domain that the
system will be employed in, and to actively use that domain knowledge in the design
process. Certain domains may have specific characteristics that need to be taken into
account when designing an AI system. These domain-specific design choices may not
only have an effect on the performance or behavior of the system, but also on the overall
reasonableness of the system, which should be fair, practical and sensible. For instance, a
reasonable AI system that predicts whether or not someone should receive a loan from the
bank should take inflation into consideration when determining the potential loan. At the
same time, this system should not take gender into account, as this would compromise
fairness and thus the reasonableness of the system. All of these are domain-specific
design choices that can influence the performance, behavior and reasonableness of a
system. The studies in this thesis take place within the field of AI & Law. This domain was
chosen as sound reasoning and argumentation is essential within the legal domain in
order for justice to occur. We therefore also investigate domain-specific design choices in
the field of law and the effects these have on the performance and reasonableness of the
resulting systems.
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1.5. RESEARCH QUESTIONS

This thesis is concerned with the following main research question:

• How do we design for responsible behavior in data-driven AI systems?

Concretely, we investigate this question by exploring the following sub-questions:

1. What are the potential effects of domain-specific design choices in data-driven AI
systems in law? (Chapter 3)

2. How can the reasoning of data-driven AI systems be assessed? (Chapter 5)

3. How can data-driven AI systems be designed to learn correct reasoning? (Chapter 5
and 6)

4. How can neurosymbolic design approaches be used to ensure correct reasoning?
(Chapter 7)

For each research question, we indicate in which chapters these questions are explored.
In Chapter 4, we create a set of resources that it is used to investigate the relationship
between learning and reasoning, which are used in the experiments of Chapters 5 and 6.

1.6. OUTLINE OF THE THESIS

The thesis is divided into three parts and contains 8 chapters. In Chapter 2, we delve
into the background literature that is relevant for the research that we present later in
the thesis. We explore both symbolic and machine learning techniques, as well as the
neurosymbolic approach, explainable AI methods and responsible AI approaches. An
overview of the relevant studies within the field of AI & Law is also given, as this is the
domain in which our experiments take place.

I - Responsible Design in AI & Law
In Chapter 3 we explore design choices for models that can predict the outcome of court
cases. Specifically, we implement a set of design choices and investigate the effects of
these design choices on both the performance and reasonableness of the system based
on how well they align with the unique characteristics of the legal domain.

II - Learning to Reason
Part II investigates the learning-to-reason approach, where we introduce our hybrid
method for Tailored Rationale Evaluation and Improvement: the TREI method. In Chap-
ter 4, we first describe four legal domains from which we generate artificial datasets.
These domains and datasets are used in the experiments in the other chapters of this
part. In Chapter 5, we first show that data-driven AI systems can make the right decisions
for the wrong reasons, and that our TREI method can be used to evaluate the rationale
of these systems. Furthermore, we compare our method to conventional explainable
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AI techniques, and show that these explainable AI techniques cannot guarantee sound
decision-making. We show that it is possible to improve the rationale of data-driven
models by tailoring the training data based on the knowledge gained from the rationale
evaluation. In Chapter 6, we investigate the TREI method further by performing exper-
iments under different conditions, such as limited dataset sizes, inconsistencies and
missing values. We also discuss design choices and limitations of the TREI method, as
well as insight into how the method can be used for other domains and tasks.

III - Reasoning by Design
Chapter 7 explores the reasoning-by-design approach, where we introduce a neurosym-
bolic approach to legal textual entailment. This hybrid system uses symbolic representa-
tions of the law combined with large language models to predict legal entailment in bar
exam questions. Not only do we show that the performance of this system is on par with
the baseline large language model, but it can also explain its decision-making.

In Chapter 8, we discuss the results that are presented in the thesis and consider possibili-
ties for future research.

1.7. PUBLICATIONS

Here we list the publications on which the thesis is based. The first publication below
forms the basis of Part I and Chapter 3 about design choices in court case predictions.

• C. Steging, S. Renooij, and B. Verheij (2023b). “Taking the law more seriously by
investigating design choices in machine learning prediction research”. In: ASAIL
2023. Automated Semantic Analysis of Information in Legal Text. Proceedings of
the 6th Workshop on Automated Semantic Analysis of Information in Legal Text
co-located with the 19th International Conference on Artificial Intelligence and Law
(ICAIL 2023). Braga, Portugal: CEUR-WS, pp. 49–59

The five publications shown below are integrated into Part II of the thesis, covering
Chapters 4 to 6. These chapters focus on the learning-to-reason approach using our
method for evaluating and improving rationales and describe the domains and datasets
used to evaluate the method.

• C. Steging, S. Renooij, and B. Verheij (2021b). “Discovering the rationale of decisions:
Towards a method for aligning learning and reasoning”. In: ICAIL ’21: Proceedings
of the Eighteenth International Conference for Artificial Intelligence and Law. Ed. by
J. Maranhão and A. Wyner. São Paolo, Brazil: ACM, pp. 235–239

• C. Steging, S. Renooij, and B. Verheij (2021a). “Discovering the rationale of deci-
sions: Experiments on aligning learning and reasoning”. In: XAILA@ICAIL 2021.
EXplainable and Responsible AI and Law 2021. Proceedings of 4th International
Workshop on eXplainable and Responsible AI and Law co-located with 18th Inter-
national Conference on Artificial Intelligence and Law (ICAIL 2021). Virtual Event,
ed. by M. Araszkiewicz et al. São Paolo, Brazil: CEUR-WS
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• C. Steging, S. Renooij, and B. Verheij (2021c). “Rationale discovery and explainable
AI”. in: Legal Knowledge and Information Systems - JURIX 2021: The Thirty-Fourth
Annual Conference. Ed. by E. Schweighofer. Vol. 346. Frontiers in Artificial Intelli-
gence and Applications. Vilnius, Lithuania: IOS Press, pp. 225–234

• C. Steging, S. Renooij, B. Verheij, and T. Bench-Capon (2023). “Arguments, rules and
cases in law: Resources for aligning learning and reasoning in structured domains”.
In: Argument & Computation 14. 2, pp. 235–243

• C. Steging, S. Renooij, and B. Verheij (2023a). “Improving rationales with small,
inconsistent and incomplete data”. In: Legal Knowledge and Information Systems
- JURIX 2023: The Thirty-Sixth Annual Conference. Ed. by G. Sileno et al. Vol. 379.
Maastricht, the Netherlands: IOS Press, pp. 53–62

The publication below forms the basis of Part III and Chapter 7 about reasoning-by-design
using our hybrid approach to legal textual entailment.

• C. Steging and L. van Leeuwen (2024). “A hybrid approach to legal textual entail-
ment”. In: JSAI-isAI ’24: Sixteenth JSAI International Symposia on AI. Eighteenth
International Workshop on Juris-Informatics (JURISIN 2024). Hamamatsu, Japan:
Accepted paper

All publications are written by Cor Steging based on his PhD research, performed un-
der supervision of Silja Renooij and Bart Verheij. The JURISIN 2024 paper (underlying
Chapter 7) is written by Cor Steging and PhD candidate Ludi van Leeuwen, based on joint
research.

1.8. DATA AND SOFTWARE

All of the data and software that we created has been made publicly available.

Legal resources The domains and datasets described in Chapter 4 of this thesis have
been published (Steging, Renooij, Verheij, and Bench-Capon 2023) and made available for
use in other experiments to investigate the relationship between learning and reasoning.
The resources include the scripts to generate datasets based on the welfare benefit domain
and the tort law domain. The resources were used by Paulino-Passos and Toni (2023). The
legal resources can be found in the following GitHub repository: https://github.com/
CorSteging/LegalResources .

ADFlib We developed a Python library called ADFlib for creating Abstract Dialectical
Frameworks (ADFs) using the ANGELIC methodology (Atkinson and Bench-Capon 2023),
as used in Part II and III of our thesis. With ADFlib, one can create symbolic represen-
tations of domains in the form of ADFs. Furthermore, one can automatically generate
artificial datasets based on the ADF. An additional explainer function is also included,
that can be used to explain the output of the ADF. The ADF for Article 6, as used in Part II,
is also included as an example in this library. The library can be found in the following
GitHub repository: https://github.com/CorSteging/ADFlib .

https://github.com/CorSteging/LegalResources
https://github.com/CorSteging/LegalResources
https://github.com/CorSteging/ADFlib
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BACKGROUND

In this chapter, we describe the relevant concepts, ideas and background literature that
the thesis builds upon. In Section 2.1, we report on key concepts in machine learning and
describe specific machine learning methods that we use in the thesis. Both the strengths
and shortcomings of machine learning are discussed. The two most notable shortcomings
of machine learning that we focus on are its lack of transparency and its potential for
unsound reasoning. We talk about the field of explainable AI in Section 2.2, which aims to
solve the former issue by providing explanations for the decisions of machine learning
systems. The concept of responsible AI is then introduced in Section 2.3, which aims to
solve the latter issue, and methods that evaluate and control the behavior of the machine
learning systems are discussed. As a potential solution, we discuss neurosymbolic meth-
ods in Section 2.4: hybrid approaches that aim to combine machine learning with more
traditional symbolic AI systems. Lastly, in Section 2.5 we discuss the relevant literature
and methods from the field of AI & Law, the domain in which our experiments take place.

2.1. MACHINE LEARNING

In the upcoming chapters of the thesis, we design machine learning models and perform
experiments where we investigate their learned behavior. We focus on the design aspect in
the broadest sense, encompassing the entire process of creating an AI system, rather than
focusing on the creation of new architectures. Therefore, we first discuss key concepts in
machine learning in Section 2.1.1, and report on how the machine learning models are de-
veloped in Section 2.1.2. We then discuss some of the current techniques and algorithms
in Section 2.1.3, and end with an overview where we discuss the strengths and limitations
of machine learning that are relevant to our research in Section 2.1.4. In Sections 2.1.1
and 2.1.2, our discussions are based on material from the books ‘Probabilistic Machine
Learning’ by Murphy (2022) and ‘Deep Learning’ by Goodfellow and colleagues (2016).

9
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2.1.1. KEY CONCEPTS IN MACHINE LEARNING

The term machine learning was first coined by Arthur Lee Samuel, and describes the
approach in which computers are given an ability to learn a certain behavior from ex-
periences, rather than being explicitly programmed to behave as such (Samuel 1959).
These approaches are referred to as machine learning algorithms. Based on experiences,
machine learning algorithms produce a model. This model is a learned perception of a
given domain, based on the experiences that have been provided to the algorithm.

A more detailed definition of machine learning is given by Mitchell (1997): “A com-
puter program is said to learn from experience E with respect to some class of tasks T and
performance measure P , if its performance at tasks in T , as measured by P , improves with
experience E”. Machine learning models can be created for a large variety of tasks T , such
as classifying faces from images, detecting anomalies in bank transactions, translating
texts from one language to another, or making robots learn to walk. While different types
of tasks might require different types of experiences, performances measures, and algo-
rithms, all machine learning algorithms learn a particular behavior instead of following
an explicitly programmed behavior.

Machine learning algorithms are often categorized into one of three variations: unsuper-
vised, supervised and reinforcement learning. The main difference between the three
forms is based on the experiences that they learn from.

Unsupervised learning methods learn from unstructured experiences called datasets.
The datasets that these algorithms are provided with contain examples, or instances,
with various characteristics, or features. Unsupervised learning algorithms attempt to
learn the underlying patterns and to create a model of the dataset. An example of an
unsupervised learning method is clustering, where the algorithm divides the dataset
into several clusters based on the patterns that it has discovered. This can be used to
distinguish between different types of customers in customer data, for example.

Supervised learning methods learn from experiences that are labelled. These algorithms
are provided with datasets that contains instances with features, just as in unsupervised
learning, but these instances also have a label. This label is the correct answer that the
supervised learning algorithm will learn to predict. For example, a supervised learning
algorithm that is tasked with distinguishing between images of cats and images of dogs,
will have to learn from a dataset that contains both the image (the features) and the label,
whether the image contains a cat or a dog. By presenting the images and the label to the
algorithm, it will learn to differentiate between cats and dogs. A group of instances with
the same label are also described as sharing the same class.

Reinforcement learning methods learn from rewards. In this type of learning, an agent
aims to reach a certain goal state in an environment. Starting from its start state, the
agent will manipulate the environment in order to reach the goal. Based on a predefined
reward function the agent‘s behavior is rewarded or punished, until it eventually learns
the desired behavior. This type of learning is often used in robotics or games, for example
to teach a robot how to walk.
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In this thesis, we are mainly concerned with supervised machine learning and will there-
fore not delve deeply into the other two techniques. A common task in supervised
machine learning, and the one that we focus on in this thesis, is classification. In classifi-
cation, a supervised machine learning algorithm is provided with a dataset containing
instances with features and a label, where the label is a discrete variable. The algorithm
learns the patterns of the dataset, and creates a model that can predict the label for a
given instance based on its features. Distinguishing between images of cats and dogs is
an example of classification.

2.1.2. DEVELOPING MACHINE LEARNING MODELS

When developing a machine learning model, one should start by accounting for the data
that is available and the task that needs to be performed. Based on that, a number of
design choices can be made, including the type of algorithm that will be used. The data
that machine learning algorithms can learn from can take various forms. Some of the
broader data types include images, video, audio, tabular data and text. We focus on the
latter two: tabular data and text.

In tabular data, the features of a dataset are represented as the columns of a table. The
rows of the table represent the instances. Features in tabular data can have different
types, such as categorical, ordinal or numerical. When features are categorical and only
contain the values ‘True’ or ‘False’, we refer to them as Boolean features. An example of a
classification task with tabular data is predicting whether an individual can receive a loan
from the bank, based on their personal information.

In text data, the features of the instances are expressed in natural language. Working
with text data in machine learning is also referred to as Natural Language Processing
(NLP). An NLP dataset for classification typically contains one or more features and a
label that the model will need to predict. An example of a classification task using text
data with a single feature is predicting whether a movie review is positive or negative,
based solely on the written review. Natural Language Inference (NLI) is an example of a
text classification task with multiple features, where the model is tasked with predicting
whether a provided hypothesis follows logically from a given premise. As an example
of such an NLI task, consider the following question: if the premise is ‘John is eating
an apple’, and the hypothesis is ‘someone is eating’, is there an entailment between the
premise and the hypothesis? In this situation, both the premise and the hypothesis act as
the features, whereas the label is whether or not there is an entailment. We explore a type
of NLI task in Chapter 7, where we work with legal textual entailment.

It should be noted that it is also possible to have datasets that contain features of multiple
data-types. For example, a dataset on predicting the chance of adoption for animals
in a pet shelter might contain images, text and tabular features. This is referred to as
multimodal machine learning. Those approaches will not be used in this thesis, as we
focus solely on homogeneous text or tabular data.
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Preprocessing of the data is the first step in developing a machine learning model. The
provided data is often in a ‘raw’ format, and can contain noise, inconsistencies, missing
values, incomplete information or irrelevant information. To get the best performing
system, it is therefore necessary to process the data before the algorithm can learn from it.

The preprocessing stage contains many facets and is often the most time consuming
element in a machine learning project. It is a step that can usually not be automatized
completely, as it requires domain knowledge and rational thinking. To deal with missing
values in tabular data, for example, one could simply remove the instances that contain
missing values. Alternatively, if it is sensible, one could change the missing values of these
instances to a placeholder value. The act of removing irrelevant features from the dataset
is also based on knowledge of the domain and the task. For instance, gender should be
irrelevant when designing a model that determines whether you get a loan from the bank.
But as irrelevance is context dependent, removing these features is a design choice left to
the developer of the model. A developer could also opt to combine existing features to
create a new feature. For instance, the ‘salary’ feature could be combined with the ‘year’
feature, in order to be adjusted for inflation.

In text classification, preprocessing of the dataset often involves removing unneces-
sary elements of the texts or making the texts in the dataset more uniform. For example,
meta-data such as the identifier or date might be included that is irrelevant for the specific
prediction task. Other common preprocessing techniques include removing unneces-
sary digits, urls, or foreign characters, and transforming the text to lowercase. Another
technique that is used regularly in text preprocessing is removing stopwords, which are
words that add little meaning to the text, such as ‘is’, ‘a’ or ‘the’. All of these techniques aim
to create a clean dataset without redundant information that might hinder the learning
process of the algorithm.

The dataset might also need to be adjusted to work with a specific machine learning
algorithm. For instance, text data often needs to be tokenized in order to work with
traditional machine learning algorithms such as a Naive Bayes classifier. Tokenization is a
method of splitting up the text into smaller parts, alongside a number representing how
often that part occurs in the full text. These smaller parts have now become the features
of the dataset, with their frequency acting as the values. Other algorithms might require
normalization, where the values of every feature have to be scaled between 0 and 1, for
instance.

Training in machine learning is the process where the algorithm learns from the data
in order to produce a model that can perform a certain task. In the training phase, the
algorithm is typically presented with instances from the data and tasked with making
predictions. Based on whether its prediction is correct, the model is adjusted. This process
is done iteratively, and is referred to as model fitting. How the model is adjusted based on
the data, and in what way the data is presented to the algorithm is dependent on the type
of algorithm.

It should be noted that not every machine learning algorithm trains in this way. The
Naive Bayes algorithm, for instance, estimates the prior probabilities of the different
labels and the likelihood of the different features per label, which are then used to make a
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Table 2.1 | A confusion matrix

Actual Actual
positive negative

Predicted
TP FP

positive
Predicted

FN TN
Negative

prediction. Furthermore, in lazy learning algorithms such as K-nearest neighbour, training
is not needed at all since the classification of instance X is based on the similarities
between X and all of the other instances in dataset, which is calculated when making the
prediction.

In binary classification tasks, where the output can only be one of two things (such as
either a cat or a dog), we generally have to balance the dataset on which the algorithm
trains in order to avoid bias in our model. This balancing entails altering the dataset
such that 50% of the instances have one label (e.g. dog) and the other 50% of the in-
stances have the other label (e.g. cat). This is to ensure that the algorithm does not learn a
bias towards one label or the other, simply because it has seen more of one particular label.

Testing a machine learning model after it has been trained on a classification task is done
by evaluating how well it can predict the labels of a set of instances that were not in the
data during training. To accomplish this, it is customary to split the dataset into a training
set and test set after preprocessing. The algorithm then trains on the training set and its
performance is evaluated using the test set. The goal of machine learning is to create a
generalizable model, that performs well on new, unseen instances. It is therefore essential
that the algorithm does not train on the test set, in order to make a fair assessment of the
model.

Performance metrics are used to quantify the performance of a model on the test set.
The traditional way of representing the performance in classification tasks is accuracy.
Accuracy is defined as the percentage of correct predictions. While there are various
issues with this metric, as will be discussed in more detail in Chapter 3, it is still one of the
most commonly used performance metrics. A more detailed assessment of the model can
be made through a confusion matrix, as shown in Table 2.1. In a confusion matrix, one
records not only the number of correct and incorrect predictions of the model, but also
the type of mistakes the model has made. For any given class, referred to as the ‘positive’
class, we can denote in the confusion matrix the number of instances that were predicted
as positive and the number of instances that were predicted as another class, referred
to as ‘negative’. For example, if we want to detect fraud in financial transactions, fraud
would be the positive class, whereas non-fraud would be the negative class.

Additionally, we can report whether these instances were correctly predicted as pos-
itive (TP: True Positive), incorrectly predicted as positive (FP: False Positive), correctly
predicted as negative (TN: True Negative) or incorrectly predicted as negative (FN: False
Negative).
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Table 2.2 | Commonly used performance metrics in machine learning and their formulas.

Performance metric Formula

Accuracy T PÅT N
T PÅF PÅF NÅT N

Precision T P
T PÅF P

Recall T P
T PÅF N

F1-score 2¤Pr eci si on¤Recal l
Pr eci si onÅRecal l

In these terms, accuracy is defined as the sum of the true positives and true negatives,
divided by the sum of the true positives, false positives, false negatives and true negatives.
With the values of a confusion matrix, however, one can derive additional performance
metrics as well.
The precision metric is defined as the number of true positives divided by the sum of
the true positives and false positives. It describes how many of the instances that were
predicted as ‘positive’ were actually positive. This metric can be used in machine learn-
ing situations where false positives are less desirable than false negatives. Precision is
often used as the metric in recommendation systems, where presenting the wrong rec-
ommendations to the users (false positives) is less desirable than not presenting good
recommendations (false negatives).

The recall metric is defined as the number of true positive labels divided by the
sum of the true positives and false negatives. It thus reports how many of the positive
instances were correctly retrieved. This is often used when detecting the true positives
is more important than accidentally predicting false positives. Fraud detection can
be an example of machine learning where recall is an important metric, as it is more
important to detect all fraudulent instances (true positives) than accidentally labelling a
non-fraudulent instance as fraudulent (false positive). This is, of course, granted that all
predicted fraudulent cases are later on examined by a human overseer before making a
final judgement.

The F1-score is described as the harmonic mean of the previously described precision
and recall. This metric is higher when the precision and recall are similar, and lower if the
precision and recall differ from one another. As it uses three of the four quadrants of the
confusion matrix, it is a commonly used performance metric in many machine learning
applications.

The four performance metrics that we discussed are shown in Table 2.2, alongside
their formula. All of the performance metrics result in a value between 0 and 1, where 1
represents a perfect score. These scores are often normalized between 0 and 100 for ease
of reading. Note that neither precision nor recall, and thus the F1-score, use the value
of the true negatives. We touch upon this, and an alternative performance metric (the
Matthew’s Correlation Coefficient) in Chapter 3.

It is often desirable to test the model not only after training, but also during the
training phase. To do this, the training dataset can be split into a training and validation
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set. The validation set is used to test the model during training, whereas the test set is
only used to evaluate the model once all training is completed. Most algorithms have a
set of hyperparameters that need to be defined before the training process starts. Finding
the best values of these hyperparameters is essential in making the model perform as
well as possible. One can evaluate the performance of a model on the validation set for a
given configuration of hyperparameters, and adjust the values of the hyperparameters
accordingly. This way, it is possible to improve the model without having to compromise
the test set; setting hyperparameters that work well for the test set might reduce the
generalizability of the model, thus leading to an unfair assessment of the model. Finding
the best values for the hyperparameters, also referred to as hyperparameter optimization
or tuning, is often done systematically. In its most basic form, the hyperparameter
optimization is done through a grid search. In a grid search, a predefined range of values
is given to each hyperparameter that one wishes to optimize. Models are then trained
using each possible combination of these values, and evaluated using the validation set.
The combination that yields the highest performance on the validation set is then selected
for the final model.

An alternative to splitting the training data into a training and validation set is a
technique called k-fold cross validation. In k-fold cross validation, you split the training
data up into a number of k subsets. For all possible values of j , j Æ1, . . . ,k, we use the
j th subset as the validation set to evaluate the model, and the rest of the subsets as the
training data to train the model. After k iterations, we have k number of performances,
which we can average to produce a single evaluative result. This way, we effectively use all
of the training data to both train and validate the model.

One of the major advantages of k-fold cross validation, is that it can reduce the risk of
overfitting the model. Overfitting occurs when the model has been too fine-tuned to a
specific training dataset and thus cannot generalize well. The performance of the model
on a validation set would therefore be high, but its performance on the final test set could
be very low. Overfitting can occur for multiple reasons, such as a small training dataset,
training for too long, or by having too many irrelevant or noisy features. While there is no
definitive quantifiable metric that can determine whether a model has overfitted or not,
one can use k-fold cross validation to detect or avoid cases of overfitting, as the model is
never tuned specifically to one single validation or training set.

A full machine learning development pipeline consists of selecting an algorithm, data
preprocessing, training a model and then testing a model. It should be noted that this
pipeline is not strictly linear. During the training phase, a hyperparameter optimization is
performed in order to find the best hyperparameters for the chosen algorithm. However,
we can also realize during the training phase that the chosen algorithm might not be the
best one suited for the current task, and that a different algorithm might yield a better
performance. The same can be said for design choices made in the preprocessing stage.
Changing such design choices or the algorithm itself based on the performance on the
validation set during the training phase is common, and can lead to a better model.
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2.1.3. ALGORITHMS AND TECHNIQUES

We have discussed what machine learning is and how a machine learning model can be
developed. All models are created using an algorithm that learns from experiences. In our
case, where we focus on classification tasks, the algorithms learn to predict the correct
class by training on labelled data. We now discuss some of the more prevalent machine
learning algorithms, architectures, models and techniques that are relevant to the thesis.
Note that some of the terms that we discuss in this section have overlapping meaning and
are also not used consistently in the literature, which could lead to confusion. We provide
descriptions for each of the terms as used in this thesis, which can also be found in the
glossary at the end of this thesis.

Artificial neural networks are a type of model that is loosely based on the biological neural
networks of the brain. An artificial neural network is a graph consisting of connected
nodes, or artificial neurons, inspired by the biological neurons of the brain (see Figure 2.1).
The connections between the nodes in turn represent the synapses of the brain. As shown
in Figure 2.1, signals in an artificial neural network can be propagated from the input
nodes through the network, by means of the connections, to the output nodes (from
left to right in the image). The network in Figure 2.1 has three layers of nodes: the input
layer, a hidden layer and the output layer. Each network only has one input layer and one
output layer, but it can have multiple hidden layers. Each layer generally only receives
signals from the previous layer and sends signals to the next layer. In machine learning
classification tasks, the input signals, or values, of the input nodes are determined by the
features of an instance and the values of the output nodes represent the predicted label.
Each node thus receives one or multiple signals from either other nodes or the input data,
and sends signals to one or multiple other nodes. The signals are not simply passed from
one node to another, however; each connection is associated with a specific weight that
adjusts the signal. The weights of all of the connections together determine the behavior
of the network.

When developing an artificial neural network, the weights are initialized randomly. In
the training phase, these weights are slowly adjusted. In a classification task, instances
from the training data are provided to the network and its prediction is compared to the
correct label. If the prediction was incorrect, the weights are adjusted accordingly using a
method called backpropagation. After many iterations of feeding the network training
data and adjusting the weights with backpropagation, the aim is that the weights will be
adjusted in such a way that the network provides the correct output for the given input.
In other words, it learns to make the right predictions.

Deep learning refers to artificial neural networks that have one or multiple hidden layers.
Many state-of-the-art machine learning algorithms use deep learning architectures. They
are used in tasks such as natural language processing, robotics, computer vision, speech
recognition and many more. Specific types of deep learning architectures exist, usually
tailored to a given task. Convolutional neural networks, for example, are networks that
do not require explicit features and are therefore well suited to tasks involving images or
speech, for example. Recurrent neural networks are not uni-directional but bi-directional.
With the use of recurrent units, these recurrent neural networks gain a type of ‘memory’
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Figure 2.1 | A schematic of an artificial neural network.

that makes them very suitable for time series tasks or natural language processing.

Transformers are a type of deep learning architecture based on the concept of atten-
tion (Vaswani et al. 2017). While this is similar to the concept of ‘memory’ in recurrent
neural networks, transformers do not have the recurrent units that recurrent neural net-
works have, making transformers much more efficient to train. Instead, they use a parallel
multi-head attention mechanism to contextualize and ‘remember’ surrounding input.
Transformers are commonly used in natural language processing.

Large Language Model (LLM) is a term used to describe a deep learning model that can
perform general-purpose natural language processing tasks, such as classification or text
generation (Chang et al. 2024). Currently, the best performing LLMs are transformers,
although other architectures can also classify as LLMs, such as the recurrent neural net-
works.

Foundation models are models that are trained on a wide variety of tasks and datasets
rather than on a single task (Schneider et al. 2024). These models form the foundation
for other models that have a specific task through a technique called transfer learning.
Transfer learning is a method in which a pretrained model is used in a task that it was
not originally trained for, instead of training a model from scratch. This is possible when
important elements of the domain are similar, such as in text or images. For example, an
image classification model that was originally used to recognize dogs can be used as the
basis for a model that should recognize cats. This is because the lower layers of this base
model already possess features that are useful for classifying pictures in general. We can
fine-tune the upper layers of the model to adjust the higher-order feature representations
within the base model to fit the particular task at hand, by training just the upper layers
on a training set containing cats instead of dogs.
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One popular LLM and foundation model based on the transformer architecture is
Google‘s BERT (Devlin et al. 2019), which revolutionized the state of the art in natural
language processing in 2018. BERT’s success was a combination of creating large models
(340 million parameters) using the new transformer architecture and training the model
on a vast amount of data and different tasks. As a foundation model, BERT could then be
used by others for a large number of tasks through transfer learning. LLMs are, by defini-
tion, large, which means that training these large models from scratch is very resource
intensive. Transfer learning using a foundation model thus provides a method to more
easily attain high performing models.

Generative AI models are a type of transformer that can generate content such as images,
text, video or audio (Feuerriegel et al. 2024). The GPT series by OpenAI are examples
of such generative AI, and can generate text based on prompts that the user provides.
The prompt acts as the input of the model and the model generates a text as the output.
Generative large language models, such as the GPT models, learn patterns from the
training data and use those in combination with the prompt to generate text that is
similar to the ones in the training data.

This type of generative large language model is popularly used in chatbots, such as
ChatGPT. 1 Users can chat with the chatbot and it provides answers in natural language.
GPT-like models can, however, also perform many other tasks, such as writing code,
summarizing texts, or passing the Uniform Bar Examination (Katz et al. 2024). The
performance of a generative AI model is highly dependent on the prompt with which it is
provided.

Prompt engineering is the process of finding the prompt that provides the best out-
puts (Liu et al. 2023). If you want to perform a classification task with generative AI,
selecting the right prompt is therefore essential. In such a case, one would not train a
generative model or use transfer learning. Instead, it might be sufficient to provide a
generative model with one or multiple labelled instances of the classification task in the
prompt, along with the new instance that is to be classified. This is referred to as n-shot
learning, where n is the number of examples you provide to the generative model.

Even if the prompts have been carefully selected using prompt engineering, generative
models may still respond in strange or unexpected ways. Generative AI models are prone
to create hallucinations, which can be described as unfaithful or nonsensical output (Ji
et al. 2023). Additionally, their responses are non-deterministic, meaning that they can
generate a different response when given the same prompt multiple times.

There are concerns about the use of generative AI models that are trained on undis-
closed training data, as generating content based on the work of someone else can lead
to serious copyright matters (Samuelson 2023). While this is an important ethical issue
that should be taken into account when designing AI models, we do not focus on these
concerns in this thesis.
1https://chatgpt.com

https://chatgpt.com
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2.1.4. STRENGTHS AND LIMITATIONS

Machine learning models are currently deployed in almost every facet of our lives, whether
online or offline. As a technique, machine learning has become nearly synonymous with
artificial intelligence in popular media. This is due to the ability of machine learning
models to perform tasks well and they can generalize in domains where tasks may be hard
to define explicitly. They can work with most data types and learn to perform complex
tasks. Machine learning can perform tasks that humans would rather not do, or even
perform tasks that humans simply cannot do. There are, however, some limitations to
machine learning as well.

Machine learning models are often black boxes that cannot explain their decision-
making. In areas such as medicine or law, knowing why a decision was made can be as
important as the decision itself. Not knowing why a patient was predicted as having a
certain disease, or not knowing why a defendant was predicted guilty is unacceptable.

Machine learning models can reason incorrectly but still make the right decisions
through spurious correlations in the data. If the system has learned spurious corre-
lations, rather than the actual causation in the data, it can lead to incorrect predictions
later on. Undesirable reasoning in machine learning models is hard or impossible to
detect, as these models are often a black box.

An additional limitation is the computation costs in terms of money, energy and time.
Modern large language models take months to train and consume massive amounts
of electricity. The availability of data can also be a limiting factor, as machine learning
algorithms require large, good quality datasets. While important issues, we do not focus
explicitly on these latter two limitations in this thesis.

2.2. EXPLAINABLE AI

Most modern machine learning models are black boxes, which means that they cannot
explain their decision-making. In deep learning for example, we only know the input
features of the model and the prediction that the model makes, but there is no inherently
interpretable way of knowing why that prediction was made. We can say that the decision-
making of such a model is non-transparent. This is not only an issue in fields where
explanations of the decisions are required, but non-transparency also makes it difficult to
detect potential biases or undesirable decision-making. Not being able to ‘look inside’
the black box is therefore problematic. It should be noted that there are machine learning
models that do have explicit decision-making, such as the more traditional decision-trees,
which can be interpretable. We refer to those types of models as glass box models. Most
modern machine learning models, however, are black boxes and thus non-transparent.

The field of Explainable AI (XAI) aims to combat the issue of non-transparency in
machine learning by providing insight into black box models (Gunning, Stefik, et al. 2019;
Gunning, Vorm, et al. 2021). The insights gained through XAI methods improve inter-
pretability and explainability. While these terms are strongly related, they are distinct.
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Interpretability refers to understanding of the actual inner workings of the model that
is being examined. It creates a representation of the model that is understandable by
humans. This is useful for the developers of black box models, as it can help them avoid
biases, improve fairness, and even improve performance. For example, if an interpretable
model shows that gender is used to determine whether someone should receive a bank
loan, the developer knows that something has gone wrong.

Explainability techniques are used to provide explanations to humans. These explana-
tions can be understood by the user and can increase trust in the system. For example, an
explainable AI system that can do medical diagnoses would provide the medical profes-
sional with a diagnosis (prediction) along with an explanation as to why that diagnosis
was given.

The difference between the concepts of interpretability and explainability lies in the level
of detail in which they describe the model. Interpretability maps the whole inner workings
of the model, whereas explainability aims to provide an understandable explanation of
the model or decision. Most deep learning models are too complex to interpret, therefore
explaining their decision-making is more feasible than making their decision-making
interpretable. Interpretability is also often focused on developers of the model, whereas
explainability is directed more towards the end-users.

2.2.1. TYPES OF XAI METHODS

Various different XAI methods exist that aim to create interpretable and explainable AI.
These XAI methods can be categorized across six dimensions, based on the following
criteria (Nauta et al. 2023):

1. The type of data that is used

2. The type of model that is used

3. The type of task for which the model is created

4. The type of explanation

5. The type of method used to explain

6. The type of explanation problem that is addressed

The first three criteria are the type of data, model and task of the method at hand, which
have already been discussed earlier in this chapter. Not every XAI method can work with
any type of data, model or task. The last three criteria need some additional clarification.

Explanation types are defined by the way that the explanations are presented to the
user. An explanation can take many forms. They can be expressed as natural language,
as a graph, as a decision tree, as a heatmap or as a set of decision-rules, for example. A
common way of explaining tabular data is through feature importance. These methods
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show how important each feature was in the prediction process. A high feature importance
means that a feature was important and a low feature means that a feature was less
important. In NLP tasks, where the features are represented in natural language, feature
importance can be used to describe what parts of a text were important in the model’s
prediction.

Type of method used to explain refers to the way that the XAI technique creates the
explanations from the model. Most XAI techniques create explanations post-hoc, after the
model has been trained. These work by reverse-engineering or probing the model and
examining how it behaves in order to provide explanations. Intrinsic explanations, also
referred to as ante-hoc explanations or white box models, are explanations that are built
into the model during development. Supervised explanations are generated by a model
that is trained on datasets that contain both the label and an explanation.

The type of explanation problems is the goal that needs to be achieved by the XAI
method. Explanations can be global, aiming to provide explanations for the entire model,
or local, where the method provides explanations for a single instance. The problem
might also be to inspect certain elements of the model, or to create a transparent model
that makes the predictions instead of the original, black box model.

2.2.2. PROPERTIES OF EXPLANATIONS

Explanations can have different properties. In this thesis, we are mostly concerned with
examining the reasoning of data-driven AI systems. One key property of explanations
in our research, is therefore to ensure that the explanations accurately reflect what is
happening inside of the black box, which is referred to as the faithfulness of an explanation.
There are, however, other properties of explanations that need to be taken into account.

Based on research in social sciences, there is a set of characteristics that all good
explanations need to adhere to (Miller 2019). First of all, good explanations need to be
contrastive, meaning that they should elaborate on why prediction A was made instead
of prediction B . Good explanations also need to be selected, and only contain a limited
number of causes for a certain prediction, rather than an exhaustive list of all possible
causes. In good explanations, probabilities should be avoided and causal explanations
are preferred. Lastly, good explanations are social, and should be presented in a way that
is natural for the user and takes the user and their beliefs into account.

Explainable AI techniques themselves can be evaluated using a number of character-
istics as well, as represented in Table 2.3 (Nauta et al. 2023). These twelve properties are
broadly divided into the properties dealing with the content of explanations, the presen-
tation of the explanations, and the relationship between the explanations and the user.
Based on these properties, XAI methods can be assessed. While all of these properties
are desirable for XAI methods, the degree to which each property is desired is different
depending on the particular situation at hand. A XAI technique with, for example, a high
consistency but low compactness might be sufficient in some situations and not in others;
a developer of a model might want a long deterministic explanation, whereas a layperson
might not care about about the deterministic aspect and prefer a shorter explanation.

In this thesis, where we focus on the design of responsible AI, the concept of cor-
rectness (or faithfulness) is essential. Faithfulness is the quality that describes how well
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Table 2.3 | The Co-12 explanation quality properties from Nauta et al.(2023)

Co-12 Property Description

C
on

te
nt

Correctness Describes how faithful the explanation is w.r.t. the black box.
Key idea: Nothing but the truth

Completeness Describes how much of the black box behavior is described in the explanation
Key idea: The whole truth

Consistency Describes how deterministic and implementation-invariant the explanation method is
Key idea: Identical inputs should have identical explanations

Continuity Describes how continuous and generalizable the explanation function is.
Key idea: Similar inputs should have similar explanations.

Contrastivity Describes how discriminative the explanation is w.r.t. other event or targets.
Key idea: Answers “why not?” or “what if?” questions.

Covariate complexity Describes how complex the (interactions of) features in the explanation are.
Key idea: Human-understandable concepts in the explanation.

Pr
es

en
ta

tio
n

Compactness Describes the size of the explanation.
Key idea: Less is more

Composition Describes the presentation format and organization of the explanation.
Key idea: How something is explained

Confidence Describes the presence and accuracy of probability information in the explanation.
Key idea: Confidence measure of the explanation or model output

U
se

r

Context Describes how relevant the explanation is to the user and their needs.
Key idea: How much does the explanation matter in practice?

Coherence Describes how accordant the explanation is with prior knowledge and beliefs.
Key idea: Plausibility or reasonableness to users

Controllability Describes how interactive or controllable an explanation is for a user
Key idea: Can the user influence the explanation?

the created explanations match with the actual decision-making of the black box model.
While faithfulness might seem as a requirement for all XAI methods, this is not necessarily
the case. As an example, one can imagine a XAI method that produces explanations that
are compact, coherent and tailored to the user, but the explanations are not a reflection of
the inner working of the black box. A user will understand and might consequently trust
this system regardless of its lack of faithfulness. With regards to designing responsible AI,
XAI methods might expose unsound decision-making by showing that wrong features are
used (Srikanth et al. 2022), but due to a lack of faithfulness it is not always possible to use
XAI methods to guarantee sound decision-making (Slack et al. 2020).
In addition to issues regarding faithfulness, contemporary results from user studies with
XAI techniques have shown that the explanations for a prediction are often futile: users
either ignore the predictions of a model as they deem them untrustworthy, or follow the
predictions blindly (Miller 2023). The reason for this might be that AI models take away
control and agency from the users and that giving predictions with explanations is not
a human-like way of making decisions. Instead, Miller proposes a framework called
‘evaluative AI for explainable decision support’, where humans make the decisions and
models only provide evidence for or against those decisions. While this is important to
take into account, we do not focus on these issues in this thesis.

2.2.3. SHAP AND LIME

Since our aim is to design responsible AI that makes the right decisions for the right
reasons, faithfulness is the most important criterion when it comes to XAI. Though it is
often impossible to create completely faithful explanations, local fidelity (how a model
responds to a given instance) can be achieved. In later chapters in this thesis, we will
therefore use SHAP (Lundberg and Lee 2017) and LIME (Ribeiro, Singh, et al. 2016), two
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Figure 2.2 | An example of a SHAP summary plot, displaying the impact of features on the prediction2. Here,
higher SHAP values (x-axis) represent a bigger impact on the prediction (whether someone makes over $50K
a year). The color represents the value of the feature, where red represents a high value and blue a low value.

commonly used contemporary XAI methods that provide locally faithful explanations.
Both are post-hoc XAI methods that explain trained models using feature importance.
SHAP (SHapley Additive exPlanation) is an explainable AI framework that explains the
output of a machine learning system based on the idea of Shapley values from game the-
ory (Shapley 1951). LIME in turn creates explanations by perturbing individual instances
and using those to learn interpretable sparse linear models, such as Lasso or decision
trees, that approximate the system’s decision-making.

Both LIME and SHAP are local explanation methods that provide an explanation for
the output produced given a single input instance. Additionally, SHAP includes methods
to aggregate a set of local explanations into a global interpretation of a system’s decision-
making. Both LIME and SHAP are additive methods, meaning that summing up the
effects of all feature attributions should approximate the prediction of the model.

An example of how SHAP can present its explanations is shown in Figure 2.2. 2 In
this example, a model has been trained to predict the probability of a person making
over 50,000 dollar annually, based on their personal data. After the model has been
trained, SHAP is used to explain every instance of the training dataset. For each instance,
SHAP calculates a SHAP value per feature that represents the impact that feature had in
the classification process of the given instance. These results are then aggregated and
displayed as in Figure 2.2. In Figure 2.2, we can see that a higher age generally has a

2https://shap.readthedocs.io/

https://shap.readthedocs.io/
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positive impact on the prediction. In other words, older individuals are more likely to
make over $50K a year according to the model.

2.3. RESPONSIBLE AI

In Chapter 1, we defined responsible AI systems as those that behave as desired. They do
not only make the right decisions, but also make them for the right reasons. Explainable
AI can help us in understanding why certain predictions were made by a black box model.
This can be a solution to one of the major issues that we raised about machine learning,
that machine learning models are often black boxes. The other issue, however, cannot
always be solved with explainable AI: the fact that machine learning models can reason
incorrectly (Slack et al. 2020). Undesirable reasoning can lead to issues in performance,
fairness, trust and can have disastrous consequences.

As an example of the consequences of irresponsible AI, we can look at the period
between 2012 to 2020, where a risk assessment system (FSV: Fraude Signalering Voorzien-
ing 3) was used by the Dutch tax authorities to predict potential cases of fraud. Unfor-
tunately, this system performed very poorly and misclassified thousands of parents as
having fraudulently claimed childcare benefit. 4 These parents were forced to pay back
these benefits in full, often leading to terrible financial and personal consequences. Addi-
tionally, parents with a dual nationality were significantly more likely to be labelled as
fraudulent. This stirred up a political scandal, which played a major role in the resigning
of the Dutch cabinet in 2021. 5

The Dutch tax authorities were found to have violated the GDPR (General Data Pro-
tection Regulation): too many employees had access to personal data, some personal
information should not have been recorded in the first place, and some of the information
was used inappropriately, such as the dual nationality in the risk assessment system. 6

The FSV was shut down in the beginning of 2020 and has not been used since. It is a tragic
example of how a model with undesirable reasoning can have a large impact on society.
Desirable reasoning is thus an important aspect of designing responsible AI.

2.3.1. UNDESIRABLE RATIONALES IN MACHINE LEARNING

Rationale is a term that we use to refer to the internal decision-making of a model or
system. An early study by Bench-Capon investigated whether neural networks can learn
specific rationales (Bench-Capon 1993). In these experiments, a fictional domain was set
up wherein a set of conditions defined a particular outcome. Datasets were generated
based on this domain, and neural networks were trained to predict the outcome based
on the conditions. The overall accuracy of this model was high, and it could predict the
instances of the dataset correctly. However, through a number of carefully crafted test

3https://www.belastingdienst.nl/wps/wcm/connect/nl/contact/content/
het-systeem-fraude-signalering-voorziening-fsv

4https://herstel.toeslagen.nl/fraude-signalering-voorziening-fsv/
5https://www.theguardian.com/world/2021/jan/15/
dutch-government-resigns-over-child-benefits-scandal

6https://autoriteitpersoonsgegevens.nl/en/current/
methods-used-by-dutch-tax-administration-unlawful-and-discriminatory

https://www.belastingdienst.nl/wps/wcm/connect/nl/contact/content/het-systeem-fraude-signalering-voorziening-fsv
https://www.belastingdienst.nl/wps/wcm/connect/nl/contact/content/het-systeem-fraude-signalering-voorziening-fsv
https://herstel.toeslagen.nl/fraude-signalering-voorziening-fsv/
https://www.theguardian.com/world/2021/jan/15/dutch-government-resigns-over-child-benefits-scandal
https://www.theguardian.com/world/2021/jan/15/dutch-government-resigns-over-child-benefits-scandal
https://autoriteitpersoonsgegevens.nl/en/current/methods-used-by-dutch-tax-administration-unlawful-and-discriminatory
https://autoriteitpersoonsgegevens.nl/en/current/methods-used-by-dutch-tax-administration-unlawful-and-discriminatory
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Figure 2.3 | A husky is misclassified as a wolf based on snow in the background (Ribeiro, Singh, et al. 2016).

sets, the study was able to show that the conditions that defined the dataset were not
learned, despite a high accuracy. The models therefore learned spurious correlations
instead of the true rationale. This experiment is discussed in more detail in Chapter 4.

XAI methods cannot always be used to expose unsound rationales; however, it is possible
for XAI methods to show that the decision-making of of a machine learning system is
not as desired (Srikanth et al. 2022). A great example of this is the paper that introduces
LIME, where the authors intentionally train a machine learning model using training
data with a strong spurious correlation (Ribeiro, Singh, et al. 2016). Their model was
trained to distinguish between images of huskies and wolves, but the training data was
hand-selected such that all images of wolves contained snow and all images of huskies
did not. Using LIME, they were able to show that their model picked up on the spurious
correlation, and used the presence of snow in the background to make its prediction. A
misclassification of a husky in the snow can be seen in Figure 2.3(a), where LIME‘s feature
importance is used to explain the decision-making of the model in Figure 2.3(b). While
the model in the LIME paper was intentionally trained to pick up on the strong spurious
correlations, systems have also been shown to perform well using the wrong features
unintentionally (Srikanth et al. 2022).

Adversarial attacks is a category of techniques that take advantage of the fact that ma-
chine learning systems often learn spurious correlations. By subtly manipulating the
input in a very specific way, adversarial attacks can cause models to behave incorrectly
to the input. A famous example of an adversarial attack can be seen in Figure 2.4. This
example comes from the paper by Goodfellow, Shlens, et al. (2015), wherein an image
of a panda is slightly perturbed by a very specific type of noise, causing the machine
learning model to misclassify the panda as a gibbon. While we, as human beings, cannot
distinguish between the image before and after the perturbation, the model changes its
classification from a panda with 57.7% confidence to a gibbon with 99.3% confidence.
This illustrates that the model reasons in a different way than we as humans do, which
can lead to unexpected and undesirable behavior.
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Figure 2.4 | Example of an adversarial attack: the image of a panda is misclassified as a gibbon after a slight
amount of noise is applied to the image. From (Goodfellow, Shlens, et al. 2015).

Furthermore, adverserial attacks can be used to manipulate explainable AI techniques as
well. Post-hoc explanation techniques such as LIME or SHAP have been shown to not be
reliable and they can be influenced through adversarial attacks to give an arbitrary desired
explanation (Slack et al. 2020). This way, a model might use completely undesirable
decision-making, but still yield explanations that seem desirable. For example, they
show that an extremely biased and racist model can be fooled to provide innocuous
explanations that do not display any of the biases. While XAI can be used to expose
undesirable decision-making, it can also be fooled to provide unfaithful explanations of
its behavior.

2.3.2. BEHAVIORAL TESTING

To avoid undesirable behavior in AI models, we therefore want the model to have a de-
sirable rationale. This behavior is sometimes hard to define and can have many facets.
Evaluative measures, besides accuracy and explanations, have been proposed to eval-
uate features of the model, such as fairness and bias (Prabhakaran et al. 2019), robust-
ness (Rychalska et al. 2019) and even the adversarial changes mentioned earlier (Iyyer
et al. 2018). Most of these, however, are limited to specific tasks or specific capabilities of
the model.

Behavioral testing is a type of method to measure various capabilities of a system in a
model- and task-agnostic manner (Beizer 1995). Originating in software development,
behavioral testing treats complex systems as black boxes and evaluates them by examining
their behavior in various settings. An example of this is unit-testing, in which each of the
smaller components of the code are tested, or alternatively, integration testing, in which
the entire model is tested in various example scenarios.

A contemporary example of behavioral testing in machine learning tasks is the Check-
List methodology that can test NLP models for various linguistic capabilities (Ribeiro, Wu,
et al. 2020). It was used to test language models for capabilities such as negation, fairness,
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and taxonomy, regardless of the actual task of the model. These capabilities were tested
by generating a number of special test cases that specifically test for a certain linguistic
capability and comparing the output of the model on these cases to the expected output,
similar to the work by Bench-Capon (1993). So for instance, an NLP model trained to
predict sentiment in movie reviews was evaluated on its ability to deal with negation,
by testing on cases where negation was added or removed. Adding negation to a sen-
tence should change the sentiment of a sentence, so if the model‘s prediction changes
accordingly, we can say that it can deal with negation.

2.3.3. LEARNING SOUND REASONING

Evaluating a model using behavioral testing can display whether the model possesses an
element of the desired rationale. However, if the model does not possess this element,
its rationale should be altered. Once a machine learning model is trained, its behavior is
generally not altered (with the exception of adaptive systems that we do not touch upon
in this thesis). The reasoning of a system is therefore traditionally learned during the
training phase of the model.

When a specific issue is revealed through an evaluative measure such as behavioral
testing, the system can be retrained on training data that is altered based on the evalu-
ation. For example, if an undesirable bias is detected for a specific feature, a developer
might decide to alter that feature, its distribution or remove it all together. Adversarial
defense methods aim to ensure that during the training phase the model learns the right
rationale rather than a spurious correlation that can be abused by adversarial attack
methods through malicious inputs (Khamaiseh et al. 2022). This can be done by, for
example, including adversarial inputs in the training data.

Chain of thought prompting is a form of prompt engineering to induce sound and ex-
plainable reasoning in generative large language models (Wei et al. 2022). Completely
retraining a LLM is often too expensive and usually not required. They can often perform
the tasks using the right reasoning, but need to be steered in the right direction. By
providing not only the right answer or label to the model, but also the steps required to
arrive at that conclusion, chain-of-thought prompting can improve performance, sound
reasoning and explainability. In a mathematics task in NLP, for example, providing the
step by step explanation of the arithmetic operations in the few-shot prompt instead of
just the answer can provide a better result and an explanation. An example of this type of
chain-of-thought prompting versus standard prompting can be seen in Figure 2.5.

Reinforcement Learning from Human Feedback (RLHF) is another learning-to-reason
approach, where human feedback is used as a measure to learn the right behavior in
generative large language models (Havrilla et al. 2023). In generative NLP tasks, it is often
hard to explicitly define what the desired textual output should be, but it is feasible to
indicate whether a given textual output is as desired. In RLHF, human feedback is used
as the reward function to optimize a generative model. To utilize RLHF, one first trains a
model in the traditional fashion. To create a reward function, human annotators rank a
selection of generated text from that model based on their preference. This reward score
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Figure 2.5 | Solving an NLP mathematics task (word problems) with standard prompting versus chain-of-
thought prompting. From Wei et al. (2022).

is then used to fine-tune the existing model, or to create a new model from scratch. RLHF
therefore effectively creates a hybrid system that combines human intellect with machine
intellect, but also combines knowledge with data, using the learning-to-reason approach.

2.4. REASONING BY DESIGN

Black box machine learning models can be steered towards using the desirable rationale
through various methods. This desirable rationale is essential in designing responsible AI.
However, ensuring sound reasoning will remain problematic due to the non-transparency
of the black box. Instead of learning sound reasoning, as discussed previously, one can
instead opt for sound reasoning-by-design. In this alternative approach, AI systems are
developed where the desirable rationale is built in.

2.4.1. SYMBOLIC AI

Symbolic AI refers to systems that perform explicit symbol manipulation (Sarker et al.
2021). This symbol manipulation is high-level, meaning that it is interpretable by human
beings. Symbolic AI was the dominant form of AI before the rise in popularity of machine
learning. Unlike machine learning, where systems learn to behave a certain way by
learning from experiences, Symbolic AI systems explicitly hard-code the behavior of the
system through a manually crafted representation of the domain.

A prominent form of symbolic AI is the rule based system. In this paradigm, an AI
system behaves logically according to a set of rules and axioms that represent the domain
in order to complete a task. This system is usually designed in collaboration with one
or multiple experts of the domain. These provide the domain-specific knowledge that is
required to create such a rule based or expert system. For instance, an expert system can
be created to determine whether or not someone should receive a loan from the bank. In
this case, developers and experts of the domain set up a set of rules that, combined with
the applicant’s personal information (the axioms), can provide an answer. This answer
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can then easily be explained by simply walking through all of the rules and axioms of the
system. Furthermore, we can be sure that the behavior of the system is as desired, as its
behavior is hard-coded in the set of rules designed by the developers and domain experts.
Even if mistakes or unwanted outcomes are discovered, these can in principle be repaired
by adapting the knowledge representation. In practice, this is often easier said than done,
but this falls outside of the scope of this thesis. In most cases, symbolic AI can therefore
do sound reasoning-by-design. Apart from rules, other representations of knowledge exist,
including formats such as frames (Minsky 1974), semantic networks (Lehmann 1992),
and ontologies (Fensel 2003).

When the domain can be explicitly defined, symbolic AI methods can not only behave
correctly, but also do so for the right reasons and explain their behavior. However, when
the domain cannot be explicitly defined, symbolic AI methods simply underperform
when compared to contemporary machine learning methods. In tasks such as computer
vision or NLP, the performance of deep learning is simply unparalleled. But as discussed
previously, these deep learning systems are black boxes that cannot explain their decision-
making and they are prone to learning undesirables rationales. When comparing the
two AI approaches, the main disadvantages of machine learning and symbolic AI are as
follows (Marcus 2018):

1. Machine learning systems require large amounts of data and high computation
times with powerful computers. They are susceptible to adversarial attacks, bias,
and lack of robustness. Furthermore, machine learning models do not always
reason soundly and are often black box systems that cannot explain their decision-
making.

2. Symbolic AI systems require explicit formalisms to be set up by human experts,
which is time consuming and often impossible to do exhaustively. These methods
cannot deal with noisy data or data with many variations, and the inherent com-
putational complexity of the logic based methods often limit the complexity of the
tasks it can perform as well.

2.4.2. NEUROSYMBOLIC AI

Neurosymbolic AI is a subfield within AI that aims to combine the strengths of machine
learning (neural) and symbolic AI approaches (Hitzler and Sarker 2022; Sarker et al. 2021).
It combines the two approaches in order to overcome the limitations of both. Ideally,
using neurosymbolic approaches, a model could learn domains that are hard to define
from experiences, but reason correctly and explain its decision-making.

Neurosymbolism and the differentiation between symbolic and neural reasoning is
not exclusive to AI, but it has been a long running field of research in psychology and
biophysics as well (McCulloch and Pitts 1943). One particular perspective on human
reasoning that is related to neurosymbolic AI was popularized by Kahneman in 2011.
In his book, Kahneman differentiates between two systems or reasoning. In system 1,
thinking is fast, instinctive and emotional, whereas in system 2, the thinking is slow,
logical and deliberative. Examples of system 1 include reading simple sentences, laughing
at a funny picture, tying your shoelaces or walking up the stairs. These are behaviors
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that do not require explicit reasoning, but are fast, instinctive or emotional responses.
Examples of system 2 include doing non-trivial mathematics, learning a new piece of
music on your instrument, trying to identify an unknown sound, or playing chess. In all
these situations, the behavior is slow and logical, and requires explicit reasoning about
the task at hand. Human beings can perform both of these types of reasoning effectively
and simultaneously.

A parallel can be drawn between the two systems of human thinking and neurosym-
bolic AI. The fast system 1 reasoning is akin to machine learning methods, that learn to
perform certain behaviors based on experiences, and react almost instinctively when a
new input is provided to the model. In deep learning, no explicit reasoning is performed
when generating an output. The slow system 2 reasoning is then more like symbolic AI,
where the output is based on a set of symbolic manipulations. These manipulations are
explicit, and can be explained to others. If humans can perform both of these types of
reasoning, then perhaps AI systems should follow the neurosymbolic approaches in order
to perform both types of reasoning as well.

Neurosymbolic AI has become a popular field within AI and contains many different
approaches. These approaches can be grouped and categorized according to many
different dimensions and interpretations (Sarker et al. 2021). One way of characterizing
these different approaches is using design patterns, such as the ones proposed by van
Harmelen and ten Teije (2019). In their boxologies, classical symbolic systems manipulate
symbolic input and yield symbolic output. Classical machine learning systems in turn
have data as their input, and they output data as well. Based on this definition, hybrid
systems can be categorized. For example, to create an explainable learning system, one
can use machine learning to translate data into symbols, and then use symbolic AI to
manipulate those symbols into the desirable symbolic output. This type of hybrid system
can deal with data, but also provide a means for sound and explainable reasoning. In this
thesis, we use this pattern in Chapter 7.

The neurosymbolic approaches to AI could potentially solve limitations of the sym-
bolic and neural approaches. For example, an approach to robotics that combined
argumentation with machine learning was shown to have a better performance than
state-of-the-art black box machine learning systems, in addition to providing explana-
tions (Ayoobi et al. 2021).

Neurosymbolic systems are not without their own limitations however. Combining
neural and symbolic models in a single pipeline, for example, might solve the issues of
implicit data patterns, unsound reasoning and lack of explainability, but they do not
solve the other limitations of machine learning and symbolic AI. In fact, it might have the
limitations of both: the machine learning aspect still requires data, computation power,
time and is still susceptible to unsound reasoning, while the symbolic model still needs
to be defined by experts, which is also time intensive.

An additional, unique disadvantage of neurosymbolic AI is the fact that there is
no ‘one-size-fits-all’ solution for all tasks or domains. There are a lot of very specific
architectures and techniques within the subfield, which are not easily transferred from
one domain to the other. Designing a neurosymbolic system might therefore require
more time, research and resources than a machine learning or symbolic system.

When compared to ‘learning-to-reason’ methods, such as chain-of-thought prompt-
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ing, neurosymbolic AI has a better method for guaranteeing sound decision-making,
as its decision-making is explicitly hard-coded into the system. However, in terms of
generalizability, transferability and efficiency in terms of time, money and power, learning-
to-reason seems like the more suitable approach. Both the learning-to-reason and the
reasoning-by-design approach therefore have their own advantages and disadvantages.
In Part II we propose a learning-to-reason method, and in Part III we create and evaluate a
neurosymbolic reasoning-by-design system. We compare both approaches in Chapter 8.

2.5. AI & LAW

To investigate the design of responsible AI systems, we need a domain to work in. For that
purpose, we have chosen the domain of AI & Law, where both sound reasoning and expla-
nations are essential (Verheij 2020; Atkinson, Bench-Capon, and Bollegala 2020). In law, it
is undesirable and irresponsible for AI systems to make decisions for the wrong reasons,
even if the decisions themselves are correct. Moreover, those affected by the decision,
whether it is a person applying for welfare or a party in a court of law, have the right to an
explanation when a decision is made (Doshi-Velez et al. 2017). Because explanations are
so essential in this domain, the various types of explanations by Miller (2019) as described
earlier have previously been applied in the field of AI & law, ranging from contrastive
explanations (Rissland and Ashley 1987; Ashley 1990; Verheij 2003a) to selective expla-
nations (Atkinson, Bench-Capon, Bex, et al. 2020; Verheij 2003c), and from probabilistic
explanations (Vlek et al. 2016) to social explanations (Hage et al. 1993; Gordon 1995;
Atkinson, Bench-Capon, Bex, et al. 2020). Responsible use of AI methods in such domains
where laws and regulations apply requires a system to make the right decisions for the
right reasons, in order to provide a sound and sensible explanation of its decision-making.
In other words, AI in law requires the design of responsible AI.

Opaque and unsound decision-making is, however, not the only problem with data-
driven models in AI & Law (Bench-Capon 2020). The amount and quality of training data
greatly affects the performance of data-driven AI systems. More, good quality, labelled
data generally leads to a better performance, but is often difficult to obtain. Secondly,
machine learning is inherently retrospective, whereas the law is prospective. Due to the
changes in the interpretation of the law, inconsistencies can arise. For example, a case that
was given a violation verdict twenty years ago, may receive a non-violation if it was tried
today, making the older case inconsistent with our current interpretation of the law. Real
data is therefore not always consistent, which can be problematic for machine learning
models. Additionally, in many legal cases not all relevant facts are known. Lawyers and
judges are able to reason and judge over these cases regardless. Many machine learning
systems, however, are not able to deal with missing facts, and require all features to have
a value. Because of this, a strong argument can be made for the use of symbolic AI in AI &
Law (Bench-Capon 2020).

At the same time, there is a vast amount of legal data available, ranging from court
cases and evidence to administration and contracts. In many legal domains, such as in
the European Court of Human Rights, there is a large backlog of cases that need to be
tried (Collenette et al. 2023). Lawyers, judges and other legal personnel therefore require
tools that can help them in their pursuit of justice, and analysing legal documents in an
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automated fashion can be the solution. Data-driven models therefore play an important
role within the legal domain.

2.5.1. COURT CASE PREDICTIONS

One prominent task within the field of AI & Law that is relevant for this thesis is court
case predictions (Medvedeva, Wieling, et al. 2022). These are generally NLP tasks, where
a legal document containing information about a court case is presented to a system
whose task it is to predict the outcome of the case. Non-NLP approaches to court case
predictions exist as well, where the cases are represented as some form of logical represen-
tation (Ashley 2019; Collenette et al. 2023). With the high availability of legal court data
and the increasing performance of machine learning systems, predicting the outcome of
court cases has become a popular task within AI & Law. Because of its popularity, there is
variety of approaches to court case predictions. A distinction can be made between three
types of court case prediction tasks (Medvedeva, Wieling, et al. 2022):

• Outcome identifications, where a model is tasked with finding the outcome of a
case using the complete texts that are made available after judgement, including
the final verdict itself or references to the verdict.

• Outcome-based judgement categorisation, where a model is tasked with predict-
ing the outcome of a case using texts that are made available after judgement, but
do not include the final verdict or references to the verdict.

• Outcome forecasting, where a model is tasked with predicting the outcome of a
case using texts that are available before the final verdict has been made.

One of the first studies regarding court case prediction papers performed the outcome
identification task, where complete texts without verdict but with the remaining text of
the judgement were used to predict the outcome using a Support Vector Machine (Aletras
et al. 2016). While providing a relatively high accuracy of 79%, not all of the predictive
topics that the model discovered were plausible. For example, the words ‘July’ or ‘region’
were in the top 20 most predictive topics. Most papers focus on outcome-based judge-
ment categorisation, and remove the verdict and all references to the verdict from cases
that were published after they were tried (Chalkidis, Fergadiotis, et al. 2020; Medvedeva,
Vols, et al. 2020). Due to the many approaches, techniques, and datasets, it is difficult
to compare these studies effectively, although benchmark datasets do exist (Chalkidis,
Jana, et al. 2022). There are few studies that perform outcome forecasting, which might
be considered the purest form of court case prediction as its predictions are based on
information before the case was tried. This information can be based on decisions of
lower courts (Waltl et al. 2017), or the facts as communicated to the parties (Medvedeva,
Üstün, et al. 2021). While most studies use machine learning methods to do forecast-
ing, Toni et al. (2023) use probabilistic argumentation, which integrates probabilistic
reasoning with qualitative argumentation in order to support the forecasting of cases.
In Chapter 3, we focus on outcome-based judgement categorisation, and we perform
outcome forecasting using tabular data in Part II.
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The European Convention of Human Rights (ECHR) is one of the domains that we use
in this thesis. It is an international treaty that deals with alleged violations of civil and
political rights between individuals or states in Europe. The European Court of Human
Rights (ECtHR) is the international court that judges over these cases as set out in the
ECHR. The ECHR contains different articles, such as the ‘Right to a fair trial’ (Article 6) or
the ‘Right to life’ (Article 2). The cases that have been tried are recorded and published
online in the HUDOC database. 7 Most court case prediction studies that work with the
ECHR use the reports of these cases to perform their experiments. The parts of the case
that these studies use and the approaches to the prediction task are, however, different.
We delve more deeply into specific court case prediction research and investigate the
design choices and their effects in the upcoming chapter.

2.5.2. MODELING LEGAL DOMAINS

A more symbolic approach to AI & Law is that of modeling legal domains, for example
by formalizing legal arguments, cases and rules (Aleven 1997; Ashley 1990; Verheij 2017).
Furthermore, ontologies can be developed to formalize legal domain knowledge, which
is an approach that has been implemented in real-world applications (Van Engers et al.
2008). These representations of domains can be used to understand the domains and
reason within them. We now discuss a specific type of legal modelling that we use in this
thesis.

ANGELIC (ADF for kNowledGe Encapsulation of Legal Information for Cases) is a method-
ology to model legal domains (Al-Abdulkarim et al. 2016). The methodology is used to
translate legal domains into Abstract Dialectical Frameworks (ADFs). ADFs are a gen-
eralization of argumentation frameworks (Dung 1995) that can be used to model and
evaluate argumentation (Keshavarzi Zafarghandi et al. 2019). The ADF of a legal domain
is here treated as a hierarchical structure, based on the factor hierarchy of the CATO
system (Aleven 1997). A factor is a legally relevant fact pattern that can be either present,
not present or unknown. For example, ‘was in possession of the murder weapon’ is a
factor, as it is a legally relevant fact pattern that can be present for any given case. More
fundamental elements of legal cases, such as facts or evidence, as formulated logically
by Vlek et al. (2016) and van Leeuwen et al. (2023), fall outside of the scope of this thesis.
The ANGELIC methodology was later updated to ANGELIC II, where the models are
referred to as ADMs (ANGELIC II Domain Models) (Atkinson and Bench-Capon 2023).

In our experiments, the ANGELIC ADFs that we use represent legal articles. The
root node of the ADF is the verdict of the article, which is determined by a set of issues.
Each issue is in turn determined by a set of factors. We distinguish between two types of
factors: abstract factors and baselevel factors. Abstract factors represent intermediary
legal concepts and are determined by other abstract or baselevel factors. Baselevel factors
are the leaf nodes of the ADF. Each baselevel factor has an associated value that represents
whether that factor applies to the given case. The values of the baselevel factors can be
‘True’, ‘False’, or ‘Unknown’, based on the specific case. The values of abstract factors are
then determined through their accept and reject conditions and a predetermined default

7HUDOC ECHR Database: http://hudoc.echr.coe.int/

http://hudoc.echr.coe.int/
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Figure 2.6 | A visual representation of the ADF for Article 6 of the ECHR (Collenette et al. 2023). Note that this
visual representation is slightly different from the version of the ADF that we use in this work.

value. Conditions are logical statements (AND, OR or NOT) containing other factors. If the
reject condition applies, the value of the abstract factor will be ‘False’, and if the condition
condition applies, the value will be ‘True’. If neither of the conditions apply, the abstract
factor will remain at its default value. The value of the issues and verdict is determined in
a similar fashion. We evaluate the AND, OR and NOT conditions using three valued logic
as described by Kleene and Priest (Priest 2008).

ANGELIC was used to create an ADF for Article 6 of the ECHR (Collenette et al. 2023),
which we use in this thesis as well. A visual representation of the ADF can be seen in
Figure 2.6. The red dot represents the verdict, the yellow dots the issues that determine
the verdict, the green dots represent the abstract factors, and the blue dots represent the
baselevel factors. In Figure 2.7, we zoom in on Issue 2 of the ADF for Article 6, dealing with
admissibility. For any given case, each of the baselevel factors (in blue) will be assigned
a value, which can be ‘True’, ‘False’, or ‘Unknown’. By default, the abstract factor ‘I2F1’
(in green) is ‘False’. If it’s accept condition is satisfied, its value will be ‘True’. Similarly,
the issue itself (I2, in yellow), remains at its default value, which is ‘False’, until its accept
condition is satisfied.

This ADF of Article 6 was used as a decision-support tool for deciding legal cases with
high accuracy rates and satisfactory user study results in terms of usability. In a later study,
a neurosymbolic system was proposed, where an ensemble of BERT models was used
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ID Text
I2 The applicant was admissible.
I2F1 The victim suffered a disadvantage
I2Q1 Is the case well founded?
I2F1Q1 The case examines a fundamental

aspect?
I2F1Q2 Have all Domestic courts have

been exhausted?

Figure 2.7 | A visual representation of Issue 2 of the ADF for Article 6 of the ECHR, alongside the text of the
issue and factors.

to ascribe factors from case texts to the ADF of Article 6 (Mumford et al. 2022). We use
the ADF of Article 6 in Part II of this thesis, and create our own ADFs using the ANGELIC
methodology for a neurosymbolic system in Chapter 7.

Other works within AI & Law that were influential to the research presented in this
thesis, but not directly related to this thesis include case-based reasoning programs such
as HYPO (Rissland and Ashley 1987) and formal theories regarding landmark cases in court
case predictions (van Woerkom et al. 2022). The field of argumentation within law is also
important, as it relates closely to the concept of responsible and explainable AI. Therefore
argumentation mining studies (Mochales Palau and Moens 2009; Wyner et al. 2010) and
argumentation protocols such as PADUA (Wardeh et al. 2009a) and PISA (Wardeh et al.
2009b) are relevant sources of inspiration for this thesis as well.

2.5.3. AI AS LAW

The long history of AI & Law has shown that artificial intelligence can be used as an
effective tool within the legal domain (Villata et al. 2022). Conversely, research from
AI & Law can also be used for the development of the broader field of artificial intelli-
gence (Verheij 2020). In AI & Law, AI systems that align with human values that are social,
explainable and responsible have always been the focus. Not only does the field of AI
& Law tackle important issues in the field of general AI, such as reasoning, knowledge,
learning and language, but it also creates innovative solutions, such as models for argu-
mentation, methods for integrating learning and reasoning and explainable AI techniques.
The lessons learned from the field of AI & Law can therefore be applied to the design of
responsible artificial intelligence in general.





I
RESPONSIBLE DESIGN

IN AI & LAW

A responsible AI system should behave as desired. The behavior of an AI system,
defined as its output for a given input, is primarily established in the design pro-
cess. When it comes to data-driven AI, it is difficult to monitor the behavior of
the system and to steer its behavior in the right direction. In the upcoming parts,
we investigate how we can induce desirable behavior in data-driven models us-
ing examples (Part II: learning-to-reason), and how we can incorporate explicitly
defined behavior using symbolic knowledge representations (Part III: reasoning-
by-design). In order to design AI systems that behave responsibly, however, we
need to reflect on every step of the design process. The reasonableness of a sys-
tem, in terms of it being fair, practical and sensible, should also be considered.
In this part of the thesis, we therefore investigate a set of domain-specific design
choices for data-driven AI systems, and evaluate these design choices based on
the performance of the system and on the reasonableness of the choices them-
selves. Specifically, we focus on machine learning models that can predict the
outcome of court cases. We evaluate and discuss existing design choices from the
literature, as well as new domain-specific design choices that can impact the rea-
sonableness and performance of the models.





3
INVESTIGATING DOMAIN-SPECIFIC

DESIGN CHOICES IN COURT CASE

PREDICTIONS

In this chapter we explore the effects of domain-specific design choices in data-driven AI
systems. We investigate these effects in the field of AI & Law, where sound and explainable
reasoning is essential. More specifically, we focus on the popular task of court case
predictions, where AI systems are created that can predict the outcome of court cases. In
this chapter, we explore some of the key design choices made in earlier research regarding
court case prediction, such as the studies described in Section 2.5.1. We also propose
and investigate certain specific design choices for creating AI systems for the court case
prediction task that have not been investigated before.

These design choices do not only impact the performance of the resulting system, but
they also impact the legal reasonableness of the system. For example, a specific design
choice might improve performance, but cause an undesirable bias as well. The field of
law has a unique set of characteristics, such as its prospective nature, that need to be
taken into account when designing legally reasonable AI systems.

In this chapter, we evaluate some of these domain-specific design choices in court
case prediction research in a set of experiments, examining both the performance of the
resulting systems and how well these systems align with the unique characteristics of the
law.
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3.1. INTRODUCTION

In Section 2.5.1, we summarized much of the work that has been done in the field of court
case predictions. While automatically determining the outcome of court cases remains an
academic exercise, the large variation in the ways that previous research has tackled the
problem makes it nearly impossible to compare the approaches (Medvedeva, Wieling, et
al. 2022). The law has unique characteristics, making it difficult to apply machine learning
in the legal domain: machine learning is retrospective, assumes normally distributed,
homogeneous data that is largely free of errors, and it often cannot explain its decision-
making (Bench-Capon 2020). The law on the other hand is prospective, changes over
time, contains wrong decisions, and demands arguments for the decisions made. These
unique characteristics of the law are not always taken into account in the court case
prediction task. To take the law more seriously, we must consider these when doing
machine learning research in the field of AI & Law.

Some requirements of the law, such as justification, are inherently difficult for ma-
chine learning systems, and machine learning systems have been shown to use unsound
reasoning (see Chapter 2). However, despite their importance, our focus in this chap-
ter will not necessarily be on justification. We will tackle some of the issues regarding
justification, such as explainability and sound reasoning, in the upcoming chapters.

Moreover, our goal is not to create a machine learning system that obtains a better
performance, or has a better alignment with legal experts (Santosh et al. 2022). Instead, we
investigate the effect of specific design choices and effects in machine learning research,
in order to better analyze performance and alignment with characteristics of the legal
domain.

We focus on research involving cases from the European Convention on Human
Rights (ECHR), which contains 18 articles. Cases pertaining to these articles are judged
by the European Court of Human Rights (ECtHR), who provide the verdict for the cases:
a violation or non-violation of a given article. Predicting the outcome of the cases of
the ECtHR has been used as a benchmark in a number of studies, as we described in
Section 2.5.1. ECHR data is included in the LexGLUE benchmark datasets (Chalkidis, Jana,
et al. 2022), and forms the basis of the ECHR-OD repository (Quemy and Wrembel 2022).
Previous studies have applied different machine learning systems to this dataset, using
various methods and achieving different levels of success (Aletras et al. 2016; Chalkidis,
Androutsopoulos, et al. 2019; Medvedeva, Vols, et al. 2020; Chalkidis, Fergadiotis, et al.
2020; Mumford et al. 2022).

OVERVIEW OF THE EXPERIMENTS

To study the effects of design choices, we train four different types of machine learning
models on cases from the ECHR: an SVM, a Naive Bayes (NB) Classifier, a Random Forest
(RF) and a BERT model. For these four models, we study four design choices: the choice
of performance metrics; the effect of including different parts of the legal case; the effect
of a more or less specialized legal focus; and the temporal effects of the available past
legal decisions. Each of these design choices will be described and motivated.
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Many studies in the court case prediction research report on the performance of their
machine learning models in terms of accuracy or F1-scores. In Section 3.3.4, we explain
why these metrics can yield an unrealistic representation of the performance of a model,
and propose an alternative metric: the Matthew’s Correlation Coefficient (MCC).

In Section 3.4.1, we first perform a replication and expansion of previous results in
the literature. We train and test our four models on two different datasets from the ECHR
in order to evaluate whether we can yield state-of-the-art performance. We report both
the accuracies and MCC on each task, model and dataset, in order to compare our results
to previous research.

Cases of the ECHR are written in natural language, and can be subdivided into six main
parts. Previous studies have each included different parts for the court case prediction
task. In Section 3.4.1, we investigate the effects of including these different parts in the
classification process of a machine learning model, by using various parts of each case as
input and evaluating its performance. Additionally, we discuss the legal reasonableness
in terms of the consequences of using each part of the case.

The ECHR covers a number of separate articles. Earlier work on court case prediction
used either single, general models trained on all articles (Chalkidis, Androutsopoulos,
et al. 2019; Chalkidis, Fergadiotis, et al. 2020; Chalkidis, Jana, et al. 2022), or a separate,
specialized classifier for each article (Aletras et al. 2016; Medvedeva, Vols, et al. 2020). In
Section 3.4.2, we create both a Generalist model trained on all articles and an Ensemble of
specialized models each trained on a single article in order to investigate the differences
in their performances.

The interpretation of the law is subject to change over time. In Section 3.4.3, we
therefore study the temporal effects in the court case prediction task. Some of the earlier
literature has split their datasets into training and test sets randomly, without taking the
effects of time into account. We investigate the effects of training models on cases from
the past to predict future cases, as compared to models trained on randomly split data.
Furthermore, if the interpretation of the law has changed substantially, it might not be
beneficial to include old cases in the training data. We therefore also explore the effects
of training on cases from varying time windows from the past for a model that predicts
future cases.

In Section 3.2, we discuss relevant background information. Section 3.3 addresses our
experimental setup and Section 3.4 presents the experiments themselves. We conclude
this chapter in Section 3.5.

3.2. BACKGROUND

The current work focuses on the cases made publicly available by the ECtHR, which is
an international court that deals with cases claiming violations of articles laid out by the
European Convention on Human Rights. A case can pertain to multiple articles of the
ECHR and multiple articles can be violated.
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Each case description can be divided into the following main parts:

Introduction: general information, such as title, date and details about the section of
the Court.

Procedure: the course of action taken from lodging and application until the final Court
judgement.

Facts: the circumstances of the case, such as the relevant background information of
the applicant and other events and circumstances; and the relevant law from docu-
ments other than the ECHR.

Law: the legal arguments of the Court.

Judgement: the Court’s decision.

Dissenting/Concurring opinions: judges’ opinions and why they voted for or against a
violation.

In court case prediction, the case description in natural language acts as the input features
and the judgement as the label. Three variations of the prediction task have been studied:

• In the Binary classification task (BC), there is one dataset that contains all cases.
Models are tasked with predicting whether any article was violated for each case
(Aletras et al. 2016; Medvedeva, Vols, et al. 2020; Chalkidis, Androutsopoulos, et al.
2019; Chalkidis, Fergadiotis, et al. 2020).

• In the Multi-label classification task (MLC), there is one dataset that contains all
cases. Models are tasked with predicting which articles were violated for each case
(Chalkidis, Androutsopoulos, et al. 2019; Chalkidis, Fergadiotis, et al. 2020).

• In the Article classification task (AC), there are multiple datasets, one for each
article. Models are tasked with predicting whether or not a specific article was
violated for each case (Aletras et al. 2016; Medvedeva, Vols, et al. 2020).

The first machine learning models applied to the ECHR classification task were Support
Vector Machines (SVM) (Aletras et al. 2016; Medvedeva, Vols, et al. 2020). A later study used
BERT, a state-of-the-art pre-trained transformer model. While transformers in general
tend to outperform traditional models, BERT yielded a lower accuracy on the ECHR
task (Chalkidis, Androutsopoulos, et al. 2019), because the ECHR cases greatly exceed
BERT’s 512 token limit and had to be truncated. Chalkidis, Androutsopoulos, et al. (2019)
therefore also introduced an hierarchical version of BERT (HIER-BERT), where the words
of each fact in the case are first converted to a fact embedding using the base BERT model.
This version performed significantly better on the binary classification task than their
regular BERT model with truncation (F1-scores of 82.0% vs. 17.0%). By pre-training this
BERT model on additional legal data, a legal-BERT was developed, specifically suited
to legal texts (Chalkidis, Fergadiotis, et al. 2020) (see also Zheng et al. (2021)), which
performed better on the ECHR task than the HIER-BERT model (F1-scores of 88.3.0% vs.
82.0%). It has been noted, however, that specialized transformers in the legal domain
(legal-BERT) provide relatively little improvement over a standard transformer, especially
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when compared to the difference between regular and specialized BERT models in other
fields, such as in the biomedical domain (Clavié and Alphonsus 2021). Mumford et
al. (2022) took a hybrid approach to the court case prediction task, opting to combine
HIER-BERT models with Abstract Dialectical Frameworks. While it is difficult to compare
the performance of this hybrid model to other research, it did outperform a HIER-BERT
model trained on the same subset of ECHR data. Additionally, the hybrid model is more
explainable and can provide justifications for its predictions.

3.3. EXPERIMENTAL SETUP

We describe our datasets, machine learning models, preprocessing steps, and metrics
used. The code used to run the experiments can be found in a public repository.1

3.3.1. DATASETS

We train machine learning models on cases from the ECHR and use these models to
predict new case decisions. In all experiments, unless specifically mentioned otherwise,
we use the dataset from the ECHR Open Data project (ECHR-OD). 2 (Quemy and Wrembel
2022). This repository contains formatted and standardized data from the ECHR that is
automatically updated every month, establishing a public shared baseline for machine
learning models. Each case in this dataset contains the text of the case and the outcome,
i.e., which articles were considered violated, if any. A single case can violate multiple
articles. Note that only 9 of the 18 articles of the ECHR are present in the ECHR-OD
dataset, and only these 9 articles are used in the existing literature.

The version of the dataset that we use from the ECHR-OD contains 14910 cases from
1968 up to and including 2022. The distribution of the cases across the years is skewed
heavily towards the more recent years, however. This is clearly visible in Figure 3.1, where
we plot the number of cases per year. Since some of the earlier years do not contain any
cases, we only include cases from 1978 until 2022 in our experiments.

We set up our datasets for the article classification (AC) task and the binary classifica-
tion (BC) task. We do not consider the multi-label classification task (MLC) in this study.
For the AC task, there are 9 datasets, one for each article in the ECHR-OD dataset. Each
dataset contains all of the cases pertaining to that specific article, and the binary label
indicates whether or not that specific article was violated. Note that this means that some
case may be part of multiple datasets in the AC task. For the BC task, there is one dataset
that contains all cases. The binary label of each case indicates whether any article was
violated.

The number of cases in each dataset can be found in Table 3.1, alongside the percent-
age of cases that evaluate to a violation of their respective article. Note again that multiple
articles can be considered for a single case. The sum of all datasets for each individual
article in Table 3.1 is therefore greater than the number of cases in the ‘All’ dataset. The
outcome in most cases is a violation. The label distribution is therefore skewed towards
violation.

1https://github.com/CorSteging/InvestigatingDesignChoices
2https://echr-opendata.eu/ Accessed 21 Nov. 2022

https://github.com/CorSteging/InvestigatingDesignChoices
https://echr-opendata.eu/
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Table 3.1 | Number of cases per article in the ECHR-OD dataset and percentage of violation cases per article.
Additionally, the table shows the number of cases for the balanced datasets.

Article Size Violation % Balanced size
2 1212 80.94 462
3 3489 81.00 1326
5 3165 84.27 996
6 8272 87.51 2066
8 1841 71.75 1040

10 789 76.05 378
11 340 84.71 104
13 2309 91.51 392
14 578 47.23 273
All 14910 81.55 5502

Figure 3.1 | Frequency of cases per year in the ECHR-OD dataset.
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To train a model, we balance the dataset used such that half of the cases evaluate to
violation and the other half evaluate to non-violation. To balance a dataset, we randomly
remove violation cases from the dataset until their number equals the number of non-
violation cases. We display the resulting balanced dataset sizes in the rightmost column
of Table 3.1.

3.3.2. MODELS

In our study we use four different types of models: an SVM, a Naive Bayes (NB) classifier,
a Random Forest (RF) classifier and a BERT model. These are all commonly used models
known for their effectiveness in text classification tasks (Pranckevičius and Marcinkevičius
2017). For the SVM, we use the exact same parameters as reported in (Medvedeva, Vols,
et al. 2020). The parameters of the other models are tuned using a grid search with three
folds for each experiment, where we validate the performance on an unseen part of the
training set. For the SVM, NB and RF models, we use the scikit-learn library (Pedregosa
et al. 2011). We use the BERT transformer from the open-source Hugging Face library
(Wolf et al. 2020) and limit the number of tokens to 512 using the default Tokenizer from
that library. All of the optimized parameters can be found in Appendix A.

3.3.3. PREPROCESSING

We train and test our four models on the ECHR-OD dataset of case texts, preprocessed to
remove unnecessary information from the text and to reduce the token size for the BERT
model, by applying the following heuristics:

• Change all characters to lowercase

• Remove all punctuation except for ‘?’

• Remove special characters, newlines and trailing white spaces

• Change n’t to not ("don’t" becomes "do not")

• Change all fact numbers to ‘>’

• Remove stop words using nltk (Bird et al. 2009)

• Remove unnecessary words that occur in every case (such as subheadings)

For the SVM, NB and RF models, the texts are then converted to n-grams and normalized
using TF-IDF (term frequency–inverse document frequency). The parameters for pre-
processing and TF-IDF are fine-tuned using a grid search with three folds. These final
parameters can be found in Appendix A.
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3.3.4. PERFORMANCE METRICS

Most models in the literature report the classification accuracy or F1-scores of their model.
While this is common practice in machine learning, more recent studies have steered away
from using accuracy in favor of the Matthew‘s correlation coefficient (MCC) (Matthews
1975), which ranges from ¡ 100 (worst) to 100 (best). Contemporary measures like accu-
racy or even F1-scores have been shown to yield inflated results on binary classification
tasks (Chicco and Jurman 2020), especially on imbalanced datasets such as the ECHR
cases. The MCC, on the other hand, is only high if all four confusion matrix categories
are accurate: high true positives and negatives, and low false positives and negatives. For
example, a model that always predicts ‘violation‘ will score an accuracy of 81.55% on
the entire ECHR dataset, since 81.55% of the cases have a violation label. From a legal
point of view, this is an extremely irresponsible and poorly designed model. However,
the accuracy is high and the F1-score of this model would even be 89.83%, beating the
state of the art. The MCC of such a model, however, will be 0, indicating that its predictive
power is equal to random guessing. While a macro-averaged F1-score can be used for
unbalanced data, it is known to be biased and does not take true negative predictions into
account (Chicco and Jurman 2020). To take the law more seriously, we therefore choose
to use the MCC to evaluate our models, even though we work with balanced datasets. We
in general advocate the use of the MCC for binary classification as a best practice. We
report the accuracy of our models when comparing their results with the results from the
literature. In the rest of our study, we will report MCC values only.

3.4. EXPERIMENTS

We now discuss our three sets of ECHR-OD experiments.

3.4.1. EXPERIMENT 1: EXTENDED REPLICATION AND PARTS USED

In the first experiment, we perform an extended replication of results from previous
research. Additionally, we use these models to investigate what parts should be used in
the classification process.

EXTENDED REPLICATION

To evaluate the performance of each model, we apply a 10-fold cross validation to the
model for each article (the AC task), and for all articles at once (the BC task). We balance
each of the datasets such that exactly half of the cases evaluate to ‘violation’. We compare
the performance on the ECHR-OD dataset to that of models from the literature. For
comparison, we also train and test our models on the subset of data that was used by and
made available by Medvedeva, Vols, et al. (2020), which contains only 3133 cases from
1968 to 2017.

Table 3.2 shows four sets of rows containing performances of models on the AC task
and the BC task (All). In the first set of rows, we show results from previous research.
Note that results marked with an asterisk (¤) are F1-scores rather than accuracies. In the
second set of rows, we show the accuracies of the 10-fold cross validation of our SVM,
NB, RF and BERT models using the data from (Medvedeva, Vols, et al. 2020). The third
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Table 3.2 | Comparison of the performance between various models and studies on the ECHR classification
task. Results are accuracies, except those marked with ¤ (F1-scores), and the last four rows (Matthew’s Corre-
lation Coefficient).

Article 2 3 5 6 8 10 11 13 14 All
Results from literature
SVM (Aletras et al., 2016 ) - 75 - 84 78 - - - - -
SVM (Medvedeva, Vols, et al., 2020) 73 80 71 80 72 61 83 83 75 -
SVM (Clavié and Alphonsus, 2021) - - - - - - - - - 82.2*
BERT (Chalkidis, Androutsopoulos, et al., 2019) - - - - - - - - - 17.0*
HIER-BERT (Chalkidis, Androutsopoulos, et al., 2019) - - - - - - - - - 82.0*
Legal-BERT (Chalkidis, Fergadiotis, et al., 2020) - - - - - - - - - 88.3*
Medvedeva et al. 2020 dataset
SVM (replication) 72.6 80.1 75.0 80.7 70.6 63.7 82.5 83.3 75.8 67.6
NB 77.0 77.2 72.1 79.3 71.7 64.3 80.6 83.2 70.4 68.8
RF 71.8 70.9 77.3 68.2 73.6 66.9 61.8 80.0 78.5 69.6
BERT 70.8 74.5 70.0 70.5 63.54 59.9 75.0 79.2 76.4 69.9
ECHR-OD (Accuracy)
SVM (replication) 68.0 64.5 65.6 76.8 68.1 61.6 65.4 80.4 76.6 69.3
NB 70.6 64.9 66.1 77.6 66.4 66.8 75.0 77.3 73.6 71.5
RF 66.2 60.8 62.8 74.6 61.8 66.1 75.6 77.1 74.4 72.6
BERT 67.1 62.0 64.9 72.0 61.4 61.1 65.2 72.0 74.0 71.2
ECHR-OD (MCC)
SVM (replication) 38.8 36.8 29.0 31.1 53.8 36.1 23.1 31.0 61.0 53.2
NB 42.9 41.2 29.9 32.3 56.1 33.6 34.3 50.6 54.7 47.4
RF 45.3 32.5 21.6 25.6 49.2 24.1 32.2 52.4 54.8 48.8
BERT 42.4 34.9 24.1 30.0 44.3 22.8 23.1 34.0 45.1 48.7

set of rows lists the accuracies of our four models using the ECHR-OD data, and the last
set of rows contains the MCC values of our four models on the ECHR-OD dataset. Note
that we decided to round off our results’ values to one decimal, just as in the more recent
studies. The first two studies only reported accuracies without decimals. For this general
performance, we used the same parts of the cases in the training data as Medvedeva, Vols,
et al. (2020). These are the procedure, the facts, or both, depending on the article.

Discussion When we compare the accuracies of our models, trained and tested on
the Medvedeva, Vols, et al. (2020) dataset, we can see that our models perform similarly
to those in the literature on the AC task. Note that the accuracies of SVM by Aletras
et al. (2016) were obtained by training the SVM on parts of the case that were not available
before the judgement was made (the judgement part, which contained the arguments of
the court, sometimes referencing the final judgement directly), and this work should there-
fore be classified as outcome identification, rather than outcome prediction (Medvedeva,
Wieling, et al. 2022). Performances on the BC task are lower than the ones achieved by the
SVM, HIER-BERT and Legal-BERT, but higher than the one achieved by the regular BERT
model. However, it is difficult to compare exact performances without using the exact
same datasets. For example, BERT and HIER-BERT were trained on 7100 cases and their
F1-score was calculated on predictions on unbalanced test sets (66% violation) (Chalkidis,
Androutsopoulos, et al. 2019), while we trained on 3133 cases and used balanced test
sets. Across the four models that we use, there is no clear best model, and performance is
dependent on the dataset, task and article.

Accuracies are generally slightly lower when training on the larger and more recent
ECHR-OD dataset. We also see that the MCC ranks the performance of the models
differently than accuracy does (except for Articles 3 and 5). The MCC more accurately
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depicts the actual performance of the models as it accounts for the rate of true positives,
false positives, true negatives and false negatives, which leads to a more reasonable
evaluation. The last two sets of rows in Table 3.2 therefore show that accuracies or
F1-scores can show inflated results and can incorrectly suggest a high performance.
Therefore, if we wish to take AI seriously in AI & Law, we should use more reliable metrics.

INVESTIGATING WHAT PARTS TO USE

The cases from the ECHR consist of 6 different parts, including the judgement. Previous
studies have used different parts of the cases to train their models, with mixed results.
As discussed in the background section, only the introduction, procedure and facts are
known before a case is tried. Some of the earlier literature has used parts that were made
available after the case has been judged, however. If our goal is to take the law seriously,
we should only include parts that are available before the judgement was made. We
therefore do not use the law section, the judgement and the dissenting and concurring
opinions. Additionally, the introduction, which contains only general information about
a case will also not be used, as this should not have any predictive value (see Section 3.2).
We therefore focus on the procedure, the facts, and a combination of both to look into
which of these yields the best results. We should note that all cases in the ECHR dataset
were published after the cases were tried; their texts can therefore potentially contain
implicit or explicit information that was not available before the case was tried, even in
the introduction, procedure and facts sections (Medvedeva, Üstün, et al. 2021).

To investigate which parts of the case are useful in court case prediction, we train
each of the four model types (SVM, NB, RF, BERT) on the facts, procedure and both the
facts and the procedure. We use the ECHR-OD dataset. We report the average MCC
across a 10 fold cross validation for each classifier, trained on every individual article
and all articles at once. This experiment expands upon the research done by Medvedeva,
Vols, et al. (2020) by exhaustively reporting the performances, in terms of MCC instead
of accuracy, of each combination of our four models trained on all possible parts. This
comparison can be seen in Table 3.3, where the best results for each classifier on a given
article is shown in bold.

Discussion There is quite some variation between the MCC of models using different
parts in Table 3.3. Determining which part to use is therefore important to obtain the
highest possible performance. The facts and the combination of facts and procedure
yield the best results across the combinations of part, model and article. The procedure
alone ranks the worst. This means that the facts are an essential part when doing court
case predictions. This is unsurprising, as this part contains all of the relevant information
regarding the circumstances, background, applicant and relevant law from other docu-
ments. We see that adding the procedure can improve performance, but this is dependent
on the combination of article and model. This supports the method used in (Medvedeva,
Vols, et al. 2020), where different parts are used for each article. We also show that the
performance is dependent on the combination of the parts used and the model used, and
we base our conclusions on the MCC rather than the accuracy.
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Table 3.3 | Comparison of MCC between various machine learning models across a 10 fold cross validation,
when training on only the facts, only the procedure, and both.

Article 2 3 5 6 8 10 11 13 14 All
Dataset size 462 1326 996 2066 1040 380 104 392 546 7376
SVM
Procedure 31.64 25.3 24.52 43.77 19.82 22.25 30.98 51.53 38.1 38.75
Facts 33.07 29.0 31.14 54.65 36.16 24.4 48.09 54.18 48.0 45.57
Procedure + Facts 36.8 28.37 35.35 53.81 35.66 23.16 55.78 61.0 53.15 43.77
NB
Procedure 34.25 22.34 31.35 41.75 27.92 32.11 50.6 51.15 39.61 42.91
Facts 30.48 29.88 32.25 50.96 33.55 33.95 56.28 54.09 48.05 48.2
Procedure + Facts 41.15 25.4 34.97 56.08 37.82 34.31 67.2 54.68 47.41 49.72
RF
Procedure 20.09 27.31 22.71 41.02 21.87 31.34 52.43 47.15 36.83 45.27
Facts 35.29 21.63 25.63 48.79 24.08 29.19 54.14 54.82 43.12 50.91
Procedure + Facts 32.48 28.3 32.74 49.21 26.92 32.18 46.83 54.77 48.81 50.65
BERT
Procedure 26.82 27.92 28.96 48.73 13.72 22.54 33.96 41.94 46.79 42.44
Facts 19.19 24.12 30.0 48.13 22.79 29.46 39.92 57.99 42.6 45.53
Procedure + Facts 34.87 24.16 28.14 44.26 25.5 23.09 32.55 45.09 48.68 43.92

3.4.2. EXPERIMENT 2: SPECIALIST VS. GENERALIST MODELS

In previous research, models were either trained on each individual article (AC task) or on
all articles at once (BC task); in the latter case, the model is tasked with predicting whether
there has been any violation, regardless of what article was violated. The performance of
our own models and models from the literature on this task can be seen in the rightmost
column of Table 3.2. This approach can be compared to a human legal generalist, who has
knowledge of all articles. Instead of just a single generalist for the BC task, however, one
could opt to use a team of legal specialists, where each person of the team is specialized
in a different article. In this experiment, we examine these two different approaches to
the BC task.

The first approach is to create a single Generalist model that is trained on all cases of
the ECHR. In the second approach, we train an Ensemble of models, wherein each model
is specialized in a different article of the ECHR, akin to the team of legal specialists. Each
model of this Ensemble is trained on identifying violations for just a single article, thus
reducing the problem space and potentially increasing performance. Additionally, such
an Ensemble would be able to tell what article was violated, thus being able to provide
explanations for its decisions. Each model of the Ensemble would, however, have less
data than the Generalist model, which might decrease performance (see Table 3.1).
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Table 3.4 | MCC for Generalist models and (improved) Ensembles.

Improved
General Ensemble Ensemble

SVM 37.04 27.55 31.99
NB 30.33 30.54 5.42
RF 35.95 14.58 17.43
BERT 27.66 13.51 24.95

We perform an experiment to determine which approach yields the best performing
model. We create three types of datasets:

• Nine Ensemble Training Sets, one for each article, containing 90% of all of the
cases that consider that specific article; the features are the facts of the case, and
the label is whether or not there is a violation of the respective article in the case.

• The Generalist Training Set contains all of the cases from all nine Ensemble Train-
ing Sets; the features are again the facts, and the label is whether or not any article
was violated in a case.

• The Testing Set contains the 10% of cases not used in the Ensemble Training Set
and Generalist Training Set; features and label are the same as in the latter.

We generate the 90% - 10% split in training and test data randomly, and balance the classes
(50%-50%) in the training data. We use these three datasets to train and test a Generalist
model and an Ensemble. The Generalist model is trained on the Generalist Training Set
and evaluated using the Testing Set. The Ensemble consists of nine specialist models,
each trained on a different Ensemble Training Set. Each of these specialist models will be
tasked with predicting the labels of the cases from the Test Set. The predictions of each
specialist model will be combined in a disjunctive manner to form the final prediction
of the Ensemble. In other words, the output will be ‘violation’ if any specialist model
predicts ‘violation’, and ‘non-violation’ otherwise.

We compare the performance of the Generalist model to that of the Ensemble. The
experiment is performed for every one of our four model types: the SVM, NB, RF and
BERT. We also repeat every experiment 10 times for each type of model, using different
cases for the training and testing sets in each iteration. We report the average MCC in
Table 3.4. The best results are shown in bold.

Discussion From Table 3.4 we see that for most Generalist models the MCC is much
higher than that of the Ensemble. The Generalist models therefore outperform the
Ensembles for most types of classifiers. The exception is the NB classifier, where there
is little difference in MCC. This suggests that, in predicting ECHR court cases, a larger
problem space combined with more training data results in better performance than a
reduced problem space with less data.
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Table 3.5 | Confusion matrix of all predictions by the SVM Ensemble.

Predicted:
True: Non-violation Violation Total

Non-violation 623 1,138 1,761
Violation 1,138 17,601 18,739

Total 1,761 18,739

Table 3.6 | Confusion matrix of all predictions by the Improved SVM Ensemble.

Predicted:
True: Non-violation Violation Total

Non-violation 622 1,139 1,761
Violation 934 17,805 18,739

Total 1,556 18,944

Each of the specialist models in an Ensemble is trained on a balanced dataset with cases
that pertain to a single article. The Test Set used for these specialist models, however,
considers all articles, most of which the individual specialist models will not have seen
during training. Ideally, if a specialist model is presented with a case that considers an
article that it is not trained for, it should predict ‘non-violation’. However, it is not explicitly
trained to give that prediction and, as a result, provides a random prediction. Given that
the final prediction of the Ensembles is an OR-function, this leads to many incorrect
‘violation’ predictions. This can be seen in Table 3.5, which displays the confusion matrix
of all of the predictions done by the SVM Ensemble. The Ensemble predicted ‘violation’
in a total of 18,739 cases, out of which 17,601 were correct and it predicted ‘non-violation’
in a total of 1,761 out of which only 623 were correct. This initially might seem like a great
performance, and would lead to an accuracy of 89.9%. However, the Test Set is heavily
skewed towards violation (91.14% of all cases). The performance on violation cases is
therefore relatively good, accurately predicting the outcome of 93.9% of all violation cases.
However, the model also incorrectly assigns violation to 64.6% of all non-violation cases.

IMPROVED ENSEMBLE

A potential solution to this issue is to present the specialist models with cases that do not
pertain to the article that they are focused on during training. For example, a specialist
model trained on Article 6 cases could also explicitly be trained to predict ‘non-violation’
for all cases that do not pertain to Article 6. To create this new Improved Ensemble, we
alter the training datasets as follows. We create nine Improved Ensemble Training Sets,
one for each article. Just as the earlier Ensemble Training Set, each Improved Ensemble
Training Set contains 90% of all of the cases that consider that specific article. The features
in these datasets are the facts of the case, and the labels are whether or not there is a
violation of the respective article in the case. Additionally, we add cases from other articles
to this dataset, where each additional case has the ‘non-violation’ label. Since almost all
articles contain more violation than non-violation cases (see Table 3.1), we add these
additional cases to each Improved Ensemble Training Set until their number of violation
and non-violation cases is equal. The Improved Ensemble is set up in the same way as
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the earlier Ensemble, but each specialist model of this Improved Ensemble is trained on
the Improved Ensemble Training Sets. The results of the Improved Ensemble are shown
in the rightmost column of Table 3.4.

Discussion The Improved Ensemble performs better than the initial Ensemble when
using the SVM, RF and BERT models. This supports our idea that the specialist models
generally perform better when including additional cases from other articles with a ‘non-
violation’ label. This informs the model to predict ‘non-violation’ for cases pertaining to
other articles.

The NB models, however, seem to perform worse in the ‘Improved Ensemble’ scenario.
Analysing the data shows that the specialist models in the ‘Improved’ NB Ensemble now
predict ‘violation’ in 99.5% of all test cases, thus yielding a low MCC in Table 3.4. Our
hypothesis is that the problem space might have become too large for the NB specialist
models by providing them with a relatively small number of additional cases pertaining
to other articles. Investigating this idea is left for future research. Note that the accuracy
of this Ensemble is 91.2%, incorrectly suggesting a high performance of this irresponsible
system, which further advocates for the use of the MCC as a performance metric.

Table 3.4 shows that the Improved SVM Ensemble performs better than the initial SVM
Ensemble. The confusion matrix of this Improved SVM Ensemble is shown in Table 3.6.
Here, we see that the performance on the non-violation cases is almost identical to
that of the initial Ensemble on the same cases, as shown in Table 3.5. By including the
additional cases, our aim was to instruct the specialist models to predict non-violation for
cases that did not pertain to its specific article. However, while the Improved Ensemble
does perform better, Table 3.6 shows us that the Improved Ensemble did not improve its
performance on the non-violation cases. The difference in performance is therefore due
to the Improved Ensemble’s predictions on the violation cases. We see that the Improved
Ensemble correctly predicts the outcome of 95% of all violation cases. This is 1.1 percent
point higher than the performance of the initial Ensemble.

By including additional cases pertaining to other articles in each of the specialist
models, we are able to somewhat improve the Ensemble’s performance in most cases. It
should be noted here that we only include a small subset of additional cases pertaining to
other articles. The number of additional cases equals the number of violation cases of a
given article, minus the number of the non-violation cases of that article. This is to ensure
a 50% violation rate in the training dataset of each model. The Ensemble could potentially
be improved further by oversampling violation cases for each article and including more
of these additional cases. This could potentially change the results of the ‘Improved’ NB
Ensemble as well, as it would then have more cases per article. However, oversampling
has downsides as well, such as overfitting. Future research could investigate this idea.
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3.4.3. EXPERIMENT 3: TEMPORAL EFFECTS

In the previous experiments, we have split our training and testing sets randomly, or used
10-fold cross validation to train and test our models, just as much previous research has
done. By splitting the data randomly, we might select training cases that occurred more
recently than our test cases. In other words, we might use future cases to predict cases
from the past. When it comes to court case predictions, an argument can be made for
selecting the most recent cases as the test set and to use the older cases as a training set.
This way, we use past cases to forecast the future. Some models in previous research were
trained in this way (Chalkidis, Androutsopoulos, et al. 2019), but effects of this design
choice have not yet been studied. To evaluate how models perform under these different
temporal circumstances, we narrow our scope and focus on Article 6 of the ECHR. This
article contains the most cases and has therefore been investigated in other work as well
(Collenette et al. 2023; Mumford et al. 2022). In this experiment, we use the facts of the
cases from Article 6 as the features, and whether or not Article 6 was violated as the label.
We train models on cases from the past and evaluate how their performance compares to
models trained on randomly selected data.
Three types of datasets are used in the experiment, each containing only cases from
Article 6:

• Test sets consist of cases from a single Test Year.

• The models trained on Past Cases will be trained on all cases that occurred before
the Test Year.

• The models trained on Random Cases are trained on randomly selected cases that
occurred either before or after the Test Year.

For each year, we therefore generate 2 types of models, one trained on Past Cases (cases
from years before the year that we use to test the model) and one trained on Random
Cases. Note that we ensure that the size of the Random Cases training set is the same as the
size of the Past Cases training set for each respective Test Year. This way, we can disregard
discrepancies in the size of the training dataset as a potential cause of differences in
performance. All training sets are balanced, such that half of the cases are violation cases
and the other half are non-violation cases. We use all four model types (SVM, NB, RF,
BERT) and train on the facts of the ECHR-OD dataset. The mean MCC of the models
trained on either past cases or random cases can be seen in Table 3.7. In Table A.8 in
Appendix A, we also display the results for every test year.

Discussion We performed the experiment using all possible Test Years from 1979 until
2022. Across all these Test Years, we see in Table 3.7 that the MCC of models trained on
random cases is generally higher than the MCC of models trained on past cases. This
would imply that learning from past cases is more difficult than learning from random
cases from both past and future. The exception here is the NB classifier, which performs
better when trained on past cases. In Figure 3.2, we plot the MCC per Test Year for each of
the four model types trained on either Past Cases (blue) or Random Cases (orange). Note
that the y-axis of each subplot is scaled differently. Here we see that the MCC of models
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Table 3.7 | Mean MCC of models predicting all cases from a given year, after training on cases from the past or
training on a random sample of a similar size. We display mean results across all Test Years (1979-2022) and
results across more recent Test Years (2000-2022).

1979 - 2022 2000-2022
Random Past Random Past

SVM 19.60 18.62 35.32 34.98
NB 16.40 19.68 29.38 32.07
RF 21.11 13.39 33.38 30.16
BERT 21.78 8.16 26.68 26.30

trained on both random cases and past cases fluctuates a lot for earlier Test Years (see
also Table A.8 in Appendix A). This could be due to the limited number of available cases
in those years that the models are used to train on (see the case distribution per year in
Figure 3.1). The difference between the two (the shaded area in Figure 3.2) also decreases
with more recent Test Years.
If we look only at the recent years (2000-2022) in Table 3.7, we get a more nuanced
comparison. Table 3.7 still shows higher MCC values for models trained on random cases
over models trained on past cases, with the exception of the NB model, but the difference
between the two is much lower. The absolute mean MCC is also higher across the years.
While the differences between the two approaches may be smaller, they still exist, as seen
in Figure 3.2. Not only is it legally more reasonable to train on past cases to predict future
cases, a random split of the data into a train and test set can also have an impact on the
performance. If we wish to take the law more seriously in this type of research, to ensure
realistic results we should train on past cases and test on future cases.

Time Window We know that machine learning systems tend to perform better with
more data, granted that the data is a proper reflection of the problem space. We also know,
however, that the interpretation of the law is subject to change over time and precedent
may be overturned. When this happens, the older cases can be overruled by newer cases.
Looking too far into the past may therefore not be optimal when trying to predict new
court cases. We therefore also investigate the difference between using all cases or only a
subset of the more recent cases.

We train our models on cases from the past but only on a limited number of recent
years. This window of years represents how far we look back into the past, and will be
varied between 5 and 35 years in steps of 5. We test on only a single Test Year of cases. For
example, training the model to predict cases from 2022 using a window of 5 years means

Table 3.8 | Mean MCC of the window experiment.

Window 5 10 15 20 25 30 35 SD
SVM 37.5 37.5 37.4 38.4 39.9 39.4 39.6 1.1
NB 32.0 30.8 31.4 31.7 32.2 31.9 32.4 0.5
RF 36.6 36.8 35.4 34.8 35.0 35.0 35.4 0.8
BERT 33.3 29.6 31.0 27.5 30.7 31.8 34.3 2.3
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Figure 3.2 | MCC of models trained on either cases from the past (blue) or randomly selected cases (orange)
and tested on cases of a given Test Year, ranging from 1978 to 2022.

that the model is trained on the cases from 2016 up to and including 2021. Because we
only have cases from 1978 until 2022, we will test our models on cases from 2013 to 2022.
This way, we can train our model using windows of up to 35 years for each given Test Year.

We create a model for each combination of type (SVM, NB, RF and BERT), Test Year
(from 2013 to 2022), and window of training data (5 to 35 in steps of 5). There are therefore
4¤ 10¤ 7 Æ280 different setups in this experiment. To represent the results, we average the
MCC of each of these models across the years, so as to show the effects of the window size
on the performance of each of the model types. We train on the facts of cases from Article
6 and use the ECHR-OD dataset. The results of this experiment are shown in Table 3.8,
where the best window for each model is shown in bold. The last column in Table 3.8
reports the standard deviation across the different windows. Note that we report the
mean MCC values across all of the test years. To further illustrate the variation across test
years, we also show the MCC values for each time window and per test year for the BERT
model in Appendix A in Table A.9.
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Discussion Based on Table 3.8 we cannot extrapolate a clear relationship between the
number of past years of cases in training and the performance of the models. The NB
and BERT models perform best with 35 years worth of cases. However, there does not
seem to be a clear positive relationship between the window size and MCC, as the MCC
increases and decreases slightly across the window sizes. A similar observation holds for
the SVM and RF models, which do not perform much better or worse with more years
worth of cases from the past. The overall impact of the window is therefore small, as
also indicated by the low standard deviations. The BERT model is impacted most by the
window size, but the standard deviation in MCC is still only 2.3. In this scenario, using
cases from further in the past does therefore not seem to have a significant impact on
the performance of the models. This can, of course, be different if the interpretation of
the law has changed significantly. If we want to take the law more seriously, we should
investigate the temporal effects of the legislation and, if precedent is overturned, adjust
and evaluate our training data accordingly.

3.5. CONCLUSION

The approaches to court case predictions are diverse and difficult to compare (Medvedeva,
Wieling, et al. 2022). While some methods yield better results, they may also raise con-
cerns about how reasonably they align with the characteristics of legal decision-making.
For a proper analysis of court case prediction research, we should consider the unique
characteristics of the law and the effects that it can have on the models. While justification,
explainability and sound reasoning are major issues in machine learning and law, this
Chapter did not include these aspects and focused instead on design choices. In the
upcoming chapters, these important issues are addressed.

If we want to take the law more seriously in machine learning research, we should
measure the effect of relevant design choices and effects. We therefore propose to use
the Matthew’s Correlation Coefficient rather than the accuracy or F1-score, as the latter
two metrics tend to yield inflated results and can incorrectly attribute a much higher
performance to a model.

Based on our results of Experiment 1, the facts are the most important of a case when
it comes to court case predictions (see Table 3.3). Including the procedure of the case can
increase performance, but this is dependent on the article and on the model used. For the
best results, the parts used should therefore be included in the parameter optimization
pipeline.

In Experiment 2, our Generalist model, trained on all articles at once, outperforms
our Ensemble of specialist models having each trained on a specific article. While the
specialist models had a reduced problem space, more data appeared to still be more
important. By including some additional cases of other articles in the training phase of
each specialist model of the Ensemble, we are able to increase performance for most
model types. While we only included a small sample of these additional cases, future
research could investigate whether including more additional cases in the training data
of specialist models of the Ensemble could increase performance further.

Experiment 3 shows that training on past cases to predict the future is more difficult
than training on randomly selected instances from both the past and the future. Taking
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into account the effects of time may therefore have an effect on performance, especially
when you consider much older cases. For that reason, randomly splitting data into a
training and test set, or running a k-fold cross validation, might show unrealistic results.
In these scenarios, it is more than likely that the model is predicting past cases using
future cases, which is impossible in reality and does not account for the temporal aspects
of the law.

We show that using only a limited number of years worth of cases, rather than all
cases, does not seem to have an impact on the performance of our models, as shown in
Table 3.8. This suggests that the interpretation of the law, in particular regarding Article 6
of the European Court of Human Rights, remained stable enough for machine learning
predictions. There are, however, legal considerations that might suggest the removal of
certain older cases, especially after certain landmark cases or changes in society. In those
cases, we should investigate the effects that this has on the legislation and adjust our
training data accordingly.

We have explored legally reasonable design choices and effects in court case predic-
tions, and have shown their impact on performance. We conclude that taking the law
more seriously in machine learning research requires that the relevant, unique character-
istics of the law are taken into account. Our findings are by no means enough to address
inherent limitations (in particular with respect to justification), and future research has to
remain critical of the choices that are being made in order to remain legally reasonable.
In the next chapters, we shift our focus to sound and explainable reasoning in data-driven
models, an essential aspect of justification and responsible AI.





II
LEARNING TO REASON

Learning-to-reason is a design approach, where machine learning systems learn
the right rationale from experiences. This is opposed to the reasoning-by-design
approach that we examine in Part III, where we embed the right rationale explic-
itly in our systems using a symbolic knowledge representation. In this part, we in-
vestigate the rationales of trained machine learning systems. We explore whether
these rationales are sound and whether they can be improved. To accomplish
this task, we introduce a method for Tailored Rationale Evaluation and Improve-
ment (TREI). The domains and datasets used in the experiments are described
in Chapter 4. We show that we can evaluate and improve rationales using TREI
in Chapter 5, and compare the TREI method to two contemporary explainable
AI methods: SHAP and LIME. We also further investigate the TREI method under
various circumstances in Chapter 6, and discuss its capabilities, applications and
limitations.





4
DOMAINS & DATASETS

In this chapter we describe the domains and datasets that will be used in our experiments
regarding the learning-to-reason approach, wherein machine learning systems learn the
right rationale from experiences. For this, we use our TREI method, which is introduced
in Chapter 5. Before we can create machine learning systems that learn the right rationale,
we first need to know what the right rationale is. We therefore create artificial datasets
based on knowledge representations of certain domains. Machine learning models are
then trained on these datasets. Since the datasets are generated based on knowledge
representations, good machine learning models should reason in a similar fashion as the
knowledge representations. In other words, the knowledge representations function as
the ‘true rationale’ which the machine learning models have to learn from the data. In
this chapter, we discuss four different domains, their knowledge representation and their
resulting datasets, which will be used in the experiments of upcoming chapters.

4.1. OVERVIEW OF THE DOMAINS

We describe four domains—the fictional welfare benefit domain, a simplified version of
the welfare benefit domain, the non-fictional domain of Dutch tort law, and a tabular
version of Article 6 of the European Convention on Human Rights—and the artificial
datasets that we generate from these domains. 1 2 Each domain is defined exhaustively
by a knowledge representation structure, which represents the ground truth. We generate
data from these knowledge representations and use this data to train machine learning
models. The knowledge representation will act as our desired rationale, meaning that our
machine learning models will need to learn the rationale of the knowledge structure.

1The Jupyter notebooks used for domains and datasets of the (simplified) welfare benefit domain and
tort law domain can be found in the following Github repository: https://github.com/CorSteging/
DiscoveringTheRationaleOfDecisions

2The notebooks used for the Article 6 domain and datasets can be found in the following Github repository:
https://github.com/CorSteging/ADFlib
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Table 4.1 | An overview of the four domains. For each domain, the table indicates the number and type
of features, the number and type of conditions to be learned, whether or not all cases are covered by the
datasets (complete) and whether the domain is fictional or real.

Features: Conditions:
Domain no. type no. type Complete Fictional
Welfare benefit 64 Boolean & 6 independent No True

numerical
Simplified 4 Boolean & 2 independent No True
welfare benefit numerical
Tort law 10 Boolean 5 dependent True No
Article 6 of 36 Boolean 5 dependent No No
the ECHR

The use of synthetic datasets allows us to evaluate and improve the rationale of our
models using the TREI method (Chapter 5) in a fully controlled setting. An overview of the
properties of the four domains is provided in Table 4.1, including the number and type of
features of the datasets, the number of conditions that define the domain, whether these
conditions are dependent or not, whether or not a complete dataset of the domain can
feasibly be generated, and whether or not the domain is fictional.

4.2. WELFARE BENEFIT DOMAIN

The welfare benefit domain is a fictional legal domain that was first introduced by Bench-
Capon (Bench-Capon 1993). It concerns the eligibility of a person for a welfare benefit to
cover the expenses for visiting their spouse in the hospital. A person is eligible for such a
welfare benefit if the following rules apply:

1. The person should be of pensionable age (60 for a woman, 65 for a man);

2. The person should have paid contributions in four out of the last five relevant
contributions;

3. The person should be a spouse of the patient;

4. The person should not be absent from the UK;

5. The person should have capital resources not amounting to more than $3,000;

6. If the relative is an in-patient, the hospital should be within a certain distance (50
miles): if an out-patient, beyond that distance.
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DOMAIN DEFINITION

The welfare benefit domain can be formalised as follows:

Eligible(x) () C1(x) ^ C2(x) ^ C3(x) ^ C4(x) ^ C5(x) ^ C6(x), where
C1(x) () (Gender(x) Æfemale ^ Age(x) ¸ 60)_

(Gender(x) Æmale ^ Age(x) ¸ 65)
C2(x) () k Con1(x),Con2(x),Con3(x),Con4(x),Con5(x)k ¸ 4
C3(x) () Spouse(x)
C4(x) () : Absent(x)
C5(x) () : Resources(x) ¸ 3000
C6(x) () (Type(x) Æin ^ Distance(x) Ç 50)_

(Type(x) Æout ^ Distance(x) ¸ 50)

That is, a person is eligible if and only if they are of pensionable age (60 for a woman, 65
for a man), paid four out of the last five contributions Coni , i Æ1, . . . ,5, is the patient’s
spouse, is not absent from the UK, has capital resources not amounting to more than
£3,000, and lives at a distance of less than 50 miles from the hospital if the relative is an
in-patient, or beyond that for an out-patient.

Note that condition C1 can be further reduced to the conjunction of disjunctions
shown below. We could do the same for condition C6, making eligibility a conjunction of
eight clauses, where four are disjunctions and four are literals. This conjunctive normal
form of the domain can be useful in other research, such as automated theorem proving,
but this falls outside of the scope of this thesis.

C1(x) () (: Gender(x) Æfemale _ Age(x) ¸ 60)^
(Gender(x) Æfemale _ Age(x) ¸ 65)

DATASETS

Based on the formalization, we generate artificial datasets. Following earlier research (Bench-
Capon 1993), we have defined the six independent conditions for eligibility in terms of
12 variables, which are the features of the generated datasets. The conditions are inde-
pendent in the sense that no feature occurs in multiple conditions. We characterize the
features and their possible values as shown in Table 4.2. In addition to these 12 features,
the datasets will contain 52 noise features with integer values ranging from 0 to 100, unre-
lated to eligibility, giving a total of 64 features plus an eligibility label for each instance.
The result is a dataset such as the one shown in Table 4.3.

All datasets are valid in the sense that the given eligibility labels follow from evaluating
the 6 conditions above. The earlier study that introduced the domain (Bench-Capon 1993),
used training sets with 2,400 instances, which is quite small by today’s standards (Atkinson,
Bench-Capon, and Bollegala 2020). To allow for comparison, we replicate the study by
training on 2,400 instances. However, to make sure conclusions are not the result of using
insufficient data, we also train on 50,000 training instances.

The datasets generated for this domain therefore consist of either 2,400 instances or
50,000 instances. Exactly half of the instances in these datasets are eligible, creating a
balanced label distribution, as is common practice in machine learning problems. For
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Table 4.2 | Features in the welfare benefit domain (excluding noise features). The simplified domain includes
only the first two and last two features.

Feature Values
Ag e 0 – 100 (all integers)
Gender male or female
Con1,. . . , Con5 true or false
Spouse true or false
Absent true or false
Resour ces 0 – 10,000 (all integers)
T y pe (Patient type) in or out
Di st ance (to the hospital) 0 – 100 (all integers)

Table 4.3 | An example dataset of the welfare benefit domain with five instances, where the rows represent
the instances and the columns represent the features. Here ‘Rsc’ represents the resources feature, ’Dist’ the
distance to the hospital feature and ‘Nx ’ represents a noise feature. The labels of the instances, i.e., the values
of feature ‘Eligible’ in the last column, are marked in bold.

ID Age Gender Con1 Con2 Con3 Con4 Con5 Spouse Absent Rsc Type Dist N1 ... N52 Eligible
0 64 m True True True True False True False 1932 out 91 14 33 False
1 64 f True True True True True True False 2855 out 82 19 11 True
2 97 f False True True True True True False 2837 in 54 2 98 False
3 74 m True True True True True True False 1074 out 69 99 12 True
4 61 f True True True True False True False 2312 out 66 69 15 True

the eligible instances, feature values are generated such that they satisfy the conditions
C1 ¡ C6. These features values are random, insofar that they can take on every possible
value such that the conditions remain satisfied. For each condition, one sixth (1/6) of
the ineligible instances is designed to fail on that specific condition. The values of these
features involved in the condition are generated randomly such that the condition fails.
All remaining features in these instances are generated randomly across their full range of
values (see Table 4.2). As a result, it is possible for ineligible instances to fail on multiple
conditions, and some conditions will fail more often than others. A machine learning
model trained on this type of dataset will need to have learned conditions C1 ¡ C6 in order
to have a sound rationale.

4.3. SIMPLIFIED WELFARE BENEFIT DOMAIN

Our second domain is a simplified version of the welfare benefit domain that we described
above. Earlier experiments with different models for the welfare domain all concluded
that it was not possible to learn all six conditions for eligibility (Bench-Capon 1993;
Wardeh et al. 2009a; Možina et al. 2005). The complexity of the original problem with 6
different conditions and 64 features seemed to result in an unsound rationale in the model.
Specifically, conditions C1 and C6 proved to be difficult to learn. In our experiments, we
expect that this issue can arise as well. To examine whether conditions C1 and C6 can be
learned by our models at all, we simplified the original problem in two ways. First, the
52 noise variables, which did not seem to affect the performance of the models (Bench-
Capon 1993), are removed. Secondly, we define eligibility solely by the age-gender (C1)
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and patient-distance (C6) conditions, which were the conditions that proved to be most
difficult in previous research:

El i g i bl e(x) () C1(x) ^ C6(x)

Eligibility is thus determined through a combination of a XOR-like function (C6) and a
nuanced threshold function (C1). For the simplified welfare domain, datasets of 50,000
instances are generated that have the same properties as in the regular welfare benefit
domain, except that all noise features and 8 of the 12 actual features are excluded. An
example of such a dataset of the simplified welfare benefit domain can be found in
Table 4.4

Table 4.4 | An example dataset of the simplified welfare benefit domain with five instances, where the rows
represent the instances and the columns represent the features. The labels of the instances, i.e., the values of
feature ‘Eligible’ in the last column, are marked in bold.

ID Age Gender Type Dist Eligible
0 74 m out 69 True
1 61 f out 66 True
2 64 m out 91 False
3 64 f out 82 True
4 97 f in 54 False

4.4. TORT LAW DOMAIN

Our third domain concerns Dutch tort law: Articles 6:162 and 6:163 of the Dutch civil
code that describe when a wrongful act is committed and resulting damages must be
repaired. 3 Translated into English, these articles read as follows (Verheij 2017):

Art. 6:162 BW. 1. A person who commits an unlawful act toward another which
can be imputed to him, must repair the damage which the other person suffers as a
consequence thereof.
2. Except where there is a ground of justification, the following acts are deemed to be
unlawful: the violation of a right, an act or omission violating a statutory duty or a
rule of unwritten law pertaining to proper social conduct.
3. An unlawful act can be imputed to its author if it results from his fault or from a
cause for which he is answerable according to law or common opinion.

Art. 6:163 BW. There is no obligation to repair damage when the violated norm
does not have as its purpose the protection from damage such as that suffered by the
victim.

3Article 6:162 and 6:163 of the Dutch civil code can be found here: https://wetten.overheid.nl/
BWBR0005289/2024-01-01#Boek6_Titeldeel3_Afdeling1_Artikel162 .

https://wetten.overheid.nl/BWBR0005289/2024-01-01#Boek6_Titeldeel3_Afdeling1_Artikel162
https://wetten.overheid.nl/BWBR0005289/2024-01-01#Boek6_Titeldeel3_Afdeling1_Artikel162
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Figure 4.1 | Arguments and attacks (A) and their elementary propositions (B) in Dutch tort law (Verheij 2017).

DOMAIN DEFINITION

In the tort law domain, the ‘duty to repair’ (dut ) can be formalised as follows:

dut (x) () c1(x) ^ c2(x) ^ c3(x) ^ c4(x) ^ c5(x), where
c1(x) () cau(x)
c2(x) () ico(x) _ ila(x) _ ift(x)
c3(x) () vun(x) _ (vst(x) ^ : jus(x)) _ (vrt(x) ^ : jus(x))
c4(x) () dmg(x)
c5(x) () : (vst(x) ^ : prp(x))

where the elementary propositions are provided alongside an argumentative model of
the law in Figure 4.1 (Verheij 2017), and conditions c2 and c3 capture the legal notions
of unlawfulness (unl) and imputability (imp), respectively. Compared to the fictional
welfare domain, the Dutch tort law domain is captured in 5 conditions for duty to repair
(dut), based on 10 Boolean features. The feature capturing a violation of a statutory duty
(vst) is present in both condition c3 and c5, rendering these dependent.
The tort law domain can also be rewritten in conjunctive normal form, just as the welfare
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Table 4.5 | An example dataset of the tort law domain with five instances, where the rows represent the in-
stances and the columns represent the features. The labels of the instances, i.e., the values of feature dut in
the last column, are marked in bold.

ID dmg cau vrt vst vun jus ift ila ico prp dut
0 False True True True False False False False False True False
1 False True False True True False False False False True False
2 True True False False True True True False True False True
3 True True True False False True False False True False False
4 True True True True True True False True True False False

benefit domain, which can be useful for other research, but falls outside of the scope of
this thesis.

DATASETS

Using the formalization of the tort law domain, we generate artificial datasets. An example
of such a dataset of the tort law domain can be seen in Table 4.5.

The tort law domain contains 10 Boolean features, meaning that it is feasible to train
a machine learning model on all 210 Æ1024 possible unique cases that can be generated
from the argumentation structure of the tort law domain in Figure 4.1. Each case has
a corresponding outcome for dut, indicating whether or not there is a duty to repair
someone’s damages.

The datasets for the tort law domain contain 5,000 instances and are generated such
that dut is true in exactly half of the instances. These datasets are generated by sampling
uniformly from all unique cases, such that each possible case is represented equally
within the 50/50 label distribution. Note that the tort law domain only contains 1024
unique cases, and therefore a dataset of 5,000 instances will contain every unique instance
multiple times. As such, our models are guaranteed to have seen all possible cases during
training. In practice, only a subset of the possible cases is typically available and presented
to a machine learning model, upon which the model will have to learn to generalize to
all possible cases. Therefore, in addition to generating datasets with 5,000 cases, we also
generate smaller datasets with only 500 instances to mimic an incomplete coverage of all
cases. This smaller dataset contains 35.35% of the unique instances. Note that in practice,
for such a limited set of unique cases, a simple lookup table rather than a more complex
model would most likely suffice.
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4.5. ARTICLE 6 OF THE ECHR

Our fourth domain is concerned with predicting the outcome of cases from the European
Court of Human Rights (ECtHR) that deals with cases claiming violations of articles laid
out by the European Convention on Human Rights (ECHR). We focus on Article 6, which
is concerned with the right to a fair trial, as also discussed earlier in Section 2.5.2.

Article 6 of the European Convention on Human Rights:

1. In the determination of his civil rights and obligations or of any criminal charge
against him, everyone is entitled to a fair and public hearing within a reasonable
time by an independent and impartial tribunal established by law. Judgment shall
be pronounced publicly but the press and public may be excluded from all or part of
the trial in the interests of morals, public order or national security in a democratic
society, where the interests of juveniles or the protection of the private life of the
parties so require, or to the extent strictly necessary in the opinion of the court in
special circumstances where publicity would prejudice the interests of justice.

2. Everyone charged with a criminal offence shall be presumed innocent until proved
guilty according to law.

3. Everyone charged with a criminal offence has the following minimum rights:

(a) to be informed promptly, in a language which he understands and in detail, of
the nature and cause of the accusation against him;

(b) to have adequate time and facilities for the preparation of his defence;

(c) to defend himself in person or through legal assistance of his own choosing or,
if he has not sufficient means to pay for legal assistance, to be given it free when
the interests of justice so require;

(d) to examine or have examined witnesses against him and to obtain the atten-
dance and examination of witnesses on his behalf under the same conditions
as witnesses against him;

(e) to have the free assistance of an interpreter if he cannot understand or speak
the language used in court.

DOMAIN DEFINITION

With the help of legal experts, a knowledge representation of Article 6 was created in
the form of an Abstract Dialectical Framework (ADF) (Collenette et al. 2023) using the
ANGELIC methodology (Atkinson and Bench-Capon 2023). A graphical representation of
this ADF was shown in Chapter 2 in Figure 2.6. We implemented the ADF of Article 6 based
on the updated and more granular version in Table A.1 of Collenette et al. (2023), which
differs slightly from the older, graphical representation in Figure 2.6. Please note that our
implementation is therefore not a one-to-one match to the graphical representation of
Figure 2.6.
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For the implementation of the ADF of Article 6, we created a custom Python library
called ‘ADFLib’. 4 In this library, ADFs are objects and have a value representing the final
value of the verdict: either violation or non-violation (the red nodes in Figure 2.6). As
described in Chapter 2, the value of the ADF is determined by first evaluating its reject
conditions, then its accept conditions and then its predetermined default value. The
accept and reject conditions are logical statements containing factors, that can evaluate
to true or false, based on the logical statement and the values of the factors, where factors
are legally relevant fact patterns. There are two types of factors: abstract factors and base
level factors. Abstract factors (the green nodes in Figures 2.6 and 2.7) have a value that is
determined by its reject conditions, its accept conditions and its default value. The issues
that determine the verdict (the yellow nodes in Figures 2.6 and 2.7) are a type of abstract
factor in our implementation. Base level factors act as the leaf nodes of the ADF and only
have a value that can be true, false or unknown (the blue nodes in Figures 2.6 and 2.7).
By ascribing values to the base level factors, one can traverse through the ADF using the
logical statements of the abstract factors in order to reach the verdict.

The version of the Article 6 ADF that we implemented consists of the verdict, 5 issues,
14 abstract factors and 32 base level factors (Collenette et al. 2023). The verdict is deter-
mined by the conjunction of the 5 issues. All five issues Ii therefore need to evaluate to
true in order for the verdict to evaluate to ‘violation‘:

V i ol ati on(x) () I1(x) ^ I2(x) ^ I3(x) ^ I4(x) ^ I5(x)

Our complete implementation of the ADF of Article 6 can be found in Table B.1 in Ap-
pendix B as well as on the GitHub repository of our ADFlib library3.

DATASETS

We generate artificial court cases using the Article 6 ADF, where each generated case
consists of the 32 base level factors, alongside the verdict of the case as determined by the
ADF. The result is a tabular dataset of court cases, such as the one shown in Table 4.6. We
use a unique code to represent each base level factor, where the xth baselevel factor of
the yth abstract factor of the zth issue is represented as I zF yQx. We use these datasets
to train and test our machine learning models. The datasets contain 5,000 artificial cases,
where the base level factors are generated randomly, but such that 50% of the cases in
the dataset violate Article 6 and 50% of the cases do not. Since the verdict is defined as a
conjunction of all the issues, the cases without violation are generated randomly such
that at least one issue evaluates to false. There are no further restrictions when generating
the dataset.

4Our ADFlib library can be found in the following GitHub repository: https://github.com/CorSteging/
ADFlib

https://github.com/CorSteging/ADFlib
https://github.com/CorSteging/ADFlib
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Table 4.6 | An example dataset of the Article 6 domain with five instances, where the rows represent the
instances and the columns represent the features. The labels of the instances, i.e., the values of feature ‘Viola-
tion’ in the last column, are marked in bold.

ID I1Q1 I2Q1 I2F1Q1 I2F1Q2 I3F4Q1 I3F5Q1 I3F1Q1 I3F1Q2 I3F2Q1 I3F2Q2 I3F3Q1 I3F3Q2 ...
0 True True True True True True True True True True True False
1 False True True True True True True True True True False False
2 True True True True True True True True True True False True
3 True True False True True True True True True True True True
4 True True True True True True True True True True True False

... I3F3Q3 I3F3Q4 I3F3Q5 I3F3Q6 I3F6Q1 I3F6Q2 I3F6F1Q1 I3F6F1Q2 I4Q1 I4Q2 I4Q3 I5Q1 ...
False True False False False True False False True True True True
True False False False True True True True True True True True
False True False False True True False False True True True True
False False False False False True True True True True True True
True False False False True True False True True True True True

... I5Q2 I5F1Q1 I5F1Q2 I5F1Q3 I5F2Q3 I5F2Q1 I5F2Q2 I5F3Q1 I5F3Q2 I5F4Q1 I5F4Q2 Violation
True True True True True False True True True True True True
True True True True True False True True True True True False
True True True True True False True True True True True True
True True True True True False False True True True True False
True True True True True False False True True True True True

4.6. AVAILABILITY OF RESOURCES

All of the domains and datasets have been made publicly available. The code and datasets
for the (simplified) welfare benefit domain and tort law domain can be found at https:
//github.com/CorSteging/LegalResources . The code to generate datasets for the
Article 6 domain, as well as the ADFlib library, are available at https://github.com/
CorSteging/ADFlib .

4.7. CONCLUSION

In this chapter, we have described the four domains in which our TREI method will be
evaluated. Each domain is represented as a knowledge structure. Based on this knowledge
structure, datasets are generated. We have described these domains, datasets and their
properties. In the upcoming chapter, machine learning models will be trained on the
datasets. These machine learning models will be used to illustrate the potential of our
TREI method to evaluate the rationale of such models.

https://github.com/CorSteging/LegalResources
https://github.com/CorSteging/LegalResources
https://github.com/CorSteging/ADFlib
https://github.com/CorSteging/ADFlib
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TREI: TAILORED RATIONALE

EVALUATION AND IMPROVEMENT

Responsible AI systems make the right decisions using the right rationale. In this chapter
we introduce our TREI method, which stands for Tailored Rationale Evaluation and
Improvement, a learning-to-reason method for inducing desirable reasoning in data-
driven AI systems. We employ TREI in a set of experiments and show that it can be used to
assess and refine the rationale of machine learning models. After introducing the method,
we first report on the models that we use during our experiments. We train these models
on the datasets described in Chapter 4. These datasets were generated based on a set of
conditions, which act as the desired rationale. By applying each of the four steps of the
TREI method to the models, we evaluate the models using contemporary performance
metrics (including explainable AI methods), evaluate its rationale using specialized test
sets, and then improve its rationale using tailored training datasets.

5.1. INTRODUCING THE TREI METHOD

To investigate and improve the rationales of AI systems in order to ensure responsi-
ble behavior, we introduce the Tailored Rationale Evaluation and Improvement (TREI)
method: a knowledge-driven, model-agnostic method for evaluating and improving the
decision-making of data-driven AI systems. The method consists of four steps:

1. Measure the performance of the trained system using contemporary evaluative
measures;

2. Design rationale evaluation test sets for rationale evaluation, targeting selected
rationale elements based on expert knowledge of the domain;

3. Evaluate the rationale through the performance of the trained system on these
rationale evaluation test sets;

71
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4. Improve the rationale if needed, by re-training the system on a tailored training
dataset, designed using the results from the rationale evaluation.

The first step assesses the general performance of a learned model. Contemporary mea-
sures include evaluations such as accuracy, F1-scores and Matthew’s Correlation Coeffi-
cient (see Chapter 3), but also explainable AI methods. Other measures can be employed
as well. The second step creates cases that are used to examine whether the rationale of
the model adheres to certain rationale elements: rules, norms or desired behavior. These
rationale elements can represent either a ground truth rationale or a desired rationale.
Human domain knowledge is needed for identifying the rationale elements, which are
then used to design the rationale evaluation test sets. Hence the method is effectively
a human-in-the-loop solution for rationale evaluation, in the sense that the method
supports the development of responsible human-machine collaboration (Akata et al.
2020). In the third step, performance is again evaluated, now by also examining model
output and expected output in terms of the rationale evaluation test sets. This rationale
evaluation is an additional metric that allows us to determine to what degree the model
follows the true or desired rationale as defined by domain experts in a quantitative way.
After evaluating the rationale, the knowledge gained from this evaluation can be used
to improve the rationale of the system by adjusting the training data accordingly. This
fourth step allows us to effectively impose a sound or desired rationale onto the system.

We apply and study the TREI method in a number of settings and experiments. A major
inspiration for the TREI method is the study done by Bench-Capon in 1993, in which
neural networks are tasked with learning an open texture legal problem (Bench-Capon
1993). This domain, as well as the other domains and datasets that we use, are described
in Chapter 4. We apply the TREI method to these domains step-by-step for this purpose
we construct three types of datasets:

• Regular datasets are artificial datasets generated from the four domains, and are
described in Chapter 4. The first step of the TREI method assumes the availability
of a trained model and an associated test set. We use these regular datasets to train
models and report the performance of the trained models. We also evaluate these
models using LIME and SHAP, two contemporary explainable AI methods.

• Rationale evaluation datasets are designed in the second step, as described in
Section 5.4 of this chapter. These rationale evaluation datasets are designed based
on domain knowledge as described by human experts. We therefore require human
experts to analyse the domain and prescribe the true or desirable rationale in
order to create test sets that we can use to evaluate that rationale. We report the
performance of the trained systems on these rationale evaluation datasets in the
third step (see Section 5.5 of this chapter), and evaluate their rationale accordingly.

• Tailored training datasets are used in the fourth and last step of the method, where
we tailor the training dataset specifically to improve the rationale, based on knowl-
edge gained through the rationale evaluation of the previous step. In Section 5.6, we
detail the design of these tailored datasets and report the performance of systems
trained on the tailored training datasets.
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5.2. TRAINING THE MODELS

We demonstrate the TREI method for assessing and improving model rationale on a
selection of data-driven models. In this section we describe the selected models. The
method is model-agnostic, and therefore any machine learning model would suffice. We
choose to use multilayer perceptrons (MLPs), as these are simple black-box models and
they were also used in (Bench-Capon 1993). In the 1993 experiments, three MLPs were
used with one, two and three hidden layers, respectively. These MLPs were created using
the Aspirin software (Leighton and Wieland 1994), but the exact details regarding the
MLPs and its parameters (e.g., the learning rate, activation function, gradient descent
method) were left out of the original publication. The MLPs all had 64 input nodes (one
for each feature in the welfare benefit datasets), a varying number of nodes in the hidden
layers, and one output node that determines the eligibility.

In this chapter we will use a similar set-up and MLP architecture for all four domains.
The output is always a single node, representing either eligibility or duty to repair, de-
pending on the domain under consideration. The number of input nodes corresponds to
the number of features and is therefore dependent on the domain (see Table 4.1). More
specifically, the welfare benefit domain will have 64 input nodes, the simplified domain
will have 4, the tort law domain will have 10, and the Article 6 domain will have 32 input
nodes. The node configuration (i.e., number of nodes per layer) of each MLP is as follows,
where input represents the number of nodes in the input layer:

• One hidden layer MLP: input-12-1

• Two hidden layer MLP: input-24-6-1

• Three hidden layer MLP: input-24-10-3-1

The MLPClassifier of the scikit-learn package is used (Pedregosa et al. 2011). For the
(simplified) welfare benefit domain and the tort law domain, the MLPs use the sigmoid
function as their activation function, which was the most common activation function
when the original study was done. These MLPs use the Adam stochastic gradient-based
optimizer (Kingma and Ba 2015), with a constant learning rate of 0.001. For each domain,
we train MLPs on regular datasets as described. Per MLP, a total of 50,000 training iter-
ations are used with a batch size of 50. For the Article 6 domain, only a single MLP is
used with the default scikit-learn parameters: an MLP with a single hidden layer with
100 nodes, using the relu activation function, the Adam optimizer, and 50,000 training
iterations. Recall that the focus of this study is not on creating the best possible classifier,
but to demonstrate our model-agnostic method of evaluating the rationale.

5.3. TREI STEP 1: MEASURING THE PERFORMANCE OF THE

MODEL

Step 1 of the TREI method prescribes evaluating the performance of the system. For
each domain, we test the models on different, but similarly generated regular datasets,
ensuring that we do not train and test on the same data. We also apply explainable



5

74 5. TREI: TAILORED RATIONALE EVALUATION AND IMPROVEMENT

Table 5.1 | Mean MCC values and standard deviations of the MLPs trained and tested on regular datasets for
each domain. Note that a different MLP was used in the Article 6 domain.

Domain Welfare Benefit Simplified Tort Law Article 6
Instances 2,400 50,000 50,000 500 5,000 5,000
1-layers 97.78±0.47 99.8±0.03 98.35±0.14 97.03±0.86 100±0 -
2-layers 97.62±0.52 99.79±0.04 99.28±0.21 98.28±0.83 100±0 -
3-layers 97.73±0.45 99.78±0.05 99.18±0.37 96.83±1.29 99.75±0.76 -
Mean 97.71±0.48 99.79±0.04 98.94±0.24 97.38±0.99 99.92±0.25 99.49±0.22

AI methods to the models. Combined, these two evaluative measures will give us an
indication of the overall performance of the models for the given domains. We evaluate
the models using both the Matthew’s Correlation Coefficient (MCC, see Section 3.3.4) and
XAI techniques.

PERFORMANCE

The Matthew‘s Correlation Coefficient (MCC) of each MLP, trained and tested on regular
datasets, is shown in Table 5.1 for each domain. These are mean MCC values and standard
deviations across 50 runs. For all of the datasets, the generating process is stochastic
and repeated for every repetition of an experiment. Using the same type of dataset, for
example training and testing a neural network on the same type of dataset, does therefore
not mean using the exact same dataset. For the welfare benefit and the tort law domain,
results are shown for MLPs trained on a smaller dataset and for MLPs trained on a larger
dataset. For Article 6, we only show the mean results of the single MLP that was used.

Step 1 of the TREI method prescribes evaluating the performance of the systems. For
each domain, the MCC is at least 97. Training on more training instances increases the
MCC, as expected. We increased the number of training instances even further, but this
did not improve the performance, and we therefore do not explicitly report these results.
In the tort law domain, a ceiling effect can be observed when training the MLPs on 5,000
instances; both the 1-layer and 2-layer MLP obtain MCC values of 100. Note again that
these MLPs have been trained on every possible unique instance, which is uncommon in
practice. MCC values of the MLPs trained on the smaller tort law dataset are still quite
high, however, suggesting that the MLPs can generalise the domain. Furthermore, in all
domains the performance across the three MLPs is quite similar. In the upcoming results,
we will therefore display the mean MCC values across the three MLPs, rather than the
MCC of each individual MLP, unless mentioned otherwise.

EXPLAINABLE AI
Another contemporary method of evaluating the performance of machine learning sys-
tems is the use of Explainable AI (XAI) methods. In particular, we will use SHAP (Lundberg
and Lee 2017) and LIME (Ribeiro, Singh, et al. 2016), two commonly used explainable AI
methods, for explaining the models trained on the welfare benefit domain. We apply these
to the MLPs trained on 2,400 and 50,000 instances. We will apply both LIME and SHAP to
our trained MLPs, in order to make sure that our conclusions are explainer-independent.

To illustrate the explanation methods, we first examine the classification process and
its explanations using the example instance found in Table 5.2. In this example, all six
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Table 5.2 | An example instance from the welfare benefit domain dataset, which is explained using LIME and
SHAP in Figure 5.1

Age Gender Con1 Con1 Con3 Con4 Con5 Spouse Absent Resources Type Distance Eligible
84 female 0 1 1 1 1 1 0 1569 out 74 True

conditions are satisfied and therefore the instance is eligible for a welfare benefit. The
MLP with a single hidden layer trained on a dataset of 50,000 regular instances correctly
predicts this. Figure 5.1 shows the LIME and SHAP explanations of this MLP for the
given instance. The bar plots display the impact that each feature had on classifying
that instance, ranked from highest to lowest. Blue bars on the left contribute to the
’ineligible’ label, whereas the orange and red bars on the right contribute to an ’eligible’
label. Running the same experiment using MLPs with multiple hidden layers showed
similar results and are therefore omitted. Note that even though each instance has 64
features, only the top 15 features with the highest impact are shown.

We now consider the explanations for the entire test set to illustrate the global inter-
pretations of the MLPs. Since LIME does not natively possess a method for aggregating
sets of explanations, we will use SHAP’s summary plots. To ensure that the results are
explainer-independent, we also examined 10 LIME cases for each MLP. The LIME results
do not contradict any of the SHAP results and support the global interpretations of the
MLPs. A link to the repository containing all of these cases, as well as more examples
where we compare the LIME and SHAP explanations, can be found in Section B.1 of
Appendix B. The SHAP summary plots are created by explaining multiple instances and
aggregating their SHAP values. We aggregate across the entire regular test dataset. Fig-
ure 5.2 shows the average SHAP values for MLPs with a single hidden layer, trained on
2,400 instances (left) and 50,000 instances (right). Using MLPs with more hidden layers
yielded similar results in terms of both performance (see Table 5.1) and SHAP values, and
are therefore omitted in this experiment. These bar plots display the top 20 features that
have the highest average impact on the classification process, ranked from highest to
lowest.

In the welfare benefit domain, 12 features determine eligibility. Ideally, we hope
that these 12 features are given a high impact, while the noise features are given a low
impact. The SHAP values of the model trained on 2,400 instances show that 9 out of the
12 features are given a high impact (see Figure 5.2a). Distance to the hospital, patient-
type and gender are not considered impactful. This is interesting, considering the high
classification performance yielded by the MLPs (MCC of 97.71, see Table 5.1). This model
seems to make the right decisions for the wrong reasons, as it neglects 3 of the 12 key
features used in determining the output label. For the model trained on 50,000 instances,
11 of the 12 features are given a high impact value (see Figure 5.2b). The only feature that
is given a relatively low impact value is the gender feature. This can be accounted for,
however, since gender is only relevant when the person is a woman between 60 and 64,
which is a very small percentage of the data. Based on these impact scores, combined
with an MCC of 99.79 (see Table 5.1), we can conclude that the model makes the right
decisions and uses the right features.
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(a) LIME

(b) SHAP

Figure 5.1 | LIME and SHAP bar plots of the MLP trained on a regular dataset of 50,000 instances of the wel-
fare benefit domain, displaying the impact of each feature in the classification process towards the ’ineligible’
label (blue) or the ’eligible’ label (orange/red) of the instance in Table 5.2.
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(a) Trained on 2,400 instances (b) Trained on 50,000 instances

Figure 5.2 | SHAP summary bar plots of the MLPs trained on the Welfare Benefit domain displaying the
mean absolute impact of each feature in the classification process towards the ’ineligible’ label (blue) or the
’eligible’ label (red).

Figure 5.3 | Mean absolute SHAP values of the MLP across the regular test sets for each feature (base level
factor) in the dataset.
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We also use SHAP to investigate the models trained on datasets of the Article 6 domain.
Figure 5.3 shows the impact of each base level factor in the classification process of our
model (blue bars). Note that in this figure the x and y-axis are reversed when compared to
the SHAP figures of the welfare benefit domain in Figure 5.2. In this figure, we simplified
the names of the base level factors, such that the xth factor of the yth issue is represented
as I yF x. The blue bars in the figure show that all base level factors are used by the network
for determining the verdict, but some have a higher impact than others, especially the
base level factors belonging to issues I3 and I5 are given a relatively low impact value.

Overall, based on contemporary evaluative measures (step 1 of the TREI method), we
can therefore conclude that the models make the right decisions, as the MCC is high, and
use the right features to make those decisions, as evident from the XAI results.

5.4. TREI STEP 2: CREATING RATIONALE EVALUATION TEST

SETS

To test the rationale of the systems, we create specialized rationale evaluation test sets
for each domain, following step 2 of the TREI method. In order to do so, we must first
know what the true rationale is. In our current study, we know that all domains consist of
a conjunction of conditions, as defined in Chapter 4. If and only if all of the conditions are
true, the output label should be true. The conditions therefore define our true rationale.
If and only if the systems have learned each of the conditions correctly, they will have
learned the true rationale. It is, however, possible for the systems to have learned spurious
correlations. In other words, the systems can learn to map the input to the output without
having learned the six conditions. Therefore, for each domain we wish to examine whether
the systems are able to learn each of the conditions that define that domain.

WELFARE BENEFIT DOMAIN

For the welfare benefit domain, we generate six rationale evaluation datasets: one for each
of the six conditions that define the domain (C1 ¡ C6). Each of these rationale evaluation
test sets will test a single condition. The features of all rationale evaluation datasets are
generated randomly from a uniform distribution such that all conditions are satisfied,
except for the condition that it tests. The features of said condition are varied across their
full range of values. This way, the eligibility label is determined solely by one specific
condition. In turn, trained models will therefore only be able to predict the eligibility
labels in this rationale evaluation test set if they have learned the condition that it tests.

For each condition, we generate instances such that all possible combinations of
values of the features of that condition occur 1,000 times. The rationale evaluation test
set for a single-variable Boolean condition, such as C3, therefore has 2 ¤ 1000 Æ2000
instances. Due to the nature of the conditions, the label distribution of these rationale
evaluation test sets might be unbalanced. Because these test sets are only used to test the
MLPs, rather than to train the MLPs, this is not an issue.



5.4. TREI STEP 2: CREATING RATIONALE EVALUATION TEST SETS

5

79

The following rationale evaluation datasets are generated for the welfare benefit domain:
The Age-Gender datasets (C1) are generated by sampling the age and gender features

across their full range of values, this time considering only multiples of 5 for age. This
yields a total of 21 ¤ 2 Æ42 possible combinations for age and gender. The Age-Gender
datasets therefore contain 42,000 instances, where 40.48% are eligible and 59.52% are
ineligible.

The Contribution datasets (C2) are generated by sampling the contribution features
across their full range of values, yielding 25 Æ32 combinations for the Contribution
features. The Contribution dataset therefore contains 32,000 instances, where 18.75% are
eligible and 81.25% are ineligible.

The Spouse datasets (C3) are generated by sampling the Spouse feature across its
full range of values. This feature only has two possible values and the Spouse datasets
therefore contain 2,000 instances, where 50% are eligible and 50% are ineligible.

The Absent datasets (C4) are generated by sampling the Absent feature across its
full range of values. This feature only has two possible values and the Absent datasets
therefore contain 2,000 instances, where 50% are eligible and 50% are ineligible.

The Resources datasets (C5) are generated by sampling the resources feature across
its full range of values, this time considering only multiples of 50. This yields a total of
201 possible combinations for the Resources feature. The Resources dataset therefore
contains 201,000 instances, where 30.35% are eligible and 69.65% are ineligible.

The Patient-Distance datasets (C6) are generated by sampling the distance and patient
type features across their full range of values, this time considering only multiples of 5
for distance. This yields a total of 21 ¤ 2 Æ42 possible combinations for patient type and
distance. The Patient-Distance datasets therefore contain 42,000 instances, where 50%
are eligible and 50% are ineligible.

SIMPLIFIED WELFARE BENEFIT DOMAIN

For the simplified welfare benefit domain, similar rationale evaluation datasets are gen-
erated as in the regular welfare benefit domain. Since this domain is defined solely by
conditions C1 and C6, we therefore generate two rationale evaluation datasets for this
domain: an Age-Gender dataset and a Patient-Distance dataset. These are constructed in
the same fashion as in the regular welfare benefit domain, but without the noise variables
and the variables that belonged to conditions C2 ¡ C5.

TORT LAW DOMAIN

In the tort law domain, five conditions c1 ¡ c5 define the domain. Therefore we generate
five rationale evaluation datasets, one for each condition. Again, each rationale evaluation
dataset is generated such that every condition is satisfied except for the condition that we
are testing for. The values of the features of that condition will be varied across their full
range of values. This way, the ‘duty to repair’ label is determined solely by one specific
condition. Due to the limited scope of the tort law domain (only 1024 unique cases), we
can generate rationale evaluation datasets that consist of all unique cases that fit the
requirements. Recall that there are inter-dependencies between the conditions in the tort
law domain, unlike in the welfare benefit domain: certain features are used in multiple
conditions. Because of these constraints, fewer instances can be generated for particular
rationale evaluation datasets.



5

80 5. TREI: TAILORED RATIONALE EVALUATION AND IMPROVEMENT

The following rationale evaluation datasets are generated for the welfare benefit domain:
The Caused datasets (c1) are generated by sampling the cau feature across its full range

of values. The datasets contain 224 instances, where 50% have a duty to repair damages
and 50% do not.

The Imputability datasets (c2) are generated by sampling the ico, ila and ift features
across their full range of values. The datasets contain 128 instances, where 87.5% have a
duty to repair damages and 12.5% do not.

The Unlawfulness datasets (c3) are generated by sampling the vun, vst, vrt and jus
features across their full range of values, but taking into account that the other five
features remain satisfied. Note here that the vst feature is also part of condition c5 and
can therefore not be true if prp is false (see Figure 4.1). The datasets therefore contain 168
instances, where 66.67% have a duty to repair damages and 33.33% do not.

The Damages datasets (c4) are generated by sampling the dmg feature across its full
range of values. The datasets contain 224 instances, where 50% have a duty to repair
damages and 50% do not.

The Violation-Purpose datasets (c5) are generated by sampling the vst and prp features
across their full range of values, taking into account that the other five features remain
satisfied. The datasets contain 154 instances, where 72.73% have a duty to repair damages
and 27.27% do not.

ARTICLE 6 DOMAIN

In the Article 6 domain, the verdict is defined as a conjunction of five issues. The network
must therefore have learned each issue in order for its decision making to be sound. The
issues play a similar role as the conditions in the other domains. To investigate to what
extent the networks learned these individual issues, we generate rationale evaluation test
sets for each of these five issues.

For each Issue Ix , we create a different rationale evaluation test set, where all issues
evaluate to true, except for Issue Ix . The base level factors (features) of Issue Ix are given
random values (true or false). This way, the verdict is determined solely by whether Issue
Ix evaluates to true, as the verdict is a conjunction of all issues. A network is therefore
only able to predict the verdict of these specific rationale evaluation cases correctly if it
has correctly learned Issue Ix . We create five such rationale evaluation test sets, one to
test for each of the five issues. Each rationale evaluation test set contains 5,000 instances.

5.5. TREI STEP 3: RATIONALE EVALUATION

Step 3 of the TREI method consists of evaluating the rationale of our trained MLP models
by measuring their performance on the rationale evaluation datasets. Tables 5.3, 5.4, and
5.5 show the mean MCC and standard deviations of the MLPs on the rationale evaluation
datasets, for the welfare benefit, simplified welfare benefit domain, tort law domain, and
Article 6 domain respectively. Note that these are the average MCC across 50 test runs
and across all three MLP models, with the exception of Article 6, where a single MLP was
used across 100 runs. For the MCC of these models on the regular test sets, see Table 5.1.
We now discuss the results for each domains.
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Table 5.3 | Welfare benefit domain: mean MCC values and standard deviations across all MLPs on the ratio-
nale evaluation test sets after training on the regular training datasets.

Domain Welfare Benefit Simplified
Training instances 2,400 50,00 50,000

Age-Gender 27.38 ± 6.15 46.8 ± 5.27 99.52 ± 0.47
Contributions 46.57 ± 5.05 65.35 ± 5.3 -

Spouse 55.44 ± 9.27 92.68 ± 4.09 -
Absent 84.55 ± 8.82 94.24 ± 4.11 -

Resources 44.16 ± 5.31 54.17 ± 4.74 -
Patient-Distance 0.55 ± 0.94 41.86 ± 4.95 96.31 ± 0.87

WELFARE BENEFIT DOMAIN

We now discuss the results on the welfare benefit domain. In the first step of the TREI
method, we established a high performance on the regular dataset. Interestingly, the
MCC on the rationale evaluation datasets are consistently lower. In Table 5.3 we can
even see that the MCC on the rationale evaluation datasets tends to approach 0 on the
Patient-Distance test set when training on 2,400 instances, which is as good as a coin
toss. In step 1, we showed that the MLPs trained on 50,000 instances use the correct
features, as indicated by the SHAP impact values (see Figure 5.2b). The MCC values of
these models on the rationale evaluation datasets are also better than those trained on
fewer instances, as they increase to a minimum of around 41.86. However, even with more
training data, these MLPs still perform well on a regular test set, but poorly on some of the
rationale evaluation datasets. What this implies, is that the MLPs are unable to learn some
of the conditions, despite a high overall performance on the test set and despite using the
correct features. Instead, they most likely learn spurious correlations that often lead to
the right decisions. In other words, these systems make the right decisions based on the
right features, but for the wrong reasons. The Age-Gender, Contributions, Resources and
Patient-Distance conditions seem especially challenging for the MLPs, as these have the
lowest MCC values.

We can explore the rationale evaluation graphically in more detail. We focus on
conditions C1 (Age-Gender) and C6 (Patient-Distance), as the MLPs score poorly on those
conditions. In the welfare benefit domain, the Age-Gender dataset is used to measure
how well condition C1 is learned, that is, whether the MLPs output 1 if the individual is of
pensionable age (male and over the age of 65 or female and over the age of 60), and output
0 otherwise. Plotting the age of the individuals from the Age-Gender dataset against the
output of the MLP, for each gender, should ideally result in the graph on the left side of
Figure 5.4. Here the output of the MLP spikes instantly from 0 to 1 at the age of 60 for
women and 65 for men. The actual output of our MLPs are shown in Figure 5.5a and
Figure 5.5c, for the MLPs trained on 2,400 and 50,000 instances respectively. These show
poor approximations of the condition, further demonstrating that the MLPs did not learn
the Age-Gender condition.
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Figure 5.4 | An idealistic expectation of the outputs of a MLP on the Age-Gender dataset versus the age for
both genders (left) and on the Patient-Distance dataset versus the distance for both patient types (right).

Similarly, for cases from the Patient-Distance dataset, the MLPs should only output 1
(eligible) if the relative is an in-patient and the distance to the hospital is less than 50
miles, or if the relative is an out-patient and the distance to the hospital is beyond 50
miles (condition C6). This is an XOR-type relationship, which is generally more difficult
to learn (Hirose et al. 1991). Plotting the distance against the output of the MLP for both
types of patients would ideally result in the graph shown on the right in Figure 5.4. The
actual output of our MLPs are shown in Figure 5.5b and Figure 5.5d, for the MLPs trained
on 2,400 and 50,000 instances respectively. These outputs differ quite substantially from
the ideal outputs as well, indicating that the MLPs did not learn the Patient-Distance
condition either.

For both conditions, the outputs of the MLPs trained on more instances are closer
to the ideal results than the outputs of the MLPs trained on fewer instances. They are,
however, still poor approximations. Note again we trained on even more data, but this
did not improve our result.

SIMPLIFIED WELFARE BENEFIT DOMAIN

In the simplified domain, the performance of the MLPs on the Age-Gender dataset and
Patient-Distance dataset are quite high (see Table 5.3), and much higher than the perfor-
mance of the MLPs on those datasets in the regular domain. In a simplified setting, the
MLPs are therefore able to learn these conditions. This suggests that the other conditions
in the regular domain might interfere with the model’s ability to successfully learn indi-
vidual conditions. This is represented graphically in Figure 5.5e and Figure 5.5f for the
Age-Gender and Patient-Distance condition respectively: these results are very close to
the ideal results shown in Figure 5.4.
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(a) trained on 2,400 instances (b) trained on 2,400 instances

(c) trained on 50,000 instances (d) trained on 50,000 instances

(e) Simplified domain (f ) Simplified domain

Figure 5.5 | For all training sets from the (simplified) welfare domain: mean MLP output vs age on Age-
Gender test set (a, c, e) and mean MLP output vs distance on Patient-Distance test set (b, d, f).
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Table 5.4 | Tort law domain: mean MCC values and standard deviations across all MLPs on the rationale
evaluation test sets after training on the regular training datasets.

Tort law
Training instances 500 5,000

Unlawfulness 87.11 ± 8.97 99.94 ± 0.43
Imputability 52.79 ± 29.76 99.65 ± 1.23

Cause 99.53 ± 0.77 100.0 ± 0.0
Damage 99.6 ± 0.83 100.0 ± 0.0

Violation-Purpose 92.29 ± 8.17 99.85 ± 1.07

Table 5.5 | Article 6 domain: mean MCC values and standard deviations across 100 runs on the rationale
evaluation test sets after training on the regular training datasets.

Article 6
Training instances 5,000

Issue 1 100.0±0.00
Issue 2 99.80±0.36
Issue 3 93.09±1.38
Issue 4 99.99±0.09
Issue 5 94.94±2.00

TORT LAW DOMAIN

The results of the tort law domain in Table 5.4, show us that the Cause and Damage
conditions were learned perfectly by the MLPs trained on a larger dataset. The Unlawful-
ness, Imputability and Violation-Purpose were not learned perfectly, although the MCC
is still high. Performance all conditions is lower when training the MLPs on a smaller
dataset. Even though the overall performance is quite high, the TREI method can be
used to accurately point out where the MLPs might make mistakes. In this specific situa-
tion, the MLPs apparently make mistakes in learning the Unlawfulness, Imputability and
Violation-Purpose conditions, although its approximation is very close when training on
more data.

ARTICLE 6 DOMAIN

The results of the MLP trained on the Article 6 datasets are shown in Table 5.5. Compared
to the MCC of 99.49 on the regular dataset, the model performed well on most of the
rationale evaluation test sets. However, the performance on two of the issues, I3 and I5,
was lower, with MCC values of 93.09 and 94.94 respectively. This is most likely due to
the differences in complexity of the issues (see Table B.1 and (Collenette et al. 2023) for
the full ADF). Issue 1, which is a simple 1-variable Boolean function, was picked up by
the system, as it has a MCC value of 100 on its respective rationale evaluation dataset.
Issues 2 and 4 were also quite simple: both 3-variable conjunctions, which the network
was able to learn with an MCC of 99.80 and 99.96 respectively. Issues 3 and 5, the more
complex issues of the ADF, were not as learned as well, with MCCs of 93.09 and 94.94
respectively. That some conditions were better learned than others can also be seen in
Figure 5.3, where we used SHAP to explain the network. The base level factors belonging
to issues I3 and I5 are given a low impact value, confirming the rational evaluation results.
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Across all four domains, the models perform well on the test sets. Furthermore, evaluating
them with explainable AI techniques shows that the right features are used by the model
in the classification process. Following our TREI method, however, we show that some of
the conditions that define the domains were not learned by the models. In other words,
the systems learn to make the right decisions for the wrong reasons, using the correct
features. For a system to behave responsibly, we want it to make the right decisions for
the right reasons.

5.6. TREI STEP 4: IMPROVING THE RATIONALE

Now that we know the limitations of the correctness of the rationales learnt by the systems,
we want to make adjustments such that the behavior of the system improves. Following
step 4 of the TREI method, we adjust the training data based on our rationale evaluation,
such that the MLPs are better able to learn the conditions that define the domain as
described in Chapter 4, thus improving their rationales. We refer to these new types of
training datasets as the tailored training datasets. We omit the tort law domain as both
the performance on the regular test set and the performance on the rationale evaluation
test sets in that domain were already satisfactory, given sufficient training instances.

DESIGNING TAILORED TRAINING DATASETS

In both the welfare benefit domain and the Article 6 domain, the label is determined
by a conjunction of conditions. If and only if all of the conditions are true, the output
is true. Training the MLPs on a regular training dataset leads to an imperfect rationale,
as some of the conditions are not learned by the system (see Table 5.3 and 5.5). The
MLPs have therefore learned spurious correlations that accurately map the input to the
output. We also showed that it is possible for MLPs to learn the conditions of the welfare
benefit domain in a simplified manner, where only two of the six conditions play a role.
The spurious correlations that the MLPs learn from the regular training dataset might
therefore be caused by interference of other conditions. A solution might be to provide
the MLPs with training data in which these conditions do not interfere with each other.

WELFARE BENEFIT DOMAIN

Recall that the regular training dataset in the welfare benefit domain consists of 50%
ineligible and 50% eligible instances. In the ineligible instances, at least one of the
conditions should be false. In particular, we distributed the data such that all ineligible
instances fail on each condition uniformly, but such that multiple conditions can be false
when an instance is ineligible. In fact, when analysing the dataset we discovered that
on average 4.1 conditions are not satisfied in ineligible cases in a regular dataset. In the
original 1993 study it was shown through statistics that using only 4 out of 6 conditions
is theoretically sufficient for classifying 98.95% of the instances correctly (Bench-Capon
1993). Our models might therefore be stuck in a local optimum, where they ignore some of
the conditions that define the domain. In order for the model to act responsibly, however,
we want them to learn all of the conditions that define the domain.
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A new tailored training dataset is generated such that ineligible instances fail on only
a single condition. This way, each ineligible instance introduces only one failed condition
to the model at a time, reducing the interference effect of other conditions when the
system learns the rationale. This should make it easier for machine learning models to
extrapolate the individual conditions. The tailored training dataset still contains the same
number of features, instances and label balance as the regular training dataset. We also
ensure that an equal number of cases fail on each condition.

SIMPLIFIED WELFARE BENEFIT DOMAIN

For the simplified welfare benefit domain, we create tailored training datasets in a similar
fashion as in the regular welfare benefit domain. In these tailored training datasets,
ineligible instances fail on only a single condition: either on C1 or C6, but not on both.
Each training set still contains the same number of features, instances and label balance
as before, and we ensure that an equal number of cases fail on each of the two conditions.

ARTICLE 6 DOMAIN

To improve the rationale of the models trained on the Article 6 domain, we create tailored
training datasets in a similar fashion as in the welfare benefit domain. Based on the
evaluation of the rationale, we know that a few issues were not learned as well by the
systems. In the original training data, at least one of the issues would be false if the case
did not violate Article 6. Statistically, this means that multiple issues usually evaluate to
false in those cases. Providing the model with multiple issues at the same time might
be too complex, and thus prompt the model to learn spurious correlations. In this new
tailored training dataset, we therefore generate cases in which only one issue evaluates to
false when the case evaluates to a non-violation.

The tailored dataset also consists of 5,000 cases, where half of the cases violate Article
6, and the other half do not, just as in the regular training dataset. However, in the cases
that do not violate Article 6, only one issue is false. This should make it easier for the
model to pick up on the individual issues.

Note that we effectively create these new tailored training datasets by sampling specific
instances from the complete distribution; across all domains, only ineligible instances
with a single failed condition or issue, rather than ineligible instances with any number
of failed conditions or issues. It is therefore biased in the sense that we remove complex
instances that might disturb the desirable rationale of the model. Note that the tailored
datasets are only used for training the model and not for testing it; for the latter we use
the regular datasets and the rationale evaluation datasets.

EVALUATING THE TAILORED RATIONALES

We train the MLPs on their respective tailored datasets and repeat steps 1, 2 and 3 of
the TREI method: test the MLPs using regular test sets and rationale evaluation datasets.
The results for all domains, averaged across multiple runs (50 for the welfare benefit, 100
for article 6) and across all three MLPs (for the welfare benefit domain), are shown in
Table 5.6.
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Table 5.6 | Performance and rationale evaluation of MLPs trained on regular versus tailored training datasets.
Displays mean MCC values of all MLPs across 50 runs on the regular and rationale evaluation test sets for the
(simplified) welfare benefit and Article 6 domain.

Domain Welfare Benefit Simplified Article 6
Training instances 2,400 50,000 50,000 5,000

Training type Regular Tailored Regular Tailored Regular Tailored Regular Tailored
Regular 97.77 ± 0.55 90.27 ± 8.14 99.58 ± 0.1 98.64 ± 0.82 98.92 ± 0.36 99.2 ± 0.63 Regular 99.49±0.22 99.90±0.07

Age-gender 27.38 ± 6.15 70.68 ± 7.17 46.8 ± 5.27 95.43 ± 1.46 99.52 ± 0.47 99.44 ± 0.36 Issue 1 100.0±0.0 100.0±0.0
Contributions 46.57 ± 5.05 60.23 ± 8.74 65.35 ± 5.3 98.4 ± 0.88 - - Issue 2 99.80±0.36 100.0±0.0

Spouse 55.44 ± 9.27 90.4 ± 8.06 92.68 ± 4.09 98.61 ± 0.95 - - Issue 3 93.09±1.38 98.34±0.51
Absent 84.55 ± 8.82 90.46 ± 8.12 94.24 ± 4.11 98.68 ± 0.88 - - Issue 4 99.99±0.09 100.0±0.0

Resources 44.16 ± 5.31 68.73 ± 6.76 54.17 ± 4.74 93.04 ± 1.51 - - Issue 5 94.94±2.0 99.08±0.54
Patient-Distance 0.55 ± 0.94 62.18 ± 19.46 41.86 ± 4.95 93.1 ± 1.23 96.31 ± 0.87 97.64 ± 1.0

(a) Trained on regular datasets with 2,400 instances (b) Trained on regular datasets with 50,000 instances

(c) Trained on tailored datasets with 2,400 instances (d) Trained on tailored datasets with 50,000 instances

Figure 5.6 | SHAP summary bar plots of the MLPs trained on regular (a, b) and tailored (c, d) datasets of the
welfare benefit domain displaying the mean absolute impact of each feature in the classification process
towards the ’ineligible’ label (blue) or the ’eligible’ label (red).



5

88 5. TREI: TAILORED RATIONALE EVALUATION AND IMPROVEMENT

WELFARE BENEFIT DOMAIN

After retraining the models using the tailored datasets, we now need to check whether
the effort has indeed improved the rationale used in the models. In order to establish
this, we evaluate the retrained models by applying step 1 and 3 of our TREI method: we
determine the MCC performance scores and apply the XAI methods LIME and SHAP, and
then test their rationale using our rationale evaluation test sets. The MCC of the models
on the regular test set and rationale evaluation test sets are shown in Table 5.6. We also
apply SHAP to our trained MLPs, and the impact values of these MLPs are shown in Figure
5.6, alongside the impact values of the MLPs trained on a regular dataset. Again, in order
to ensure that the results are explainer-independent, we also examined 10 LIME cases
for each MLP and each domain (60 in total). Additionally, we plot the output of the new
models against the age feature for the age-gender test set, and the output of the model
versus the distance feature for the patient-distance test set. To illustrate the improved
rationale, we show the outputs of models trained on the regular training dataset next to
the outputs of the models trained on the tailored training dataset in Figure 5.7 for the
age-gender condition, and in Figure 5.8 for the patient-distance condition.

Training the MLPs on the tailored data for the welfare benefit domain seems to have a
positive effect on the rationale of the systems. Although we see a slight decrease in MCC
in Table 5.6 when testing the MLPs on the regular dataset (0.94 when training on 50,000
instances), there is a significant increase in MCC on the rationale evaluation datasets.
These results hold true with both the smaller and larger dataset sizes. The SHAP plot of
the model trained on 2,400 tailored instances (Figure 5.6c) displays high impact values
for 11 out of the 12 relevant features, with gender being the only feature with a relatively
low impact value. Again, this can be accounted for, as gender only plays a role in a small
percentage of instances in the dataset. These are better results than those of the model
trained on 2,400 regular instances (see Figure 5.2a). The model trained on 50,000 tailored
instances shows nearly ideal impact scores: high impact values are attributed to all of the
relevant features. Using the TREI method, we were therefore able to improve the rationale
of the MLPs. In the simplified version of the Welfare benefit domain, the initial results are
not as poor: Table 5.6 shows that training these MLPs on the tailored dataset therefore
does little to improve the performance.

Graphically we see a major effect of tailored training on the conditions C1 and C6
of the welfare benefit domain as well, as evident from Figure 5.7 and 5.8. For both C1
and C6, we see that the poor approximations of the ideal results when training on the
regular dataset are improved significantly when training on tailored datasets, especially
with more data. The conditions were already learned almost perfectly by MLPs trained on
regular datasets in the simplified domain. The graphs confirm that training on a tailored
dataset has little effect in the simplified domain.
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(a) Regular (2,400) (b) Tailored (2,400)

(c) Regular (50,000) (d) Tailored (50,000)

(e) Regular (simplified) (f ) Tailored (simplified)

Figure 5.7 | For all training sets from the (simplified) welfare domain: mean MLP output vs age on Age-
Gender test set when trained on regular training sets (a,c,e) and on tailored training sets (b,d,f).
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(a) Regular (2,400) (b) Tailored (2,400)

(c) Regular (50,000) (d) Tailored (50,000)

(e) Regular (simplified) (f ) Tailored (simplified)

Figure 5.8 | For all training sets from the (simplified) welfare domain: mean MLP output vs distance on
Patient-Distance test set when trained on regular training sets (a,c,e) and on tailored training sets (b,d,f).
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Figure 5.9 | Mean absolute SHAP values of the MLP trained on the regular dataset (blue) and the MLP trained
on the tailored dataset (orange) across the regular test sets for each feature (base level factor) in the dataset.

ARTICLE 6 DOMAIN

While the original model trained on the regular dataset of the Article 6 domain performed
well on the regular test set, the model trained on the tailored training dataset performs
slightly better, as seen in Table 5.6. When it comes to making the correct decisions, it is
therefore better to train on the tailored dataset. This tailored version of the model also
performs better on each of the rationale evaluation datasets, indicating that the rationale
of the model has improved. This can also be seen in Figure 5.9, where we plot the SHAP
values of the tailored model (orange bars) alongside the SHAP values of the model trained
on the regular dataset (blue bars, previously seen in Figure 5.3). While still giving a high
impact value to simpler conditions, such as Issue 1, 2 or 4, which all reach an MCC of 100
on the rationale evaluation test sets (see Table 5.6), the tailored model also gives higher
impact values than the original model to the factors belonging to Issue 3 and 5, which
also have an increase in MCC on the rationale evaluation test sets.

5.7. DISCUSSION AND CONCLUSION

Determining how an AI system should behave is only the first step towards responsible AI.
In the second step, we must ensure that the AI actually behaves as desired. To this end, we
introduce TREI: a knowledge-driven, model-agnostic method for rationale evaluation and
improvement. By creating rationale evaluation datasets using domain knowledge, we can
evaluate the decision-making of trained machine learning systems. Using the knowledge
gained from this evaluation, we created tailored training datasets that improved the
rationale of these systems.
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We have applied our TREI method to four different domains. In the welfare benefit
domain, tort law domain, and Article 6 domain, a high performance may be obtained
without having a sound rationale. Systems can therefore make the right decisions for the
wrong reasons. This confirms results reported about the Welfare domain in other studies
that used this domain and similar datasets (Možina et al. 2005; Wardeh et al. 2009a).
Using the TREI method, we can illustrate where the problems occur, as evident from
Tables 5.3, 5.4, and 5.5. In the tort law domain, we have shown that the unsound rationale
is primarily caused by the Unlawfulness, Imputability and Violation-Purpose conditions.
These conditions were not learned perfectly by the MLPs. In the Article 6 domain, Issues 3
and 5 proved most difficult for our models to learn. Using the TREI method in the welfare
benefit domain, we show that the MLPs do not learn all of the six conditions despite a
high initial classification accuracy. In the simplified welfare benefit domain, where we
only evaluate two of the six conditions that the MLPs are unable to learn in the regular
welfare benefit domain, the MLPs are able to learn the conditions. We therefore know
that the MLPs can learn these two conditions, but also that they are unable to learn them
in combination with the other four conditions. This suggests that the interaction effect
occurs when the additional conditions are introduced, in which spurious correlations in
the data direct the MLPs away from learning the correct rationale.

In previous research, Explainable AI methods have been used to expose unsound
rationales (Ribeiro, Singh, et al. 2016). In the welfare benefit domain, we find that the
rationale of models trained on smaller regular training datasets are unsound (see Table 5.3,
which is also clearly exposed in the SHAP values of Figure 5.2a). This suggests that
explainable AI methods can be used to evaluate the rationale of trained systems to some
extent. When training on more data points, however, the unsoundness of the rationale
is not as clearly exposed. Figure 5.2b assigns high impact values to all of the relevant
features (except for gender, though its small impact can be accounted for). This makes it
seem as if the rationale is sound, whereas the method for rationale evaluation has shown
that it is not (see Table 5.3). Based solely on the SHAP and LIME explanations, we would
not be able to know that the rationale is unsound for the networks trained on a large
regular dataset. Therefore, even though the XAI methods can expose a faulty rationale,
they cannot guarantee a sound rationale. These results show that it is not only possible
to make the right decisions without knowing exactly why, but it is also possible to know
what is important without knowing exactly why. In other words, we find that systems that
have both a high accuracy and assign high importance to the correct features are still not
guaranteed to use a sound rationale. Our TREI method can therefore be used in addition
to these contemporary evaluative measures in order to provide insights into the rationale
of data-driven AI systems.

Following the fourth step of our TREI method, we created tailored training datasets
based on the rationale evaluation of our models. In the (simplified) welfare benefit domain
and the Article 6 domain, a high performance was achieved by the models without a sound
rationale. By investigating where the models make mistakes, we were able to tailor the
training data. Retraining the models on this tailored training data yields a better rationale,
as evident from the model’s performance on the rationale evaluation test sets. In all
domains and for the different training set sizes that we explored, the rationale is improved
by training on the tailored training datasets. In the Article 6 domain, training on the
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tailored training dataset also increased overall performance. This means that there does
not necessarily need to be a trade-off between performance and a desirable rationale,
and that a desirable rationale can lead to a better performance. In the upcoming chapter,
we further investigate the TREI method and its capabilities to improve rationales and
performance under imperfect circumstances, including small datasets, inconsistencies
and missing values.





6
CAPABILITIES AND LIMITATIONS OF

THE TREI METHOD

In Chapter 5 we have introduced the TREI method and have shown in a set of experiments
that the TREI method can be used to evaluate the rationale of data-driven AI systems.
Furthermore, we illustrated the way in which the TREI method can be used to improve the
rationale. In this chapter, we further investigate rationale improvement using the TREI
method under various circumstances, including limited dataset sizes, inconsistencies
and missing values. Additionally, we discuss the application of the TREI method and its
limitations.

6.1. INTRODUCTION

We have shown using the TREI method that the rationale can be improved by tailoring the
training dataset. We did this by sub-sampling the original regular dataset using specific
criteria based on the rationale evaluation. In this chapter, we further focus on the fourth
step of the TREI method, and explore the rationale improvement capabilities of the TREI
method in four experiments.

First of all, we investigate to what extent the training dataset needs to be tailored in
order to achieve a satisfactory rationale. We do this by creating mixed training datasets
that include both tailored and regular instances and evaluating the rationale of models
trained on these mixed datasets.

Secondly, we explore the rationale improvement capabilities of the TREI method with
limited training dataset sizes. The TREI method can be used to open up the black box
of data-driven AI systems and expose unsound decision-making. Opaque and unsound
decision-making is, however, not the only problem with data-driven models in AI &
Law (Bench-Capon 2020). The amount and quality of training data greatly affects the
performance of data-driven AI systems. More, good quality data generally leads to a better
performance, but is often difficult to obtain.

95
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Thirdly, we investigate the TREI method with inconsistent data. Due to the changes
in the interpretation of the law, inconsistencies can arise. For example, a case that was
given a violation verdict twenty years ago, may receive a non-violation if it was tried today,
making the older case inconsistent with our current interpretation of the law. Real data is
therefore not always consistent, which can be problematic for machine learning models,
which are inherently retrospective.

Lastly, we explore to what extent the rationale can be improved using the TREI method
when the training dataset contains missing values. In many legal cases not all relevant
facts are known, yet lawyers and judges are able to reason and judge over these cases
regardless. Many machine learning systems, however, are not able to deal with missing
facts, and require all features to have a value.

We first perform an additional experiment to investigate the effects of training on
different mixtures of regular and tailored datasets in Section 6.2. In Section 6.3, we
evaluate the rationale improvement with small training datasets, inconsistencies and
missing values. In Section 6.4, we delve into the design choices and limitations of the
current study and discuss how the TREI method can be applied in other domains and
tasks, outside the four that we have studied. Finally, in Section 6.5 we discuss the results
of the study and reflect on the TREI method.

6.2. MIXED TRAINING DATASETS

In this section, we explore to what extent the training dataset needs to be tailored in order
to improve the rationale. We perform this experiment using the welfare benefit domain
and datasets as described in Chapter 4.

We have shown in Chapter 5 that training MLPs on tailored datasets in the welfare
benefit domain improves their rationale. Compared to a regular dataset, which contains
merely random samples of the complete domain (within the balanced label distribution),
tailored datasets are a selective subset of the complete domain; the only ineligible in-
stances allowed are those that fail on a single condition. Therefore, for each instance
of a tailored dataset, only a single condition is false or no condition is false, leading to
an ineligible or eligible label respectively. Every unique condition is therefore presented
to the system without interference from the other conditions. Our results suggest that
presenting each of the conditions to the MLP individually without interference from
other conditions (e.g., trying to learn the domain by training on tailored datasets), can
greatly improve the rationale. If our intuitions are correct, training the MLPs in this way
would make it less likely for the MLPs to discover spurious correlations and therefore
make their behavior more responsible. To investigate this hypothesis, we perform an
additional experiment using mixed training sets that contain a total of 50,000 instances
from both regular and tailored sets. In these mixed datasets, a percentage of instances
are of type tailored and the remainder are of type regular. To investigate the effects of
a tailored dataset, we steadily increase the percentage of tailored instances from 0% to
100%, in steps of 5%. We train the MLP on these mixed training sets and then record their
performance in terms of MCC on the regular test set and on the rationale evaluation test
sets. Since there was little difference between the one-, two-, and three-layer MLPs in the
previous experiments, we only use the three-layer MLP in this experiment.
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The results of this experiment are summarized in the bar charts shown in Figure
6.1, where the mean MCC (across 500 runs) of the three-layer MLP is shown versus the
percentage of tailored instances in the training data for each test set. Note that the y-axis
of each subplot in Figure 6.1 is scaled differently, allowing us to examine the results in
more detail.

Discussion Three patterns can be observed from the plots in Figure 6.1 as more tailored
instances are included in the training dataset:

1. The performance on the regular test set decreases slightly and steadily in a more or
less linear fashion; dropping from an MCC of 99.55 to 98.05 as the percentage of
tailored instances increases.

2. The performance on the rationale evaluation test sets for the Age-Gender, Contri-
butions, Resources and Patient-Distance conditions increase. This increase is quite
rapid at first and then slows down, like in a logarithmic distribution.

3. Initially, the performance on the Spouse and Absent test sets increase substantially,
but then slowly decrease again when more than 5% of the training instances are
tailored.

Based on only the first two observations, we could conclude that more tailored instances
in the training data improves the rationale of the MLPs, while only sacrificing a maximum
of 1.5 of the total MCC on the regular test set. Furthermore, injecting only a small number
of tailored instances into the training data already improves the rationale substantially
and adding more tailored instances will only improve it marginally.

The third observation, however, indicates that adding too many tailored instances has
a negative effect on the rationale with regards to two of the six conditions: the Spouse and
Absent conditions. When more than 5% of the training data consists of tailored instances,
the performance decreases slightly with up to 1.55 MCC (a similar drop as observed on the
regular test set). It should be noted that the rationale is still better with tailored instances
than without, even with higher percentages of tailored instances.

We speculate that the first and the third observation might be related; because the
performance on the Spouse and Absent conditions decreases, the performance on the
regular test set decreases as well. The reasoning for this speculation is as follows. The
Spouse and Absent conditions are the simplest conditions to learn, as they merely require
the MLP to learn a one-variable Boolean condition. Because of this, these two conditions
are easily recognized by the MLPs when training on a regular dataset. When recognized,
MLPs will know that if either condition is false, the instance is ineligible and if both of the
conditions are true, there is a large chance that the instance is eligible. This already leads
to a theoretical accuracy of 83.3% according to (Bench-Capon 1993).

Compared to the features of the other conditions, the Absent and Spouse features
are therefore ascribed a relatively high importance by the MLP, which is also evident
from the SHAP plots in Figure 5.2. When training on a tailored dataset, in which every
condition occurs in equal frequency and without interference from other conditions,
the relative importance of these two features drops as the importance of other features
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Figure 6.1 | The mean MCC of the three layer MLP on each test set versus the percentage of tailored instances
in the training data. Note: each y-axis is scaled differently.
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increases. When more tailored instances are added, fewer regular instances are present,
and therefore fewer instances are included in which the Spouse and Absent features
play a relatively more important role. As a consequence, there is a slight decrease in
how well the two conditions are learned when more tailored instances are added to the
training data, and as a result the performance on the regular test set decreases as well. On
the other hand, since we see an initial increase in the performance on the Spouse and
Absent evaluation test sets (Figure 6.1), this should have most likely resulted in a slight
increase in the performance on the regular test set with 5% tailored instances as well,
which is not the case. An alternative hypothesis is that when we increase the percentage of
tailored instances, there is a lower number of complex instances with multiple unsatisfied
conditions for the model to learn. The model therefore has a lower capability to deal with
such complex cases in the regular test set, resulting in the slight performance drop.

Confusingly, the performance on the Absent and Spouse test sets does initially improve
with tailored datasets. This leads us to believe that, while the MLPs do use these two
features when trained on regular datasets, the MLPs might combine them with other
irrelevant features that lead them to the right decisions for the wrong reasons. In that way,
the two features are ascribed a high importance and the models still perform poorly on
their rationale evaluation test sets. We speculate that adding just a small percentage of
tailored instances makes the two features more easily recognizable and distinguishable
from other (irrelevant) features (hence the increase in performance on their rationale
evaluation test sets). Adding too many tailored instances will have the opposite effect
due to the reduced relative importance of the Absent and Spouse features, which in turn
negatively affects the performance on the regular test set.

One can argue that adding too many tailored instances is therefore a bad thing, as it
decreases the performance on the regular test set. However, one should also keep in mind
that these correct decisions are made for the wrong reasons, and that these results might
be domain specific. Further research could investigate these hypotheses, for example by
repeating the experiment in a variation of the welfare benefit domain, where the simple
Absent and Spouse conditions do not exist.

6.3. RATIONALE IMPROVEMENT UNDER IMPERFECT CONDITIONS

The datasets that we have been training on so far, as described in Chapter 4 and Chapter 5,
can be described as having perfect conditions, i.e., without inconsistencies and missing
values, and with sufficient training data (albeit with noise variables that did not contribute
to the label). Under these ideal circumstances, we showed that the TREI method can be
used to evaluate the rationale of our models, and that we can improve it by tailoring the
training dataset. We now investigate the TREI method under imperfect conditions: small
dataset sizes, inconsistencies or missing values.

We perform these experiments using the Article 6 domain and datasets, as described
in Chapter 4. We only investigate one type of imperfection at a time. We train networks on
both original type datasets and tailored type datasets. We refer to these networks as the
original network and tailored network respectively. For each network there are therefore
two independent variables: the type of training data (original or tailored) and the level of
imperfection (training dataset size, inconsistency or missing values). While the networks
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are trained on imperfect training datasets in these experiments, they are tested on the
same type of regular test sets and rationale evaluation test sets as in the previous chapter:
without imperfections.

6.3.1. SMALL TRAINING DATASETS

To investigate the effects of dataset size on the performance, the rationale and the poten-
tial rationale improvement, we generate additional datasets ranging from 10 to 40,000
instances, without any inconsistencies or missing values.

To investigate the effects of training dataset size, we train networks on original and
tailored datasets, ranging from 10 to 40,000 instances and then apply the TREI method.
These datasets contain no inconsistencies or missing values. The mean MCC values
across 100 runs can be seen in the plots of Figure 6.2. Note that each y-axis is scaled
dynamically. In Figure 6.2, we only show the mean MCC values for training datasets
ranging from 10 to 4,000 in order to better illustrate the rationale improvement at small
dataset sizes.

Discussion Two general remarks can be made from observing the plots in Figure 6.2.
First of all, the original network and the tailored network perform better with more
training data on all test sets. As we expected, the performance on the regular test set
increases, but the performance on the rationale evaluation test sets increases as well. This
suggests that, in this case, more data leads not only to a higher performance, but also
to a better rationale. Secondly, the network trained on the tailored dataset outperforms
the network trained on the original dataset. This is also true for both the performance
on the regular dataset and the performance on the rationale evaluation test sets. The
difference in MCC between the original and tailored network is highest with small training
dataset sizes, such as the ones typically used in AI & Law research. This difference does
decrease with more training data. This can be attributed to a ceiling effect, as the networks
approach a perfect performance. Despite the ceiling effect, however, the tailored network
still performs better.
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Figure 6.2 | Mean MCC values of the original neural network (blue) and the tailored neural network (orange)
on the regular and rationale evaluation test sets for varying amounts of training data.
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6.3.2. INCONSISTENCIES IN TRAINING DATASETS

To evaluate the rationale of the network with inconsistency, we generate special training
datasets wherein we alter the cases such that they become inconsistent. There are differ-
ent ways of generating inconsistency. In this study we choose to flip the values of random
features (base level factors) to create inconsistencies. Since all features are Booleans, this
means that a 1 (true) will become a 0 (false) or vice versa. The label still remains as it was
in the original dataset. Changing the value of a random feature could therefore cause
the case to be inconsistent with the ADF, our knowledge representation of the law. For
example, a case labelled ‘violation’ could be made inconsistent by changing the value
of factor ‘I1F1’ from 1 to 0, as Issue 1 is defined by a single factor. Note that by flipping
a few features of a case, the case does not necessarily need to become inconsistent. To
create inconsistency in our dataset, we flip a percentage of all of the features across all
cases. This means that at a 50% inconsistency level, half of the features of all cases are
flipped. At a 100% inconsistency level, all features in the data are flipped and and all cases
have become inconsistent, effectively generating an inverted version of the ADF. These
datasets consist of 50,000 instances without missing values.

To investigate the effects of inconsistency, we generate original and tailored train-
ing datasets of varying levels of inconsistency (from 0% to 100% in steps of 5%), each
containing 50,000 instances. We train networks on these datasets and apply the TREI
method. The results across 100 runs can be seen in Figure 6.3. Note that each y-axis is
scaled dynamically.

Discussion We can see in Figure 6.3, that more inconsistency leads to a lower perfor-
mance (MCC on the test dataset) but also to a worse rationale (MCC on the rationale
evaluation test sets). At a low inconsistency level, below 30%, the tailored network per-
forms better on the regular test set than the original network. The tailored network also
tends to outperform the original network with less than around 40% inconsistency on all
of the rationale evaluation test sets. With more inconsistencies, the performances of the
two networks drop and reach 0 or negative MCC values, indicating a performance that is
worse than random chance. There is a sharp dip in all graphs around 50% inconsistency,
after which the graph slowly rises again. This is when half of all features of all cases are
flipped. After that, the majority of features is flipped, prompting the network to learn an
inverted version of the ADF as discussed in Section 3, rather than the actual ADF, yielding
an MCC of around 0. In reality, datasets where more than 30% of the facts are incorrect
are not common. This would entail that, on average, all cases contain around 10 flipped
factors, as there are 32 factors in the Article 6 domain. Therefore, using the tailored dataset
yields a better performance and rationale regardless of the frequency of inconsistency in
the training data.
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Figure 6.3 | Mean MCC values of the original neural network (blue) and the tailored neural network (orange)
on the regular and rationale evaluation test sets for varying ratios of inconsistencies in the training data.
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6.3.3. MISSING VALUES IN TRAINING DATASETS

Incomplete knowledge of all of the factors is common in law. The ADF is able to deal with
missing values, as it has a default value when the actual value is unknown. This is not the
case for all machine learning models, as most require information about all features. To
investigate the networks’ rationale under missing values, we generate a training dataset
in which we alter cases such that they contain missing values. We select random features
and change their values from 0 or 1 to 0.5 to capture the concept of an unknown fact.
These cases are still consistent with the ADF since the ADF can deal with missing values.
To create datasets with missing values, we select a percentage of all of the features across
all cases to contain missing values. This means that at 50%, half of the features of all cases
will be missing, and at 100%, all features in the data are missing. These datasets consist of
50,000 instances without inconsistencies.

We generate original and tailored training datasets of 50,000 instances with varying
levels of missing values (from 0% to 100% in steps of 5%) to train the networks. The results
of applying the TREI method to these networks across 100 runs can be found in Figure 6.4.
Note that each y-axis is scaled dynamically.

Discussion In Figure 6.4 we see a decrease in MCC on the regular test set with training
datasets with more missing values. The rationale also seems to worsen, as evident from
the MCC on the rationale evaluation test sets. With more missing values, we eventually
see the MCC drop to 0 on all test cases. At a missing value rate of 1.0, all features of
all cases are set to 0.5, meaning that the network has no way of distinguishing between
violation or non-violation. Up until that point, the tailored network outperforms the
original network for all tested levels of missing values.

6.4. APPLICATION OF THE TREI METHOD

In this section, we address some key design choices and limitations of our current study,
as well as how the TREI method can be applied more generally in other domains and
tasks. We presented and evaluated the TREI method using synthetic datasets that allowed
us to have full control over the domain. The TREI method is, however, a general design
method that can in principle be used for any combination of data type, domain and
model. We describe how the method can be used in tasks where the true rationale is
(partially) unknown, and address how one can implement the TREI method in practice.
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Figure 6.4 | Mean MCC values of the original neural network (blue) and the tailored neural network (orange)
on the regular and rationale evaluation test sets for varying ratios of missing facts in the training data.
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6.4.1. DESIGN CHOICES AND LIMITATIONS

In the previous chapter, we have illustrated our TREI method in four domains: the welfare
benefit domain, the simplified welfare benefit domain, the tort law domain and the Article
6 domain. In all scenarios we had complete domain knowledge and used this to generate
artificial datasets. These are relatively simple domains and the prediction task could also
be solved with logic-based, or other directly interpretable approaches. Using machine
learning in these domains would in reality not be preferable. However, we use these
domains to illustrate how our TREI method can be used to evaluate and improve the
rationale of machine learning models. In a similar vein, the models used are simple
neural networks. Using more advanced machine learning models may yield a better
performance. The focus of this study, however, is on the evaluation and improvement
of the model’s rationale using the TREI method, rather than on achieving the highest
possible performance. Furthermore, the use of relatively simple domains and simple
models does not detract from the way in which the TREI method was deployed.

6.4.2. RATIONALES

In our research, we have referred to a rationale as the rules and reasons underlying the
decisions made by the model. By definition, such a rationale of a black box machine
learning model is hard to interpret. Even so, in almost all tasks and domains there are
certain rules or reasons that we want the machine learning model to adhere to. For
example, we might want our system to adhere to certain values such as fairness, follow a
particular form of logic, adhere to specific syntactical rules or ignore correlated features in
order to avoid potential stochastic shortcuts. All of these are forms of domain knowledge
that we wish to impose upon our machine learning model. These conditions can be seen
as the desirable rationale that we can evaluate and improve using the TREI method.

What the desirable rationale entails varies based on the task and domain at hand. In all
of the domains studied, complete domain knowledge was available. This domain knowl-
edge therefore acted as our desirable rationale, and was used to exhaustively generate
rationale evaluation datasets, as described in step two of the TREI method. This proved
useful in our studies, as it allowed us to present and investigate the TREI method in a
fully controlled setting. In many machine learning tasks, however, the complete rationale
underlying the decisions is not as well defined. There are no clear rules underlying visual
or language tasks, for example. These situations are also the tasks in which machine
learning thrives, as machine learning is able to extrapolate patterns that are hard to define
explicitly. However, even if the rationale is not defined exhaustively, parts of the rationale
may be known or desirable. In principle, these can be used to employ the TREI method,
albeit in a non-exhaustive manner. In future research, we plan to evaluate and improve
models in domains with non-exhaustive rationales. For now, we discuss how we envision
the potential use of the TREI method in those types of domains.

Imagine an example situation in which TREI is applied in an image classification
task. In this task, experts may find the background of the image to be unimportant to the
classification task and want it to be ignored by the model, similar to the husky classifier we
mentioned in the Chapter 2 (Ribeiro, Singh, et al. 2016). Ignoring the background would
in that case be an element of the desirable rationale. One could then make rationale
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evaluation test sets that evaluate whether the background is used by the model in the
classification process. Afterwards, the training dataset could be tailored if needed, to
improve the rationale. Note that this particular example is strongly related to concepts
of robustness and fairness (Nicolae et al. 2018). The TREI method, however, is a design
method that can in principle be used for any desirable rationale, including robustness
and fairness. In situations where the true rationale may remain unknown, such as in
image recognition, it might still be possible to evaluate the rationale of the model on
particular desirable aspects, and steer it in the right direction.

6.4.3. RELATED APPROACHES

One related approach that evaluates non-exhaustive and implicit rationales can be found
in CheckList, a methodology used for testing Natural Language Processing (NLP) mod-
els (Ribeiro, Wu, et al. 2020). In the study introducing CheckList, NLP models are trained
on specific tasks, and then evaluated on both their performance on the task and on a set
of general linguistic capabilities. Even though the true rationale of such an NLP task may
remain unknown, there are some aspects of the rationale that are desirable, such as the
model’s ability to deal with negation or named entity recognition. In this situation the
desirable rationale covers the linguistic capabilities, which is specific to NLP models. Our
TREI method applies a similar concept to data-driven models in general, where a subset
of the desirable or true rationale is known.

Another example of testing desirable rationales may be found in the HANS evaluation
set (McCoy et al. 2019), which tests for three different forms of heuristics that may be
learned when using machine learning for natural language inference. The HANS evalu-
ation set is akin to our concept of rationale evaluation test sets, but HANS is specific to
three fallible syntactic heuristics in natural language inference models.

Other related methods to evaluate and improve the rationale of data-driven systems
are more model-specific, such as the penalizing of input gradients in differential mod-
els (Ross et al. 2017). Other approaches focus on the explainability aspect, and annotate
desirable explanations using a human in the loop to steer a system’s rationale in the right
direction (Schramowski et al. 2020), or use global explanations combined with human-
initiated interactive learning (Popordanoska et al. 2020). The proposed KEMLP pipeline
for data-driven models also uses domain knowledge, but focuses on improving robustness
against adversarial attacks through a set of weak auxiliary models (Gürel et al. 2021). The
TREI method, in comparison, is task- and model-agnostic, and can be used to evaluate
and impose any desirable rationale that can be defined.

6.4.4. THE TREI METHOD IN PRACTICE

While we have only illustrated the TREI method in domains with tabular data where
the complete true rationale is known, we have argued that it is possible to employ the
method in other types of data where only a subset of the true or desirable rationale is
known. Generating rationale evaluation test sets from this true or desirable rationale is
not always trivial and requires good communication between the domain expert and
machine learning engineer. Translating the domain expert’s desirable rationale elements
into rationale evaluation test sets can take many forms, and is highly dependent on the
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domain, data type and rationale element itself. The TREI method is an abstract design
method and, like methods such as integration or unit testing, does not have a one-size-
fits-all description for the design of rationale evaluation test sets and tailored training sets.
Generating rationale evaluation test sets for an image classifier that should ignore the
background of images requires a different approach than generating rationale evaluation
test sets that evaluate an NLP model’s linguistic capabilities. The TREI method cannot be
applied to a model without an understanding of the underlying domain, as it is based on
human domain knowledge.

The TREI method requires the creation of a number of datasets. Applying the method
in domains with many large and complex conditions would therefore require the creation
of many rationale evaluation test datasets (step 2), which is time consuming. While the
rationale evaluation itself (step 3) will not consume much time or resources, creating the
tailored training dataset (step 4) is not trivial. Retraining the model using the tailored
training dataset can also be time and resource intensive, depending on the size of the
original training dataset, the modifications made in step 4 and the machine learning
approach used. This is similar to fine-tuning a model in the traditional sense, but with
the tailored dataset as a parameter and the evaluation of the rationale as an additional
performance measure.

While this is an additional cost in time and resources, the TREI method allows engi-
neers to steer the rationale of models in the right or desired direction. This is important
in many domains, where the reasons for making a decision might be as important as the
decisions themselves, such as in law or healthcare. In those scenarios the TREI method
can be used to evaluate the rationale and potentially correct it. In other domains, such
as when dealing with personal information, adhering to certain rules or norms might be
more important than a high classification performance. This is why step 4 of the TREI
method will always result in an improved rationale, but not necessarily in an improved
performance. Whether this trade-off occurs is dependent on the task, dataset, model, and
most importantly the desirable rationale.

6.5. DISCUSSION AND CONCLUSION

In Chapter 5, we introduced TREI: a model-agnostic method for evaluating and improving
decision-making in machine learning models. Using TREI, we were able to show that
systems can make the right decisions using the wrong rationale. Furthermore, we showed
that we can tailor the training dataset such that the rationale improves.

In this chapter, we further investigated the effect that tailored data has on the ratio-
nale of the systems and showed that adding a relatively small number of these tailored
instances can greatly improve the rationale. Furthermore, we show that the rationale
of our systems can be evaluated and improved using the TREI method under imperfect
conditions: a limited dataset size, inconsistencies and missing values. The three imperfect
conditions that we study are not an exhaustive list of issues, and we acknowledge that
there are more concerns in AI & Law than just small dataset sizes, inconsistencies and
missing values. The methods for introducing inconsistency and missing values in the
datasets may be varied as well. A different, more realistic, approach to creating incon-
sistency might be to flip the labels rather than the features, or to flip clustered groups of
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related features. Similarly, missing values should in practice only be absent from irrele-
vant aspects, which we did not account for in this study. The current implementation
serves to illustrate how rationales can still be improved using the TREI method under
inconsistency and missing values. We leave the variations for future research.

We discussed the current capabilities and limitations of the TREI method, and consid-
ered how the method could be applied for other tasks and domains, and with other types
of models. We hope to continue to expand upon the TREI method in future research. By
employing the TREI method in new, more complex domains and systems, the soundness
of the rationales becomes tangible, and their quality can be asserted. A logical next step is
moving from artificial data to real-life data with state-of-the-art machine learning algo-
rithms. This way, we can test the method on modern models in more complex and noisy
environments, where the full, true rationale is not always known. In theory, we can still
apply the TREI method to these situations, albeit less exhaustively, by using knowledge
from human domain experts to design rationale evaluation datasets for particular desir-
able rationale elements. However, this would require additional research. Additionally,
we want to investigate the experiences of these domain experts in a user study, where we
focus on the potential benefits of the TREI method for both the AI system and the human
domain experts. Further expanding upon this design approach will bring us closer to AI
that is both explainable and responsible.





III
SOUND REASONING BY DESIGN

Responsible AI systems should make the right decisions for the right reasons. In
Part II, we explored a design approach called learning-to-reason, where we intro-
duced a method that can induce desirable reasoning in data-driven AI models.
In this part, we investigate an alternative design choice: reasoning-by-design.
Rather than inducing desirable reasoning from examples, the reasoning-by-design
approach incorporates symbolic structures in the system that explicitly define
the desirable reasoning. To explore this reasoning-by-design approach, we cre-
ate a neurosymbolic system that combines the natural language capabilities of
machine learning models with the sound, explainable and interpretable reason-
ing of symbolic methods. We design this system for the task of solving bar exam
questions (legal textual entailment) and show that our neurosymbolic system can
perform as well as a baseline large language model, and that it can do so in a way
that is more interpretable and explainable.





7
SOUND LEGAL TEXTUAL

ENTAILMENT

In the previous chapters we have shown that data-driven AI systems can make the right
decisions for the wrong reasons. Using the TREI method, we can evaluate the decision-
making of these systems, and based on that evaluation potentially adjust the training
data in order to improve it. The TREI method is a hybrid method based on the learning-
to-reason approach, that builds upon domain knowledge provided by human experts to
learn the right reasoning. In this chapter, we discuss another hybrid approach: sound
reasoning by design. More specifically, we explore the neurosymbolic approach and
combine conventional symbolic and sub-symbolic approaches in a singular system. The
goal is to create a system that harnesses the generalizability of data-driven systems with
the sound reasoning capabilities of knowledge-based systems. We focus on a specific
legal form of natural language inference: legal textual entailment in bar exam questions.

7.1. INTRODUCTION

Natural Language Inference (NLI) deals with determining whether a hypothesis follows
logically from a given premise in a text. For humans, this task requires us to not only
understand the text, but to also reason about it. Previous research in the field of NLI has
developed a variety of approaches to create systems that aim to solve these types of NLI
task (Storks et al. 2019). Currently, Large Language Models (LLM) are the state of the art in
most natural language tasks, including NLI. Studies have shown that there are limitations
of using LLMs in NLI tasks (Gubelmann et al. 2023). Not only do LLMs often make the
wrong predictions, but we cannot explain their decisions-making either; they are black
boxes. While LLMs can be prompted to provide explanations for their decisions, there
is no guarantee that these are faithful. We as humans have the capability to explicitly
reason about why an inference should be valid or not, but LLMs cannot guarantee sound
decision-making, as they are black box systems.
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Symbolic AI methods, on the other hand, do not have this issue, as their behavior is
explicitly defined in their design. Logical programming has also long been advocated for
legal reasoning (Nguyen et al. 2023). These symbolic methods, however, do not possess
the same level of performance as the LLMs when it comes to natural language tasks. We
therefore propose a hybrid system, that combines symbolic AI with data-driven LLMs. We
apply this system to Task 4 of the 2024 version of the Competition on Legal Information
Extraction/Entailment (COLIEE), which deals with legal textual entailment.

7.2. BACKGROUND

In Task 4 of the COLIEE, artificial systems are asked to solve a set of yes-no questions
from the Japanese bar exam: an exam that one must pass in order to become licensed
to practice law in Japan. Each exam question contains one or multiple relevant legal
articles S from the Japanese Civil Code and a statement Q. The goal is to determine
whether or not the relevant articles S legally entail Q. In total, there are 781 legal articles
in Task 4 of the COLIEE. As an example, we will look at bar exam question H18-2-2, shown
in Figure 7.1. In this example, the claim C in statement Q is that the rescuer does not
need to pay damages. If we examine the story in Q using relevant Article S (Article 698),
we can see that this is the right conclusion: the individual has engaged in a benevolent
intervention in order to allow the other individual to escape imminent danger to their
person, and the former is therefore not liable to compensate for damages resulting from
the act. There is therefore a legal entailment.

Relevant Articles S Question Q
Article 698
If a manager engages in
benevolent intervention in
another's business in order
to allow a principal to
escape imminent danger to the
principal's person, reputation,
or property, the manager is not
liable to compensate for damage
resulting from this unless the
manager has acted in bad faith or
with gross negligence.

In cases where an individual
rescues another person from
getting hit by a car by pushing
that person out of the way,
causing the person's luxury
kimono to get dirty, the rescuer
does not have to compensate
damages for the kimono.

Figure 7.1 | H18-2-2: example of a bar exam question.

Last year in the same Task 4 of the competition, most approaches used a large language
model (LLM) to predict legal entailment (Goebel et al. 2024). These models used prompt
engineering to find the best prompt for their model. Some of the approaches used
prompts that contained a number n examples of bar exam questions (n-shot prompting),
whereas others used no examples in their prompts (zero-shot prompting).

While these LLMs performed well, some concerns were raised by the COLIEE organi-
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sation (Goebel et al. 2024). First of all, in some cases, the training data of the LLM is not
disclosed, which means that we cannot know whether it contains texts that are similar to
the bar exam questions of the COLIEE, giving an unfair advantage. Secondly, some of the
external resources used can be difficult to replicate, which is why it is not allowed to use
models such as OpenAI’s GPT models for predicting entailment at the competition, just
as in the previous year. Lastly, the COLIEE organisation notes that LLMs cannot explain
their decision making and cannot guarantee that their decisions are based on sound logic.
In this chapter, we address this third concern.

As shown in Chapter 5, decision-making in data-driven models can perform well for
the wrong reasons. In the field of law, however, arguments for a decision are as important
as the decision itself. In Chapter 2, we discussed various formal theories that exist within
the domain of AI & law that aim to create knowledge representations of legal principles.
These normative representations of the law allow us to explicitly reason about cases based
on expert knowledge of the domain. In this chapter, we take a hybrid approach, aiming to
integrate the adaptivity of machine learning techniques with the sound reasoning and
interpretability of symbolic knowledge, effectively creating a neurosymbolic system.

In our system, we represent the legal articles of the Japanese Civil Code as Abstract
Dialectical Frameworks (ADF) using the ANGELIC methodology (Atkinson and Bench-
Capon 2023) as discussed in Chapter 2.

In Chapter 4 we described how we used an existing ADF of Article 6 of the European
Convention on Human rights to generate data, and used this data to illustrate our TREI
method. In this chapter, we create ADFs for articles of the Japanese Civil Code. Unlike data-
driven models, such as LLMs, ADFs are knowledge representations that are explainable
by design and follow a predefined decision process. This means that they do not only
provide a final decision, but also sound argumentation for that decision. ADFs are,
however, formal models that cannot process natural language. We therefore propose a
hybrid legal entailment system that combines the natural language processing of large
language models with the sound reasoning of formal knowledge representations.

7.3. SYSTEMS

Our hybrid legal entailment system combines knowledge and data by creating ADFs for
legal articles and ascribing the values of the factors of those ADFs using a large language
model. Ascribing factors is the process of determining whether the baselevel factors apply
to the given statement or not, or whether this is unknown (Mumford et al. 2021).

An overview of our system can be found in Figure 7.2b, using a boxology similar to
those by van Harmelen and Teije (2019). For each bar exam question (S,Q), our system
finds the ADFs associated with articles S. Using a large language model, we answer
questions about the statement Q in order to ascribe the baselevel factors of ADFs. We
then evaluate the verdict of the ADF and compare this verdict to the claim C made in
statement Q. If these match, there is a legal entailment. We explain these steps in further
detail in the upcoming section.
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(a) Version 1: The baseline model that predicts entailment using only a large language model.

(b) Version 2: Predicting entailment using manually designed ADFs that represent legal articles, combined with large
language models.

(c) Version 3: Predicting entailment using both manually designed ADFs and artificially generated ADFs, combined with large
language models.

Figure 7.2 | The pipeline for the three different versions of our system. We predict legal entailment for a bar
exam question (S,Q), where S represents the legal articles and Q the statement.
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To investigate the effect of including knowledge representations in the legal entailment
task, we evaluate three versions of our system:

1. Version 1, shown in Figure 7.2a, uses only a large language model to predict the
legal entailment with zero-shot prompting, similar to the state of the art (Bui et al.
2023).

2. Version 2, shown in Figure 7.2b, uses a small selection of manually crafted ADFs to
predict entailment. The large language model is used as a backup classifier when
bar exam questions pertain to legal articles outside of our selection of ADFs.

3. Version 3, shown in Figure 7.2c, uses artificially generated ADFs in addition to the
manually crafted ADFs to predict entailment. The large language model is used as
a backup classifier.

7.3.1. LARGE LANGUAGE MODEL

In version 1 of our system, the input of our large language model is a prompt that includes
the bar exam question (S,Q), and the output is a yes or no. Our approach follows the same
steps as the best performing system of the previous COLIEE competition (team JNLP) (Bui
et al. 2023). The flan-alpaca-xxl model yielded the best performance in the previous
iteration of the competition, so we therefore use the improved flan-alpaca-gpt4-xl model
from the HuggingFace Transformer library (Wolf et al. 2020). In order to find the best
prompt for this model, we used the PromptSource library (Bach et al. 2022), just as team
JNLP did last year. Using PromptSource, we selected all prompts associated with the
SuperGLUE dataset (Wang et al. 2019) and investigated which prompt performed best for
Task 4. SuperGLUE is an improved version of the GLUE benchmark dataset that contains
NLI tasks. The prompts for the GLUE dataset were used by JNLP in last year’s iteration of
the competition. Since we opt to use zero-shot prompting, we can evaluate each prompt
across all training and test data. The best performing prompt is the following, where S
represents the articles of the exam question and Q the statement:

Exercise: read the text and answer the question by True or False.
'S'
Question: Q?

We use this prompt in combination with the flan-alpaca-gpt4-xl model. The answer that
the model provides ranges from a simple ‘True’ or ‘False’, to more elaborate answers such
as “Based on the information that you have provided me, I think that it is correct”. The
final output of the system should be a binary ‘yes’ or ‘no’, however, so the raw output of
the model needs to be parsed. We do this by looking at the words in the output. If the
output contains positive words, such as ‘yes’, ‘true’, ‘correct’ or ‘right’, the answer will be
‘yes’. Likewise, if the output contains negative words, such as ‘no’, ‘false’, ‘incorrect’ or
‘wrong, the output will be ‘no’. Additionally, we account for negation as well, such that
‘not true’ evaluates to a ‘no’.
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In version 1 of our system, shown in Figure 7.2a, we use this large language model to
determine legal entailment. In the other two versions of the system (see Figure 7.2b and
c), this large language model is used as a backup classifier.

7.3.2. MANUALLY CRAFTED ADFS

In the second version of our system, we use human domain knowledge to create Abstract
Dialectical Frameworks of legal articles which can be used to determine legal entailment.
The system is created with the goal of using sound reasoning and being able explain
its behavior. We create an ADF for 25 of the 781 legal articles using our custom ADFlib
library. 1 These 25 articles were selected based on their frequency in the dataset and ease
of implementation. To illustrate, we present the ADF of Article 698, which was used in
example question H18-2-2 (Figure 7.1), graphically in Figure 7.3, alongside its verdict
and factors. In Figure 7.3, we represent the ADF of Article 698 in the style of DefLog
logic (Verheij 2003b), where connections ending in an £ in Figure 7.3 represent attacks
from one argument to another, whereas connections without an £ represent support
from one argument to another. In our ADFs, connections ending in an £ in Figure 7.3
represent reject conditions between factors, whereas connections without an £ represent
accept conditions between factors. For the complete ADF of Article 698, including the
default values, we refer to the code in Figure C.1 of Appendix C.

In Figure 7.3b, we can see that the verdict of Article 698 deals with the liability to
compensate for damages. This verdict is determined by a set of factors and their logical
relationships. For example, if there were damages resulting from the intervention (dmg),
this would support the verdict that the manager is liable to compensate for damages. If,
in this example, the manager’s actions aimed to allow the escape of imminent danger to
the person of the principal (per) and the manager’s intervention was benevolent (ben),
then the support of dmg for the verdict would be attacked, and the verdict would change
such that the manager is not liable to compensate for damages. The code of our complete
implementation of the ADF of Article 689 can be seen in Appendix C in Figure C.1.

Since we only created ADFs for 25 out of the 781 legal articles, we fall back to the LLM
and prompts from version 1 of our system as a backup classifier in case the bar exam
question pertained to an article for which we do not have an ADF. We also limit ourselves to
bar exams questions pertaining to a single legal article. For bar exam questions pertaining
to multiple legal articles, we use the LLM from version 1.

For any given case, each baselevel factor of the ADF is given a value: True, False or
Unknown. The values of the abstract factors are in turn determined by the values of their
baselevel factors. These abstract factors can be seen as a generalized legal concept. The
value of the verdict, True or False, is determined through the values of all factors, following
their logical relationships, such as the one shown in Figure 7.3a.

To use the ADFs to predict legal entailment, we need a way to ascribe the correct
values to the baselevel factors of the ADF. For bar exam question (Sx ,Qx ), we have an ADF
Ax that represents article Sx . The values of the baselevel factors of Ax should then be
based on the content of statement Qx . For Article 698, we therefore need to determine the

1Our ADFlib library can be found in the following GitHub repository: https://github.com/CorSteging/
ADFlib

https://github.com/CorSteging/ADFlib
https://github.com/CorSteging/ADFlib


7.3. SYSTEMS

7

119

(a) Visual representation of the ADF of Article 698

Verdict:
com The manager is liable to

compensate for damages
Abstract factors:
exh The manager exhibited gross

negligence or acted in bad faith
esc The manager’s actions aimed to

allow the principal to escape
imminent danger

Baselevel factors:
ben The manager’s intervention was

benevolent
dmg There were damages resulting

from the intervention
per The actions aimed to allow the

escape of imminent danger to
the person

rep The actions aimed to allow the
escape of imminent danger to rep-
utation

pro The actions aimed to allow the es-
cape of imminent danger to prop-
erty

neg The manager exhibited gross
negligence

fth The manager acted in bad faith

(b) Verdict and factors of the ADF

Figure 7.3 | A graphical representation of the Abstract Dialectical Framework of Article 698 (a) and its verdict
and factors (b) in the style of DefLog logic.

values of ben, dmg, per, rep, pro, neg, and fth (See Figure 7.3b). To determine the values
of these baselevel factors, we ask a large language model (flan-alpaca-gpt4-xl) questions
about Qx . For example, if we want to know the value of baselevel factor ben for Qx , we
would provide the following prompt to the LLM:

Passage: ` Qx '
After reading this passage, I have a question:
Was the manager's intervention benevolent?
Answer only with `True', `False', or `Unknown'

We provide such a prompt to the LLM for each of the baselevel factors of our ADF Ax .
Once we have the values of all baselevel factors, we can determine the value of the verdict
Vx .
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In order to determine legal entailment, we need to find out if the verdict Vx matches
the claim made in the question Qx regarding the verdict. If these match, then there is a
legal entailment, and if they do not match, there is no legal entailment. We therefore need
to find out what claim Cx is made in the statement Qx , which we do by asking our LLM
(flan-alpaca-gpt4-xl) what claim was made in Qx regarding the verdict. For Article 698
and statement Qx , the prompt would be as follows:

Passage: ` Qx '
After reading this passage, I have a question:
Is the manager liable to compensate for damages?
Answer only with `True', `False'

This prompt yields us the value of claim Cx . For example case H18-2-2 (see Figure 7.1),
the value for C should be False, as the the claim made in Q is that the manager is not liable
to compensate for damages. In the last step of our pipeline, we determine entailment
by comparing claim Cx made in statement Qx to verdict Vx as determined by ADF Ax .
There is a legal entailment if Cx and Vx match, and no legal entailment otherwise. The
full pipeline can be seen in Figure 7.2.

7.3.3. ARTIFICIALLY GENERATED ADFS

In the second version of our system we manually crafted ADFs for 25 of the 781 legal
articles. In the third version of our system, we aim to create an ADF for each of the
781 legal articles; the ADFs for the remaining 756 legal articles are therefore generated
artificially.

For the artificial conversion of legal articles to ADFs we use the GPT3.5-turbo API from
OpenAI (OpenAI 2023). We use 1-shot prompting, where we provide one example of an
article (Article 698) and its ADF (see Figure 7.3). The prompt also includes the legal article
for which we want to make the ADF and the command to convert that article into an ADF.
Using Article 698 S698 and the manually crafted ADF for Article 698 A698, we would write
the following prompt for legal article Sx :

Read this article: ` S698'
This article can be represented as an ADF as follows: A698
Now read this second legal article: Sx
Convert this second legal article into an ADF.

The resulting output then contains ADF Ax , which represent legal article Sx . A light
post-processing was then applied to ensure that the code generated by GPT would work
within our pipeline. This includes small tweaks to the code such as ensuring that the right
libraries are imported and that the final ADF has the correct variable name. The code of
an artificially generated ADF can be seen in Appendix C in Figure C.3.

Not all of the ADFs generated by GPT3.5-turbo result in executable code. The model
sometimes outputs an apology rather than an ADF, or code that does not follow the correct
Python syntax. However, due to the non-deterministic nature of the model, running the
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same prompt again usually fixes this issue. We therefore automatically check whether
each artificially generated ADF is executable code and re-run the prompt if it is not. This
process is done iteratively, leading to an increasingly larger number of executable ADFs.
We plot the number of executable ADFs versus the number of iterations in Figure 7.4.
After 20 iterations, in addition to the 25 manually created ADFs, 748 out of the 781 legal
articles were successfully converted to an ADF. Upon closer inspection, we discovered
that the remaining 8 (756 ¡ 748) articles only contain the word ’deleted’ in the provided
dataset.

We should note that we do not check whether these ADFs are logically sound or
match the legal articles, but only whether they do not cause any errors upon loading
their module. An example of an generated ADF with a mistake is shown in Table C.3
in Appendix C. Some of the ADFs still cause errors during runtime, for example when
the logic is not sound or when variable names do not match. In those cases, the system
automatically falls back to the backup classifier from system 1. Additionally, if an exam
question pertains to a legal article for which we have a manually crafted ADF, version 3
of the system uses the manually crafted ADF instead of the artificially generated ADF in
order to improve performance. In terms of preference, version 3 of our system therefore
prefers the manually crafted ADFs, then the artificially generated ADFs and then the
backup classifier (flan-alpaca-gpt4-xl). This means that version 3 of our system uses 25
manually crafted ADFs and 748 artificially generated ADFs.

Figure 7.4 | Due to the non-deterministic behavior of the model, GPT3.5-turbo generates more ADFs that are
executable over multiple iterations.
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7.4. RESULTS

We evaluate our systems in a few different ways. First of all, we report on the performance
of our systems as part of the COLIEE challenge, where the systems are tasked with predict-
ing the answers to a set of new, unseen bar exam questions. Secondly, we analyse version 2
and 3 of our system by exploring how often manually crafted and artificially generated
ADFs were used in the classification process. Thirdly, we explore the capabilities of our
hybrid systems to provide explanations for the predictions that they make. Lastly, we
investigate the effects of including explicit domain knowledge by comparing the three
versions of our system, testing them on only bar exam questions for which we have a
manually crafted ADF.

7.4.1. PERFORMANCE IN COLIEE

We first report on the performance of the systems on the four test sets (H30, R01, R02,
2024). Because of the nondeterministic behavior of our large language model, we run
our system on each of the four test sets 25 times and report the mean performances
and their standard deviations. For each version of the system, and each of the four
test sets, we report the accuracy in Table 7.1 and the Matthew’s Correlation Coefficient
(MCC) in Table 7.2, respectively. The accuracy is used as the official performance metric
of the COLIEE competition, whereas the MCC, which is scaled between -100 and 100,
accounts for all four quadrants of the confusion matrix (see Table 2.1), thus giving us
more insight in the performance of the system. For the MCC in Table 7.2, we also report
the maximum performance of each version of the system for each test set across all 25
runs. For interpreting the accuracy results, we should note that the label distribution of
the test sets is balanced.

Table 7.1 | The mean accuracy and standard deviations of the three different versions of our model on each of
the four test sets.

Test set Version 1 Version 2 Version 3
H30 64.23 ± 4.13 64.23 ± 4.35 54.00 ± 3.42
R01 61.77 ± 3.28 61.01 ± 3.19 56.50 ± 3.76
R02 64.44 ± 4.37 63.65 ± 3.53 50.50 ± 3.25

2024 67.08 ± 3.28 65.03 ± 3.21 57.69 ± 2.46
Mean 64.38 ± 3.77 63.48 ± 3.57 54.67 ± 3.22

When we aggregate over all four test-sets, we get a distribution of MCC values for every
run, for every version of the system, as seen in Figure 7.5. We performed an Analysis of
Variance (ANOVA) test to find that there is a significant difference between the mean MCC
score of the versions (F2,297 Æ133.6, p Ç 0.01). A post-hoc Tukey HSD Test finds that the
mean MCC score for version 3 was significantly lower (M Æ12.73, sd Æ7.18) than the mean
MCC scores for version 1 (M Æ31.84, sd Æ9.94) and version 2 (M Æ30.60, sd Æ10.30), at
p Ç 0.01. There is no significant difference in performance between the MCC scores of
version 1 and version 2 of the system.
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Table 7.2 | The maximum, mean and standard deviation (SD) of the Matthew’s Correlation Coefficient of the
three different versions of our model across the four test sets. The best results are shown in bold.

Test set H30 R01 R02 2024
Version 1 2 3 1 2 3 1 2 3 1 2 3

Mean 29.35 28.94 8.16 22.80 21.90 15.18 41.27 42.56 12.28 33.94 28.99 15.32
Max 40.90 43.61 20.33 33.01 38.66 28.10 52.10 54.72 27.07 50.68 43.41 25.19

SD 8.70 8.79 6.91 6.74 6.33 7.63 6.19 5.69 6.87 7.72 7.38 4.92

Figure 7.5 | The distribution of the Matthew’s Correlation Coefficient (MCC) for each version of the system
across all four test sets.

7.4.2. SYSTEM ANALYSIS

For each of the four test sets, we report on how often the systems could use the manual
ADFs, the artificially generated ADFs and the large language model. These percentages
can be found in Table 7.3. In version 1 of our system, the LLM is used in 100% of the
cases. In version 2, the manual ADF is used if it exists and otherwise the backup LLM
is used. On average, in 8.09% of the exam questions a manual ADF could be used (see
Table 7.3). That means that when we use version 2 of our system, in 8.09% of the exam
questions a manual ADF is used and in the remaining 91,91% the backup LLM is used.
Version 3 of the system prefers the manual ADFs, then the artificially generated ADFs and
then the backup LLM. So if version 3 is used, on average in 8.09% of the exam questions
the manual ADFs are used, in 72.24% the artificially generated ADFs are used, and in the
remaining 19.68% the backup LLM is used.
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Table 7.3 | The percentage of exam questions for which version 3 of our system uses manually crafted ADFs,
artificially generated ADFs or the large language model for each of the four test sets.

Test set Manual Artificial LLM
H30 7.14 75.72 17.14
R01 14.42 63.96 21.62
R02 8.64 71.61 19.75

2024 1.83 78.90 19.27
Mean 8.09 72.24 19.68

7.4.3. EXPLAINABILITY

Version 2 and version 3 of our system use a combination of LLMs and ADFs. The latter
are inherently interpretable, and can be used to generate explanations. For example case
H18-2-2 (see Figure 7.1), version 2 and version 3 of our system provide the explanation
as seen in Figure 7.6. The explanation is based on the logical structure of the ADF, and
therefore the general structure of the explanations is the same in both version 2 and
version 3 of our system.

There is a legal entailment.

We examined the question: 'Is the manager not liable to
compensate for damages?'
The text claims that this is True and according to the legal
articles it is True.

We believe this to be the case, as we can answer yes to the
following questions:

Was the manager's intervention benevolent?
Did the manager's actions aim to allow the principal to

escape imminent danger to the principal's person?
Was there any damage resulting from the intervention?

And we do not know the answer to the following questions:
Did the manager's actions aim to allow the principal to

escape imminent danger to the principal's reputation?
Did the manager's actions aim to allow the principal to

escape imminent danger to the principal's property?
Did the manager act in bad faith?
Did the manager exhibit gross negligence?

Figure 7.6 | Explanation provided by version 2 and 3 of our system for exam question H18-2-2
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7.4.4. INVESTIGATING THE EFFECT OF KNOWLEDGE

We have created a total of 25 manual ADFs, each representing a different legal article. In
all of the data, excluding test set 2024, 107 exam questions are found that pertain to these
legal articles. Exam questions with multiple articles are excluded. We refer to these 107
questions as the limited domain dataset. The distribution of the performance of our three
different systems on the limited domain dataset can be found in the boxplot in Figure 7.7.
Note that the y-axis is scaled differently than in Figure 7.5.

Since manual ADFs are available for each exam question in the limited domain dataset
and version 3 of our system always prefers to use manual ADFs over artificial ADFs,
version 2 and version 3 of our system are effectively identical. We performed an ANOVA
test to find that there is no significant difference in performance between the three
versions of our system, as measured by the mean MCC score of each of the versions on
the limited domain dataset (F2,87 Æ0.7703, p È 0.05).

Figure 7.7 | The distribution of the Matthew’s Correlation Coefficient (MCC) for each version of the system
across the limited domain dataset.

7.5. DISCUSSION

We can see a high variation in the performance of our systems, as evident from the stan-
dard deviations in Tables 7.1, 7.2 and the high variance in Figure 7.7. This variance is
solely due to the non-deterministic nature of our LLM, as the ADFs themselves are deter-
ministic. Lowering the temperature parameter of the LLM, which defines the randomness
or creativity of the response, could reduce this variance in performance, but might also
have an impact on the performance itself. Fine-tuning this parameter is therefore re-
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quired for future research. We chose our LLM based on the best performing system of the
last iteration of the COLIEE (Bui et al. 2023), which had yielded an accuracy of 78.22%.
Version 1 of our system, which uses only the LLM, only yielded an accuracy of 64.4%. A
better performance can thus be gained by either fine-tuning the LLM, doing more prompt
engineering, or selecting a different LLM.

On average, there was no statistical difference between the performance of version 1
and version 2 of our system in the experiment across all test sets (Figure 7.5) and across
the limited domain dataset (Figure 7.7). While there is no significant difference in per-
formance, version 2 of our system provides explanations, such as the ones shown in
Figure 7.6. Additionally, the highest performing version 2 system yields a higher MCC
than the highest performing version 1 system for three of the four test sets, as can be
seen in Table 7.2. In the right circumstances, version 2 may therefore slightly outperform
version 1. On the four test sets, the backup classifier was used in most cases when using
version 2 of our system, as seen in Table 7.3. More and better manually crafted ADFs
could improve the performance of version 2 on these test sets. On the limited domain
dataset, where the backup classifier is not used in version 2 of our system, we also see
no significant difference in performance compared to version 1. Version 2, the hybrid
approach therefore yields the same performance as version 1, the large language model,
and can explain its decision-making.

The performance of version 3 was significantly worse than the performance of the
other two versions across the four test sets, as seen in Figure 7.5 and Table 7.1 and 7.2.
Across these test sets, version 3 used the artificially generated ADFs for 64.36%-78.9% of
the exam questions. Our method for generating artificial ADFs is therefore worse than
using a zero-shot LLM. Additionally, the artificially generated ADFs are worse than the
manually crafted ADFs: a manual inspection showed that many of the artificially gener-
ated ADFs contained structures that are illogical or incorrect. We illustrate an example
case of an such an unsound artificially generated ADF in Appendix C. Further research is
needed on how to extract logical structures from natural language automatically. At the
moment, creation of knowledge representations of the law is therefore best left to human
experts.

On the limited domain dataset, there was no significant difference between version 2
and 3, because version 3 always prefers manually crafted ADFs over artificial ADFs, and
every case in the limited domain dataset has an associated manually crafted ADF. In that
experiment, no artificial ADF was used by version 3, making it identical to version 2. The
only variations are due to the non-deterministic nature of the LLM.

While the ADF is inherently explainable, the factor ascription is not, as this is done by
the large language model. We do therefore not know why a certain factor was ascribed for
a given case. However, due to the explanations of our system, we do have a way of finding
out when and where factor ascription has gone wrong. Furthermore, if a user of this
system were to discover a mistake in the automated factor ascription, it is theoretically
possible to adjust the value of this factor. The system would then update its prediction
accordingly. Due to the symbolic aspect of the reasoning-by-design approach, humans
can, in principle, remain in the loop and adjust the system where needed. We leave this
for future research.
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We should note that our manually crafted ADFs were not created by legal experts.
However, the structure of an ADF is human-readable (see Figure 7.3), and would allow a
legal professional to proof-read or check the ADFs that have been created, in contrast to
the black-boxes of pure language models. In future research, we would like to collaborate
with legal experts to create knowledge representations of legal domains. Additionally, our
current implementation cannot handle bar exam questions with multiple articles, which
is a feature we would like to incorporate at a later stage.

7.6. CONCLUSION

In this chapter, we investigated the reasoning-by-design approach to sound reasoning.
We presented a proof of concept for a hybrid system for legal textual entailment. This neu-
rosymbolic system combines large language models with knowledge representation of the
law to make its predictions. We show that the performance of the current implementation
rivals that of a baseline zero-shot large language model. Additionally, the system can
provide an explanation for its decision-making, which is essential in the field of law.
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8
DISCUSSION AND CONCLUSION

In this last chapter, we discuss and reflect on the results presented in the thesis. We
reiterate our goals and research questions and place these within the context of the work
that has been done. Additionally, we summarize each of the parts of the thesis and report
our main contributions. We discuss these results in a broader context, compare the
different approaches discussed and report on our ideas for future research.

8.1. SUMMARY

In this thesis we address the problem of responsibility in AI from a design perspective.
In this work, we defined a responsible AI system as one that behaves as intended. In
Chapter 1, we raised two issues based on that definition: defining intended or desirable
behavior, and making AI systems behave according to that definition. Therefore, based on
a predefined correct or desirable behavior, we explored approaches that aim to make an
AI system behave accordingly. Our primary concern was with data-driven AI systems, or
machine learning systems, as their behavior is learned rather than defined explicitly. We
want these systems to not only make the right decision, but also make these decisions for
the right reasons and be able to explain their decision making in terms of these reasons. A
key goal was therefore to investigate the rationale of machine learning systems, in order
to assess whether the system uses the right reasoning. Additionally, if this rationale is
shown to be unsound, meaning that it does not match with our predetermined correct or
desirable behavior, we wish to adjust the rationale of the systems such that it matches
with the desirable rationale. In this work, we explored two approaches for designing AI
with sound rationales. In Part II, we explored the learning-to-reason approach, where the
aim is to make machine learning models learn the right rationales using tailored training
data, such as in chain-of-thought prompting (see Section 2.3.3). In the reasoning-by-
design approach, explored in Part III, the sound rationale is hard-coded into the system,
such as in symbolic and neurosymbolic systems (see Section 2.4). We investigated these
design approaches within the field of law, where sound and explicit reasoning is essential.
Additionally, we therefore explored domain-specific design choices that play a role in
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the performance and reasonableness of data-driven systems in law. We investigated the
following main research question in this thesis:

• How do we design for responsible behavior in data-driven AI systems?

The other, more specific research questions, as described in Chapter 1, are each tackled
in a different chapter of the thesis. In this section, we reflect on the results of the previous
chapters and try to answer our research questions.

RESEARCH QUESTION 1: WHAT ARE THE POTENTIAL EFFECTS OF DOMAIN-
SPECIFIC DESIGN CHOICES IN DATA-DRIVEN AI SYSTEMS IN LAW?

To investigate the potential effects of domain-specific design choices in law, we chose
to focus on court case prediction research. This is a popular task within the AI & Law
community with various design choices (Medvedeva, Wieling, et al. 2022). In Chapter 3,
we explored some of these design choices and created our own, and evaluated them based
on performance and legal plausibility. We showed that, especially in the legal domain,
accuracy and F1-scores can provide an unrealistic representation of the performance of a
system. We therefore propose to use the Matthew’s Correlation Coefficient, which takes
into account all four quadrants of the confusion matrix.

In an extended replication of previous work (Section 3.4.1), we created models that
can perform court case predictions, similar to the state of the art. Cases are represented
in natural language, and contain several parts. Previous studies had used different parts
of these cases in their experiments. We therefore investigated the effects of including
different parts of the case on the classification process. In Table 3.3, we showed that the
best performance is achieved by using different parts for each combination of model type
and subdomain (legal article). Furthermore, some parts should not be included, as they
contain (implicit) references to the final judgement that can lead to inflated results and
an unreasonable system.

In the court case prediction task in Chapter 3, multiple articles played a role. Systems
could therefore be created that predict whether a specific article was violated, or whether
any article was violated. For the latter task, as a new design choice, we investigated
whether it is better to train a single model on all data, or to train an ensemble of models,
where each model is trained on data pertaining to a single article (Section 3.4.2). While
these ensembles are more explainable, as they can explain which article was violated, the
singular model yields a higher performance as shown in Table 3.4.

Another typical aspect of the legal domain that we investigated are the temporal
effects (Section 3.4.3). We showed that training on cases from the past and predicting
cases from the future yields a lower performance than training and testing on randomly
sampled cases (Table 3.7 and Figure 3.2). Our findings show that randomly sampling into
training and test data therefore gives an unrealistic perspective on the performance of
a system. Furthermore, in Table 3.8 we showed that adding older cases to the training
data can increase performance, as more data generally yields better results. However,
interpretation of the law may change and may no longer be representative for the problem
at hand, in which case performance might decrease by training on older cases. It is
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therefore imperative to understand the specific legal domain at hand and take into
account the temporal effects that might play a role.

In Chapter 3, we demonstrated that the various design choices of machine learning
research within AI & Law can have an impact on the performance and reasonableness of
the system. In order to take the law more seriously in this type of research, the unique
characteristics of the legal domain should be taken into account when designing AI
systems. In a broader sense, the specific and unique characteristics for any given domain
should be studied and understood before designing an AI system, not just to yield a higher
performance, but also to ensure responsible and desirable behavior.

RESEARCH QUESTION 2: HOW CAN THE REASONING OF DATA-DRIVEN AI
SYSTEMS BE ASSESSED?

Correct reasoning is essential in a responsible AI system, but is difficult to evaluate in black
box machine learning systems. In Part II of this thesis (Chapters 4- 6), we investigated
the capability of machine learning systems to learn correct reasoning. We therefore
introduced the TREI method, short for Tailored Rationale Evaluation and Improvement.
This is a four-step method to assess and adjust the reasoning of data-driving machine
learning systems.

In Chapter 4, we presented four different domains. These domains are described as
symbolic knowledge representations, from which we generated datasets. These datasets
were used to train machine learning models in a number of experiments, where we
evaluated the ability of the models to learn the knowledge representations that defined
the domain. If a model has learned the knowledge representation that defines the domain,
it has learned the desired reasoning. An overview of the domains can be seen in Table 4.1.

We applied the first steps of the TREI method to models trained on these datasets in
Chapter 5. Following the first TREI step, we showed that the performance of these models
is high, as evident from the results in Table 5.1. In step 2 of the TREI method, we created
rationale evaluation test sets based on the knowledge structures that define the domain
(Section 5.4).

By studying the performance of the models on these rationale evaluation test sets
(step 3 of TREI), we showed that the rationale of the models is not sound, even though
the models can perform well (see Table 5.3, 5.4, and 5.5). Furthermore, off-the-shelf
explainable AI methods were unable to unveil this unsound rationale, and instead showed
that the models used the right features as seen in Figure 5.3. We conclude that the TREI
method can be used to assess the reasoning of a data-driven AI system.

RESEARCH QUESTION 3: HOW CAN DATA-DRIVEN AI SYSTEMS BE DESIGNED
TO LEARN CORRECT REASONING?

The TREI method was used to assess the rationale of data-driven AI systems, and it
exposed unsound rationales in our models. Following the last step of the TREI method,
we created tailored versions of the training data based on our rationale evaluation in
Section 5.6. Models trained on this tailored version were shown to have a better rationale,
as evident from Table 5.6 and Figures 5.7 and 5.8.
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We further investigated the rationale improvement capabilities of the TREI method in
Chapter 6. We showed that tailoring just a small percentage of the training data can already
have a large impact on the rationale of the model, as shown in Figure 6.1. Furthermore,
we showed that the TREI method can be used to improve rationales even with imperfect
datasets that are either limited in size (Figure 6.2), contain inconsistencies (Figure 6.3), or
contain missing values (Figure 6.4). In Section 6.4, we discussed the current limitations of
the TREI method and provided insights into how the method can be used in practice to
evaluate and improve rationales. We conclude that by using the TREI method, data-driven
AI systems can be designed to learn the correct reasoning.

RESEARCH QUESTION 4: HOW CAN NEUROSYMBOLIC DESIGN APPROACHES
BE USED TO ENSURE CORRECT REASONING?

Neurosymbolic AI systems combine neural AI (machine learning) models and symbolic
AI models in a single system. To investigate the neurosymbolic approach to correct
reasoning, we developed a hybrid system for legal textual entailment, as described in
Chapter 7. This system combines the natural language processing capabilities of machine
learning models with the sound and explainable reasoning of symbolic AI methods to
solve bar exam questions. Each question consisted of determining whether a given legal
article legally entails a given statement. By creating Abstract Dialectical Frameworks
(ADFs) of legal articles, and using a large language model for factor ascription, we created
a hybrid system that can perform the legal textual entailment task with a performance that
was similar to our baseline large language model (see Figure 7.7). Additionally, this system
guarantees that the high level reasoning is sound, as its reasoning follows the predefined
structure of the ADF. Furthermore, it can provide explanations for its decisions, such as
the one seen in Figure 7.6. By designing a neurosymbolic system, we were therefore able
to ensure correct reasoning.

HOW DO WE DESIGN FOR RESPONSIBLE BEHAVIOR IN DATA-DRIVEN AI SYS-
TEMS?

In Section 1.2, we established two issues regarding the design of responsible behavior in
AI systems: defining the desirable behavior, and ensuring that the AI system behaves as
such. In Chapter 3, we showed that domain-specific design choices can have an effect on
both the performance and reasonableness of data-driven AI systems. In order to design
for responsible behavior in such systems, we therefore need to be aware of the unique
characteristics of the domain that we are working in, and take these into account during
the design process. To ensure that data-driven AI systems behave according to a certain set
of rules or guidelines, we distinguished between two types of design approaches: learning-
to-reason, where data-driven AI systems learn the right behavior based on examples,
and reasoning-by-design, where we create neurosymbolic AI systems that combine data-
driven systems with manually crafted symbolic models of the domain in order to behave
as desired. In Part II, we showed that our TREI method, a learning-to-reason approach,
can be used to assess the reasoning of data-driven systems and steer their reasoning in
the right direction in order to induce responsible behavior. In Chapter 7, we presented
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a neurosymbolic model, following the reasoning-by-design approach, that combines
the natural language processing capabilities of a large language model with the sound,
interpretable and explainable reasoning of manually crafted symbolic representations of
the domain, in order to ensure that the behavior of the system is as desired. We therefore
show that we can design data-driven AI systems that behave more responsibly by taking
the unique characteristics of the domain into account, and by designing these systems
according to either the learning-to-reason or the reasoning-by-design approach.

8.2. CONTRIBUTIONS

In this thesis we investigated the design of responsible AI, with a focus on correct reason-
ing. We evaluated the effects of domain-specific design choices, the learning-to-reason
approach and the learning by design approach. The main contributions of the thesis are:

1. The specific characteristics of the law should be taken into account when designing
data-driven AI systems in order to yield a better performance and better legal
alignment (Chapter 3).

2. We developed a set of legal resources that can be used to investigate the relationship
between learning and reasoning 1 (Chapter 4).

3. We developed a Python library for implementing Abstract Dialectical Frameworks
that can also generate datasets and explanations. 2 (Chapters 4 and 7)

4. We developed the TREI method to assess and improve reasoning in data-driven AI
systems (Chapter 5).

5. We showed that data-driven AI systems can make the right decisions using the
right features for the wrong reasons, and that conventional explainable AI methods
cannot guarantee a sound rationale (Chapter 5).

6. We showed that the rationale of data-driven AI system can be improved by tailoring
the training dataset based on the evaluation of the rationale (Chapter 5).

7. Using tailored training datasets, AI systems can be improved to yield a better per-
formance and have a better rationale, regardless of the number of inconsistencies,
the number of missing values or the size of the training dataset (Chapter 6).

8. Hybrid neurosymbolic AI systems that combine symbolic and sub-symbolic tech-
niques can perform as well as generative large language models in legal entailment
tasks, while also guaranteeing sound and explainable reasoning in a way that is
interpretable and adjustable by the end user (Chapter 7).

1Resources are available at https://github.com/CorSteging/LegalResources .
2Our ADFlib library is available at https://github.com/CorSteging/ADFlib .

https://github.com/CorSteging/LegalResources
https://github.com/CorSteging/ADFlib


8

136 8. DISCUSSION AND CONCLUSION

8.3. DISCUSSION

This thesis dealt with responsible AI from a design perspective. Currently, there are many
facets of responsible AI, ranging from social to technical. While important, we did not
focus on ethical or social issues such as privacy, security, (legal) accountability, sustain-
ability and fairness. Our main contributions are towards designing AI systems that use
correct reasoning, which is an essential aspect of responsible AI and necessary for many
of the other facets. In this section, we discuss our contributions in a broader context and
compare the two approaches that we explored.

8.3.1. RELEVANCE

Responsible AI is a key issue in artificial intelligence and society in general (Dignum 2019).
We focused on making systems behave as intended, according to some predefined set
of rules or guidelines. We performed our studies in legal domains, where sound and
explainable reasoning is essential, thus contributing to the research in AI & Law. In Part II,
we used relatively basic models and straightforward tasks that were based on artificially
generated datasets. The approaches that we explored and the methods that we developed
can in principle also be applied to other (real-life) domains, tasks and models, however,
making our work relevant for the broader AI community as well.

The effects of the domain-specific design choices on the reasonableness and perfor-
mance of AI systems that we investigated in Chapter 3 were studied in the field of law, but
may apply to other domains and tasks as well. For example, the temporal effect, or the
effects of creating generalist versus specialist models can play a role in domains such as
finance, health or education.

The TREI method that we introduced in Part II is a model-agnostic method that can
theoretically be used in any domain or for any task and with any model, as long as there
is some form of explicit domain knowledge that can be tested for. We have shown that
this method works in four different legal tasks. Since the method prescribes no model,
domain or task-specific constraints, the method can in principle be applied to other
models, domains and tasks as well.

The neurosymbolic approach to legal textual entailment from Chapter 7 can also
be used in other tasks where only partial domain knowledge is available. In a different
domain-specific NLP task, one would need to explicitly represent the higher level domain
knowledge in a symbolic representation, such as the Abstract Dialectical Framework that
we used, and combine this with a machine learning model to convert the natural language
into a format that is usable by the symbolic representation.

8.3.2. LEARNING-TO-REASON VS. REASONING-BY-DESIGN

We have explored two approaches to sound reasoning in data-driven models. In the
learning-to-reason approach, we developed the TREI method (Part II), which can be used
to evaluate and potentially improve the reasoning of data-driven models. With regards
to the reasoning-by-design approach (Part III), we created a neurosymbolic system that
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combines machine learning with symbolic representations, where the machine learning
part translates raw data into a format that is usable by the symbolic methods. Both
approaches are hybrid, in the sense that they combine domain knowledge with learning,
and aim to create responsible AI systems, which we defined as systems that that make
the right decisions for the right reasons and are able to explain their decision-making
in terms of those reasons. We now discuss the differences and similarities between the
two approaches based on the results of our experiments. Specifically, we discuss the role
of domain knowledge, and the sound reasoning and explainability capabilities of both
approaches. Additionally, we discuss the drawbacks and limitations of each approach,
and report our thoughts on combining the two approaches.

Domain knowledge Both the TREI method and the neurosymbolic approach require at
least partially explicit domain knowledge. What this entails, is that a part of the domain
should be understood such that it can be formalized in one way or another.

In the TREI method, rationale evaluation datasets are created to test for a particular
element of the desired rationale. In order to do so, this element of the desired rationale
needs to be formalized. In our experiments in Part II, the domain was defined exhaustively
by a set of conditions or issues, which represented the elements of the desired rationale.
This formalization made it possible to generate the rationale evaluation test sets, as
shown in Section 5.4. The rationale of models can then be evaluated by comparing it
to the desired rationale by testing the model on the rationale evaluation test sets. In
domains without partially explicit domain knowledge, and thus without the potential
for a formalization of the desired rationale elements, the TREI method cannot be used.
Reinforcement Learning from Human Feedback (RLHF) (Havrilla et al. 2023), another
learning-to-reason approach, uses human preference to steer the model’s behavior, and
can therefore be used when explicit domain knowledge is not available, granted that there
is a human preference (see Section 2.3.3).

Similarly, the neurosymbolic approach that we used in Chapter 7 also requires that
a part of the desired rationale is made explicit. More specifically, this desired rationale
will need to be hard-coded as symbolic representations. In Section 7.3.2 for example, we
created symbolic representations of legal articles in the form of ADFs, which are used
by the neurosymbolic system to reason with. The machine learning side then handles
the additional implicit rationale elements, such as the natural language processing, and
converts these into a format that can be used in the symbolic part. In domains without
a partially explicit desired rationale, no symbolic representations can be created and in
those cases the neurosymbolic approach cannot be used.

Correct reasoning Both the learning-to-reason approach and the reasoning-by-design
approach that we explored aim to improve correct or desirable reasoning. The TREI
method possesses the capability to evaluate the reasoning of the entire data-driven system
using the rationale evaluation test sets. This is a quantitative measure of specific rationale
elements, as seen in Section 5.5. To improve the reasoning of data-driven models, the
TREI method prescribes the design of tailored training datasets based on the results of
the previous evaluative step, as seen in Section 5.6. Adding only a few of these tailored
instances can already improve the rationale, as evident from the plots in Figure 6.1, where
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we mix tailored instances with regular instances in the training data. Even though there
is a clear improvement in the rationale, we can see in results such as in Table 5.6 that
there is still room for improvement when it comes to the rationale. Furthermore, while
the TREI method can give us a quantitative way of analysing the rationale of a data-driven
model, the internal structure of the model still remains a black box without an explicit
rationale that is human interpretable and thus verifiable.

Unlike the TREI method, our neurosymbolic approach does not possess an evaluative
measure for assessing the rationale. However, the reasoning of the symbolic part of our
neurosymbolic approach is created by human experts and is human interpretable. This
symbolic part is therefore guaranteed to use the correct or desired reasoning, granted
that nothing goes wrong in the design process. The machine learning part, such as the
factor ascription task that was performed by a large language model in our neurosymbolic
system in Chapter 7, is not guaranteed to use sound reasoning, just as any other black box
machine learning system. In fact, we saw in Figure 7.7 that our system still makes a lot
of mistakes, which are due to errors of the large language model in the factor ascription
process. One advantage, however, is that this neurosymbolic system is explainable and
interpretable, which makes it straightforward for human overseers to point out mistakes
in the factor ascription. Furthermore, it is possible to adjust the factors post hoc after
ascription, effectively creating a hybrid human-machine system.

Explainability When it comes to the explainability aspect of both approaches, clear dif-
ferences can be found. The TREI method can give a quantitative analysis of the rationale,
based on a predefined set of desirable rationale elements, but it cannot be used to provide
explanations for the decisions that the model makes. A model designed using the TREI
method still remains a black box model, despite what we know about the specific rationale
elements of that black box model. This makes it impossible to investigate or adjust the
reasoning used by models trained using the TREI method for a given decision, such as
one might do in a symbolic AI system. To provide the user with explicit explanations, a
model designed using TREI would require post hoc XAI methods such as SHAP or LIME,
or use specialized approaches such as chain-of-thought prompting.

The neurosymbolic approach is inherently explainable and human interpretable,
at least on the symbolic side of the system. In our experiments in Chapter 7, where we
created ADFs for legal articles, the system provides an explanation alongside its prediction.
This explanation is created by making the reasoning of the symbolic representation (in our
case the ADF) explicit. Because these symbolic representations are human interpretable,
they can be used to explain decisions. The explanations are correct (or faithful) and
consistent (see Table 2.3). These explanations only work for the symbolic part, however,
as the machine learning part will remain a black box, with no guarantee for a sound
rationale. If the machine learning model in such a neurosymbolic system makes a mistake
when converting the raw data into a format that is readable by the symbolic part, the
final decision of the system can therefore be incorrect, even though the symbolic part
uses the right reasoning. However, as mentioned before, once a prediction has been
made, human end users can adjust the values of the symbolic representation in cases
where the machine learning part has made a mistake, since the symbolic part is human
interpretable, thus effectively creating a fallback system.
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Drawbacks and limitations Learning-to-reason and reasoning-by-design both aim to
achieve correct reasoning but through different means. Both the TREI method and the
neurosymbolic approach that we employed require the availability of partially explicit
domain knowledge and human domain experts to aid in the design process. Both can
improve overall correct reasoning when compared to regular black box machine learning
methods. Both approaches have their own unique shortcomings and limitations as well.

The TREI method requires the design of rationale evaluation test sets. Creating these
rationale evaluation test sets is non-trivial and time-intensive. This is where the human
domain experts would play a role as well. In order to improve the model, tailored training
datasets will need to be created, which can also be a challenging and time-consuming task.
Furthermore, models will need to be retrained on these new tailored training datasets,
potentially in an iterative fashion. This retraining of the model costs time, energy and
computational power. We have also already discussed the limitations of the TREI method
with regards to explainability and adjustability by the end users earlier in this section.

On the reasoning-by-design side, the neurosymbolic approach that we explored has
to deal with the limitations of both the symbolic and machine learning approaches. For
the symbolic part, symbolic representations need to be created in combination with
human domain experts, which can be challenging and time-intensive. On the machine
learning side, a model will have to be designed, either by training it from scratch, through
transfer learning, or by prompt engineering. This part is also time-consuming and can
require large amounts of computational power. Designing a neurosymbolic system will
therefore require more resources than designing a regular machine learning system.
Additionally, while the symbolic part of a neurosymbolic system can possess a high level
of interpretability and explainability, the machine learning part does not, and remains a
black box.

Combining the approaches Both the learning-to-reason and the reasoning-by-design
approach have their own advantages and disadvantages. While we have put the two side
by side for the sake of comparison, the two could theoretically be used in conjunction. In
the combined approach, a neurosymbolic system would be created, where the machine
learning part is designed using the TREI method. We leave this for future research. In
theory, the machine learning part could then be tailored to specific desirable rationale
elements.

Currently, the best approach to use seems to depend on the task at hand. If inter-
pretability and explainability are essential, reasoning-by-design should be favored. In
situations where a machine learning system is used that should adhere to certain guide-
lines, the TREI method should be used. In situations where exhaustive domain knowledge
is available and can be explicitly formalized, one should opt to use symbolic AI methods.

8.4. FUTURE WORK

The design of responsible AI requires that systems reason correctly, also in data-driven
systems. This is a difficult challenge to tackle. We have taken a small step towards the goal
of designing responsible AI, but there is much research that needs to be done in order
to truly achieve that goal. In this thesis, we investigated the effects of some of the many
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design choices for the task of case predictions (Chapter 3). We showed that these can have
an impact not only on the performance, but also on the legal reasonableness. This line of
thought can be extended to other domains and other tasks as well. This would require
additional research, where domain- or task-specific design choices are investigated in
terms of performance and domain-determined reasonableness.

The TREI method, as described in Part II, was illustrated using a set of four domains.
For each of these domains, artificial datasets were generated in order to train and test
machine learning models and evaluate their rationale. All four domains were defined
exhaustively by a symbolic representation, which represented ‘true rationale’ that the
models should have learned. In future research, we would like to employ the TREI method
in domains with real data, where the complete ‘true rationale’ is only known to some
extent. In these situations, we would only be able to evaluate and improve the rationale
based on what desirable rationale elements are available in explicit form. This can be
highly beneficial for machine learning tasks in domains where models need to adhere to
domain-specific guidelines.

Furthermore, we wish to investigate the potential of the TREI method in combination
with generative AI models. Recent research has reported on the emergent reasoning
capabilities of generative large language models (Webb et al. 2023). We wish to investigate
these capabilities by creating benchmark datasets, similar to the rationale evaluation test
sets of the TREI method. To improve reasoning with large language models, we might
tailor prompts rather than entire datasets, thus tackling the limitation of retraining the
system multiple times as well.

In Part III of this thesis we introduced a hybrid method for legal textual entailment,
which uses a neurosymbolic approach to solve bar exam questions in an explainable and
interpretable manner. We would like to expand upon this system, by collaborating with
legal experts, who could help us create sound ADFs for each of the legal articles.

Additionally, we would like to perform a user study with law students, where they
are asked to solve bar exam questions with and without the help of our hybrid legal
entailment system. In the latter case, students would be presented with the bar exam
question, the prediction of our system, the explanation of our system and the possibility
to quickly adjust the factor ascription. This should be beneficial in analysing how such
a double hybrid system (neurosymbolic and human-machine) would work in practice.
Future research could expand upon this approach further by using the neurosymbolic
approach to create legal tools that help legal personnel or laymen with processing legal
scenarios. In order to create such an intelligent interaction, we should not only consider
the internal reasoning of the system, but go one step further and also ensure that the
system takes the reasoning of the end-users into account (Verbrugge 2009).

As briefly mentioned earlier, we also wish to explore the possibilities of combining
the TREI method with the neurosymbolic approach. This way, the symbolic part of the
neurosymbolic approach will be used for sound, interpretable and explainable reasoning,
and the TREI method can be used to ensure that the machine learning part adheres to
specific desired rationale elements.
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8.5. FINAL REMARKS

The thesis explores the design of responsible AI. We define a responsible AI system as one
that behaves as intended: one that makes the right decisions for the right reasons, and is
able to explain their decision making in terms of these reasons. While adhering to this
definition is a difficult challenge for black box machine learning models, the current state
of the art in many AI applications, we have made steps towards achieving that goal. By
taking into account domain-specific design choices, and taking the learning-to-reason or
reasoning-by-design approach, we showed that it is possible to improve the reasoning of
data-driven AI systems. By building upon these concepts and ones from related work, we
can slowly get closer to AI systems that are designed to behave truly responsibly.
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A
ADDITIONAL MATERIALS CHAPTER

3 (PART I)

In this appendix, we provide additional information regarding the experimental setup of
the court case prediction experiments performed in Chapter 3. We provide more detailed
descriptions of the models used, including the optimized parameters. Additionally, we
provide more detailed versions of some of the results presented in Chapter 3.

A.1. MODEL SPECIFICATIONS

We report on the optimized parameters used by our models in our extended replication
experiments as described in Section 3.4.1. A brief explanation of each of the parameters
is given in Table A.1, as taken from the scikit-learn library (Pedregosa et al. 2011).

Four models were used in this experiment: an SVM, a Naive Bayes Classifier, a Random
Forest and a BERT classifier. In Table A.2, we report on the optimized parameters for the
preprocessing of the text, as used by all of the models in the experiments.

The SVM, Naive Bayes classifier and the Random Forest used TF-IDF to vectorize
the text into a format that is usable by the models. We used the TF-IDF vectorizer from
the scikit-learn library (Pedregosa et al. 2011). The optimized parameters of the TF-IDF
vectorizer are shown Table A.3.

The optimized parameters for the SVM, Naive Bayes classifier, and the Random Forest
are shown in Table A.4, A.5 and A.6 respectively. We used the scikit-learn library to
implement these three models (Pedregosa et al. 2011). More specifically, for the SVM we
used the SGDClassifier class, for the Naive Bayes we used the MultinomialNB class, and
for the Random Forest the RandomForestClassifier class.

The optimized parameters used for the BERT model are shown in Table A.7. For the
BERT classifier, we used the transformers library from HugginFace (Wolf et al. 2020).
Note that the BERT model uses the same parameters across all articles. We also report
the accuracy and MCC values for all of the resulting models, which were also shown in
Table 3.2 and are here reproduced for convenience as Tables A.4, A.5 and A.7.
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Table A.1 | Brief explanations for the parameters mentioned in Tables A.2, A.3, A.4, A.5, A.6, and A.7. Descrip-
tions taken from scikit-learn where appropriate (Pedregosa et al. 2011).

Parameter Description
General parts The parts of the case used in the classification

process.
remove_stopwords If true, removes all uninformative words from

the text, such as ’the’ or ’and’.
remove_upper If true, convert all characters to lowercase be-

fore tokenizing
TFIDF binary If true, all non-zero term counts are set to 1.

min_df When building the vocabulary ignore terms
that have a document frequency strictly lower
than the given threshold. This value is also
called cut-off in the literature.

ngram_range The lower and upper boundary of the range of
n-values for different n-grams to be extracted.

norm The unit norm of each row. Either ’l1’, ’l2’ or
’None’ for no normalization.

use_idf Use inverse-document-frequency reweighting.
SVM alpha Constant that multiplies the regularization

term. The higher the value, the stronger the
regularization.

max_iter The maximum number of passes over the train-
ing data (aka epochs).

penalty The penalty (aka regularization term) to be
used. Either ’l1’, ’l2’, ’elasticnet’ or ’None’ for no
penalty.

Naive Bayes alpha Additive (Laplace/Lidstone) smoothing param-
eter.

fit_prior Whether to learn class prior probabilities or
not. If false, a uniform prior will be used.

Random bootstrap Whether bootstrap samples are used when
building trees. If False, the whole dataset is
used to build each tree.

Forest max_depth The maximum depth of the tree. If None,
then nodes are expanded until all leaves
are pure or until all leaves contain less than
min_samples_split samples.

max_features The number of features to consider when look-
ing for the best split.

min_samples_leaf The minimum number of samples required to
be at a leaf node.

min_samples_split The minimum number of samples required to
split an internal node.

Continued on next page
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Table A.1 – continued from previous page

num_estim The number of estimators (trees) in the forest.
BERT special_tokens Adds ‘[CLS]‘ and ‘[SEP]‘ tokens, indicating the

beginning and ending of a sentence respec-
tively.

truncation Truncates the sentences after tokenization to
fit within a predefined length (512 tokens in
our case).

padding Adds padding to sentences that are shorter
than the predefined length (512 tokens in our
case).

batch_size The number of training examples used in the
estimate of the error gradient.

epochs Number of complete passes of the training
dataset.

Table A.2 | The optimized preprocessing parameters used by every model in Section 3.4.1.

parts remove_stopwords remove_upper
Article2 [’procedure’, ’facts’] False False
Article3 [’facts’] False True
Article5 [’facts’] False True
Article6 [’procedure’, ’facts’] False False
Article8 [’facts’] False False

Article10 [’procedure’, ’facts’] False False
Article11 [’procedure’] True True
Article13 [’procedure’, ’facts’] False True
Article14 [’procedure’, ’facts’] True False

A.2. TEMPORAL EFFECTS

We explored the temporal effects of the law in court case predictions in Section 3.4.3 of
Chapter 3. In the first of these experiments, we investigated the effects of training on cases
from the past instead of training on random cases (such as in k-fold cross-validation). In
Table 3.7 and in Figure 3.2, we showed the average performance of the models trained on
random cases and cases from the past, across all test years. Here, we also show the results
for all test years (1978-2022) in Table A.8.

Additionally, in Section 3.4.3 we investigated the effects of training on only a restricted
number of cases from the past. The results of this experiment were shown in Table 3.8,
displaying the mean MCC values for all four of our models across all test years that
we evaluated. We showed that the effects per time window differ per test year using
the standard deviation. To illustrate this further, we show the MCC values of the BERT
classifier across the varying time windows for the test years 2000-2022 in Table A.9.
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Table A.3 | The optimized parameters for the TF-IDF Vectorizer used in Section 3.4.1.

binary min_df ngram_range norm use_idf
Article2 False 2 (3, 4) l2 True
Article3 True 1 (1, 1) None True
Article5 True 3 (1, 1) l2 True
Article6 True 2 (2, 4) l2 True
Article8 True 1 (3, 3) l2 False

Article10 False 1 (1, 1) l2 False
Article11 False 2 (1, 1) l1 False
Article13 False 1 (1, 2) l2 True
Article14 True 3 (1, 1) l2 True

All False 2 (1, 1) l1 False

Table A.4 | The optimized parameters for the SVM used in Section 3.4.1, alongside the accuracy and MCC of
these models.

alpha max_iter penalty accuracy MCC
Article 2 0.01 2000 l2 68.0 38.8
Article 3 1.0 2000 l2 64.5 36.8
Article 5 0.0001 500 elasticnet 65.5 29.0
Article 6 0.0001 100 l2 76.8 31.1
Article 8 0.001 500 l2 68.1 53.8

Article 10 0.0001 500 elasticnet 61.6 36.1
Article 11 0.001 1000 l2 65.4 23.1
Article 13 0.001 1000 elasticnet 80.4 31.0
Article 14 0.001 1000 elasticnet 76.6 61.0

All 0.001 1000 l2 69.3 53.2

Table A.5 | The optimized parameters for the Naive Bayes classifier used in Section 3.4.1, alongside the accu-
racy and MCC of these models.

alpha fit_prior accuracy MCC
Article 2 0.0 True 70.6 42.9
Article 3 0.01 True 64.9 41.2
Article 5 0.1 True 66.1 29.9
Article 6 0.5 False 77.6 32.3
Article 8 1.0 True 66.4 56.1

Article 10 0.001 True 66.8 33.6
Article 11 0.01 True 75.0 34.3
Article 13 0.01 False 77.3 50.6
Article 14 0.0001 False 73.6 54.7

All 0.01 True 71.5 47.4
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Table A.6 | The optimized parameters for the Random Forest used in Section 3.4.1, alongside the accuracy
and MCC of these models.

min_ min_
boot max_ max_ sample_ samples_ num_
strap depth features leaf split estim accuracy MCC

Article 2 False None auto 4 5 1000 66.2 45.3
Article 3 False 50.0 auto 2 2 1000 60.8 32.5
Article 5 False 25.0 sqrt 2 5 2000 62.8 21.6
Article 6 False 100.0 auto 2 10 2000 74.6 25.6
Article 8 True None auto 4 2 500 61.8 49.2

Article 10 True 50.0 sqrt 2 10 500 66.1 24.1
Article 11 True 50.0 auto 2 10 1500 75.6 32.2
Article 13 True 75.0 auto 1 10 1500 77.1 52.4
Article 14 False 25.0 sqrt 1 10 2000 74.4 54.8

All True 50.0 auto 2 10 1500 72.6 48.8

Table A.7 | The optimized parameters for the BERT model used in Section 3.4.1.

Parameter Value
special_tokens True

truncation True
padding True

batch_size 16
epochs 20
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Table A.8 | The MCC of the four models trained on random cases or cases from the past, tested on all cases of
a single year as described in Section 3.4.3 (from 1978 to 2022)

Trained on cases from the past Trained on random cases
SVM N.Bayes R.Forest BERT SVM N.Bayes R.Forest BERT

1978 0.0 -50.0 0.0 0.0 0.0 50.0 0.0 0.0
1979 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1980 0.0 0.0 0.0 0.0 0.0 0.0 50.0 50.0
1981 0.0 0.0 0.0 -100.0 0.0 0.0 0.0 100.0
1982 0.0 0.0 0.0 0.0 0.0 -20.0 -44.7 20.0
1983 0.0 0.0 0.0 25.8 0.0 0.0 -40.0 0.0
1984 0.0 66.7 66.7 32.7 0.0 25.0 -66.7 16.7
1985 0.0 0.0 0.0 -57.7 0.0 0.0 33.3 0.0
1986 47.1 0.0 -35.4 -100.0 0.0 0.0 35.4 0.0
1987 0.0 0.0 0.0 0.0 0.0 0.0 32.0 18.5
1988 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1989 0.0 0.0 0.0 -27.2 0.0 0.0 40.8 0.0
1990 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1991 0.0 -19.2 -27.7 14.5 9.5 19.2 -14.6 16.1
1992 0.0 33.9 -25.6 33.9 0.0 25.6 25.6 25.6
1993 0.0 11.7 3.3 -56.4 0.0 17.4 -1.8 20.0
1994 0.0 -6.8 -12.0 -4.1 -16.1 -29.9 4.1 0.0
1995 13.9 -27.0 -33.7 6.9 0.0 0.0 55.5 22.9
1996 0.0 2.9 2.3 -14.0 16.7 0.0 36.2 16.7
1997 25.6 4.1 -21.5 -1.1 8.9 21.5 31.5 24.1
1998 16.3 21.4 -7.6 13.8 13.4 13.4 17.8 21.2
1999 4.5 -9.3 0.0 -4.8 16.1 14.9 -12.1 14.9
2000 17.4 30.0 2.1 11.8 19.8 15.4 31.4 28.1
2001 41.0 45.0 33.7 18.3 30.7 14.5 43.2 23.7
2002 21.2 27.0 29.3 22.2 37.2 35.9 31.3 37.2
2003 35.4 43.9 23.9 32.5 40.1 33.0 30.1 28.7
2004 39.7 38.8 33.6 30.5 41.8 34.6 35.3 14.0
2005 26.5 21.7 19.3 21.6 17.7 25.1 26.1 10.7
2006 37.8 34.1 28.4 16.3 35.0 30.5 31.4 21.6
2007 38.4 35.2 31.0 28.0 35.9 31.4 30.1 25.4
2008 32.4 32.1 21.4 17.6 31.3 24.6 26.4 26.4
2009 25.3 24.0 31.5 11.1 26.8 21.5 30.0 21.0
2010 27.6 26.8 28.2 23.3 29.3 23.6 27.3 22.5
2011 31.3 24.7 28.5 12.2 30.2 26.1 35.4 13.5
2012 35.3 33.6 21.1 23.7 38.9 32.3 21.4 21.3
2013 41.5 35.1 44.4 30.5 39.8 31.8 43.4 15.8
2014 37.4 32.7 35.9 48.1 35.6 30.8 36.3 41.1
2015 31.5 27.4 34.8 28.4 36.8 28.4 36.7 32.1
2016 38.8 37.5 31.7 30.8 36.0 33.1 34.8 39.1
2017 46.3 43.9 47.0 42.7 55.8 44.2 48.2 42.7
2018 44.8 35.9 43.5 39.0 45.3 36.5 42.3 35.3
2019 28.0 32.4 32.0 29.2 33.5 32.4 31.2 30.3
2020 33.1 27.6 29.3 21.9 30.6 25.3 30.1 27.6
2021 38.7 28.4 25.6 29.0 38.5 28.0 28.0 24.6
2022 44.8 31.1 37.4 36.1 38.6 31.6 37.4 30.9

Mean 35.0 32.1 30.2 26.3 35.3 29.4 33.4 26.7
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Table A.9 | The MCC of the BERT model trained with varying time windows from the past, tested on all cases
of a single year as described in Section 3.4.3 (from 2000 to 2022)

Time window (in years)
Test Year 5 10 15 20 25 30 35 40 45

2000 25.85 -4.2 15.22 17.77 11.79 11.79 11.79 11.79 11.79
2001 40.71 16.1 43.2 36.1 18.31 18.31 18.31 18.31 18.31
2002 19.46 27.57 28.23 23.21 22.17 22.17 22.17 22.17 22.17
2003 17.54 5.18 29.51 10.56 32.51 32.51 32.51 32.51 32.51
2004 15.48 26.72 10.3 27.9 32.34 30.53 30.53 30.53 30.53
2005 8.55 13.17 18.36 23.11 15.33 21.63 21.63 21.63 21.63
2006 18.23 26.19 20.8 13.04 20.06 16.35 16.35 16.35 16.35
2007 18.88 28.33 28.41 25.38 28.06 27.95 27.95 27.95 27.95
2008 12.45 23.79 22.73 22.73 16.15 17.55 17.55 17.55 17.55
2009 9.49 11.57 20.76 19.64 18.44 4.35 11.1 11.1 11.1
2010 21.39 24.84 17.55 25.53 23.84 26.9 23.32 23.32 23.32
2011 14.56 23.87 19.52 17.84 18.34 25.12 12.24 12.24 12.24
2012 13.07 27.05 25.16 16.87 29.56 25.16 23.74 23.74 23.74
2013 32.89 26.88 31.72 29.16 36.83 37.88 30.55 30.55 30.55
2014 40.64 29.7 36.32 32.39 42.17 32.17 35.84 48.08 48.08
2015 31.84 26.36 24.0 20.39 12.97 26.1 40.47 28.43 28.43
2016 24.53 33.47 28.65 36.72 37.98 34.32 34.32 30.83 30.83
2017 36.46 42.89 43.69 31.09 36.34 40.81 37.43 42.72 42.72
2018 37.12 33.21 41.41 37.43 38.96 31.01 30.82 39.03 39.03
2019 24.92 30.18 28.33 33.13 27.55 23.9 33.51 34.37 29.2
2020 23.36 21.0 22.39 16.65 27.3 25.54 26.89 26.1 21.87
2021 32.35 24.46 24.53 19.59 16.69 23.13 30.66 28.1 28.99
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B.1. LIME AND SHAP PLOTS

The first step of the TREI method, as described in Chapter 5, prescribes the evaluation
of the model using contemporary evaluation methods. This includes performance met-
rics, such as accuracy, F1 or Matthew’s Correlation Coefficient, but also Explainable
AI methods. In Section 5.3, we mention that we used two explainable AI methods to
evaluate our models: SHAP and LIME. Throughout Chapter 5, we primarily showed the
plots from the SHAP evaluation, as SHAP natively possesses methods for aggregating
local explanations, thus being able to provide approximated global explanations. We did,
however, compare LIME and SHAP explanations in order to ensure that our results are
explainer-independent. More specifically, for each of the three neural networks trained on
the tailored and regular training datasets of the welfare benefit domain, we investigated
10 instances and their LIME explanations and SHAP explanations. That means that we
evaluated a total of 120 LIME and SHAP plots. In Figure 5.1, we showed an example of
such LIME and SHAP explanations of a neural network trained on the regular training
dataset for predicting the outcome of the example instance in Table 5.2. To further illus-
trate and compare the two explainable AI techniques, we provide the SHAP and LIME
explanations of neural networks trained on both the tailored and regular training datasets
for predicting the instance shown in Table B.1 in Figure B.1. All 120 LIME and SHAP plots
that we evaluated can be found in our public repository. 1

1All of the LIME and SHAP plots can be found in the following GitHub repository: https://github.com/
CorSteging/DiscoveringTheRationaleOfDecisions/tree/main/results/comparing_lime_shap
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Table B.1 | An example instance from the welfare benefit domain dataset, which is explained using LIME and
SHAP in Figure B.1

Age Gender Con1 Con1 Con3 Con4 Con5 Spouse Absent Resources Type Distance Eligible
83 male 1 1 0 1 1 1 0 295 in 44 True

(a) LIME explanation, regular network (b) SHAP explanation, regular network

(c) LIME explanation, tailored network (d) SHAP explanation, tailored network

Figure B.1 | LIME (a, c) and SHAP (b, d) bar plots of the MLP trained on a regular (a, b) and tailored dataset (b,
c) of 50,000 instances of the welfare benefit domain, displaying the impact of each feature in the classification
process towards the ’ineligible’ label (blue) or the ’eligible’ label (orange/red) of the instance in Table B.1.
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B.2. ADF FOR ARTICLE 6

One of the domains that we use in our experiments in Part II deals with Article 6 of the
European Convention on Human Rights. With the help of legal experts, earlier research
had created a symbolic representation of Article 6 in the form of an Abstract Dialectial
Framework (ADF), based on the ANGELIC methodology (Collenette et al. 2023). We
implemented this version of the ADF of Article 6 using a custom Python library called
‘ADFlib’ 2. The code for our implementation of the Article 6 ADF can be found in Figure B.1.

Each BaseLevelFactor object has a unique identifier, a text representing the question,
and a default value. AbstractFactor objects do not have a value, but have accept factors,
reject factors, or both, which determine the value of the AbstractFactor object. Relation-
ship objects represent logical relationships between factors. They consist of a type (‘AND’,
‘OR’, or ‘NOT’) and a set of factors. The ADF object is a special type of AbstractFactor that
is treated in the exact same way, but has additional functions used for generating datasets
based on the ADF.

1 from ADFlib import *
2

3 #I1
4 I1 = BaseLevelFactor ( ’ I1 ’ , ’ I s the applicant a victim ? ’ , False )
5

6 #I2
7 I2Q1 = BaseLevelFactor ( ’ I2Q1 ’ , ’ I s the case well founded ? ’ , False )
8 I2F1Q1 = BaseLevelFactor ( ’ I2F1Q1 ’ , ’The case examines a fundamental aspect ? ’ , False )
9 I2F1Q2 = BaseLevelFactor ( ’ I2F1Q2 ’ , ’Have a l l Domestic courts have been exhausted ? ’ , False )

10

11 I2F1 = AbstractFactor (
12 i d e n t i f i e r = ’ I2F1 ’ ,
13 t e x t = ’The victim suffered a disadvantage . ’ ,
14 default = False ,
15 acceptfactors = Relationship ( ’AND’ , [ I2F1Q1 , I2F1Q2 ] )
16 )
17

18 I2 = AbstractFactor (
19 i d e n t i f i e r = ’ I2 ’ ,
20 t e x t = ’The applicant was admissible ’ ,
21 default = False ,
22 acceptfactors = Relationship ( ’AND’ , [ I2Q1 , I2F1 ] )
23 )
24

25 #I3
26 I3F1Q1 = BaseLevelFactor ( ’ I3F1Q1 ’ ,
27 ’Was the case conducted in a reasonable time ? ’ , False )
28 I3F1Q2 = BaseLevelFactor ( ’ I3F1Q2 ’ ,
29 ’Did the government cause any unreasonable delays ? ’ , False )
30 I3F2Q1 = BaseLevelFactor ( ’ I3F2Q1 ’ ,
31 ’The government was s u b j e c t i v e l y impartial ? ’ , False )
32 I3F2Q2 = BaseLevelFactor ( ’ I3F2Q2 ’ ,
33 ’The government was o b j e c t i v e l y impartial ? ’ , False )
34

35 I3F3Q1 = BaseLevelFactor ( ’ I3F3Q1 ’ ,
36 ’ I f the case was public , the public wouldn ’ t prejudice the outcome? ’ , False )
37 I3F3Q2 = BaseLevelFactor ( ’ I3F3Q2 ’ ,
38 ’The s a f e t y of the public wouldn ’ t be impacted , i f the case was public ? ’ , False )
39 I3F3Q3 = BaseLevelFactor ( ’ I3F3Q3 ’ ,
40 ’Any extra privacy i s not required in t h i s case ? ’ , False )
41 I3F3Q4 = BaseLevelFactor ( ’ I3F3Q4 ’ ,
42 ’The public would not hinder j u s t i c e , i f the case was public ? ’ , False )

2Github repository: https://github.com/CorSteging/ADFlib

https://github.com/CorSteging/ADFlib
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43 I3F3Q5 = BaseLevelFactor ( ’ I3F3Q5 ’ ,
44 ’Was the case pronounced publicly ? ’ , False )
45 I3F3Q6 = BaseLevelFactor ( ’ I3F3Q6 ’ ,
46 ’Was the case conducted publicly ? ’ , False )
47

48 I3F4Q1 = BaseLevelFactor ( ’ I3F4Q1 ’ ,
49 ’Was there equality of arms? ’ , False )
50

51 I3F5Q1 = BaseLevelFactor ( ’ I3F5Q1 ’ ,
52 ’Was the victim given appropriate access to Court ? ’ , False )
53

54 I3F6Q1 = BaseLevelFactor ( ’ I3F6Q1 ’ ,
55 ’Can the highest court be considered binding in i t s f indings ? ’ , False )
56 I3F6Q2 = BaseLevelFactor ( ’ I3F6Q2 ’ ,
57 ’Was the case was reopened due to new f a c t s or a fundamental defect in f a i r n e s s ? ’ , False )
58 I3F6F1Q1 = BaseLevelFactor ( ’ I3F6F1Q1 ’ ,
59 ’ Are there profound and long−standing dif ferences in the case law ? ’ , False )
60 I3F6F1Q2 = BaseLevelFactor ( ’ I3F6F1Q2 ’ ,
61 ’Have tools have been used to overcome any dif ference in case law ? ’ , False )
62

63 I3F1 = AbstractFactor (
64 i d e n t i f i e r = ’ I3F1 ’ ,
65 t e x t = ’Conducted in Reasonable Time . ’ ,
66 default = False ,
67 acceptfactors = Relationship ( ’AND’ , [ I3F1Q2 , I3F1Q1 ] )
68 )
69

70 I3F2 = AbstractFactor (
71 i d e n t i f i e r = ’ I3F2 ’ ,
72 t e x t = ’The case was independent and impartial . ’ ,
73 default = False ,
74 acceptfactors = Relationship ( ’AND’ , [ I3F2Q1 , I3F2Q2 ] )
75 )
76

77 I3F3 = AbstractFactor (
78 i d e n t i f i e r = ’ I3F3 ’ ,
79 t e x t = ’The case was conducted publicly and had no exceptions . ’ ,
80 default = False ,
81 acceptfactors = Relationship ( ’OR’ , [
82 Relationship ( ’AND’ , [ I3F3Q1 , I3F3Q2 , I3F3Q3 , I3F3Q4 , I3F3Q5 , I3F3Q6 ] ) ,
83 Relationship ( ’AND’ , [ Relationship ( ’OR’ , [ Relationship ( ’NOT’ , I3F3Q1 ) ,
84 Relationship ( ’NOT’ , I3F3Q2 ) ,
85 Relationship ( ’NOT’ , I3F3Q3 ) ,
86 Relationship ( ’NOT’ , I3F3Q4 )
87 ] ) ,
88 Relationship ( ’AND’ , [ Relationship ( ’NOT’ , I3F3Q5 ) ,
89 Relationship ( ’NOT’ , I3F3Q6 )
90 ] )
91 ] )
92 ] )
93 )
94

95 I3F6F1 = AbstractFactor (
96 i d e n t i f i e r = ’ I3F6F1 ’ ,
97 t e x t = ’ There are c o n f l i c t i n g decisions in case law which a f f e c t the f a i r n e s s of the case . ’ ,
98 default = False ,
99 acceptfactors = Relationship ( ’AND’ , [ I3F6F1Q1 , Relationship ( ’NOT’ , I3F6F1Q2 ) ] )

100 )
101

102

103 I3F6 = AbstractFactor (
104 i d e n t i f i e r = ’ I3F6 ’ ,
105 t e x t = ’ Legal c e r t a i n t y i s upheld . ’ ,
106 default = False ,
107 acceptfactors = Relationship ( ’AND’ ,
108 [ Relationship ( ’OR’ , [ I3F6Q1 ,
109 Relationship ( ’AND’ , [ Relationship ( ’NOT’ , I3F6Q1 ) ,
110 I3F6Q2 ] )
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111 ] ) ,
112 Relationship ( ’NOT’ , I3F6F1 )
113 ] )
114 )
115

116 I3 = AbstractFactor (
117 i d e n t i f i e r = ’ I3 ’ ,
118 t e x t = ’ Fair and Public . ’ ,
119 default = False ,
120 acceptfactors = Relationship ( ’AND’ , [ I3F1 , I3F2 , I3F3 , I3F4Q1 , I3F5Q1 , I3F6 ] )
121 )
122

123 #I4
124 I4Q1 = BaseLevelFactor ( ’ I4Q1 ’ , ’Was the victim presumed innocent ? ’ , False )
125 I4Q2 = BaseLevelFactor ( ’ I4Q2 ’ , ’Does the Prosecution bares the burden of proof ? ’ , False )
126 I4Q3 = BaseLevelFactor ( ’ I4Q3 ’ , ’Any doubts benefited applicant ? ’ , False )
127

128 I4 = AbstractFactor (
129 i d e n t i f i e r = ’ I4 ’ ,
130 t e x t = ’The applicant was presumed innocent . ’ ,
131 default = False ,
132 acceptfactors = Relationship ( ’AND’ , [ I4Q1 , I4Q2 , I4Q3 ] )
133 )
134

135

136 #I5
137 I5Q1 = BaseLevelFactor ( ’ I5Q1 ’ ,
138 ’The applicant had time and f a c i l i t i e s to prepare t h e i r defence ? ’ , False )
139 I5Q2 = BaseLevelFactor ( ’ I5Q2 ’ ,
140 ’The applicant could have free access to i n t e r p r e t e r . ’ , False )
141 I5F1Q1 = BaseLevelFactor ( ’ I5F1Q1 ’ ,
142 ’Was the applicant informed in the correct language ? ’ , False )
143 I5F1Q2 = BaseLevelFactor ( ’ I5F1Q2 ’ ,
144 ’Was the applicant given d e t a i l s of the case ? ’ , False )
145 I5F1Q3 = BaseLevelFactor ( ’ I5F1Q3 ’ ,
146 ’Was the applicant told what crime they had committed? ’ , False )
147

148 I5F2Q1 = BaseLevelFactor ( ’ I5F2Q1 ’ ,
149 ’Has the applicant attempted to escape t r i a l ? ’ , False )
150 I5F2Q2 = BaseLevelFactor ( ’ I5F2Q2 ’ ,
151 ’Has the applicant waived r i g h t to defend themselves ? ’ , False )
152 I5F2Q3 = BaseLevelFactor ( ’ I5F2Q3 ’ ,
153 ’The applicant was not prevented from accessing lawyers ? ’ , False )
154

155 I5F3Q1 = BaseLevelFactor ( ’ I5F3Q1 ’ ,
156 ’Did the applicant have access to l e g a l assistance ? ’ , False )
157 I5F3Q2 = BaseLevelFactor ( ’ I5F3Q2 ’ ,
158 ’Did the applicant have access to free l e g a l assistance i f necessary ? ’ , False )
159

160 I5F4Q1 = BaseLevelFactor ( ’ I5F4Q1 ’ ,
161 ’ Witnesses were examined under same conditions ? ’ , False )
162 I5F4Q2 = BaseLevelFactor ( ’ I5F4Q2 ’ ,
163 ’ Witnesses had a v al i d reason for non attendance ? ’ , False )
164

165 I5F1 = AbstractFactor (
166 i d e n t i f i e r = ’ I5F1 ’ ,
167 t e x t = ’The applicant was informed promptly . ’ ,
168 default = False ,
169 acceptfactors = Relationship ( ’AND’ , [ I5F1Q1 , I5F1Q2 , I5F1Q3 ] )
170 )
171

172 I5F2 = AbstractFactor (
173 i d e n t i f i e r = ’ I5F2 ’ ,
174 t e x t = ’ Opportunity to defend themselves in person . ’ ,
175 default = False ,
176 acceptfactors = Relationship ( ’AND’ , [ I5F2Q3 ,
177 Relationship ( ’OR’ ,
178 [ Relationship ( ’AND’ , [ I5F2Q2 ,
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179 Relationship ( ’NOT’ , I5F2Q1 ) ] ) ,
180 Relationship ( ’NOT’ , I5F2Q1 ) ] ) ] )
181 )
182

183 I5F3 = AbstractFactor (
184 i d e n t i f i e r = ’ I5F3 ’ ,
185 t e x t = ’ Access to l e g a l assistance . ’ ,
186 default = False ,
187 acceptfactors = Relationship ( ’AND’ , [ I5F3Q1 , I5F3Q2 ] )
188 )
189

190 I5F4 = AbstractFactor (
191 i d e n t i f i e r = ’ I5F4 ’ ,
192 t e x t = ’ Able to examine witnesses . ’ ,
193 default = False ,
194 acceptfactors = Relationship ( ’AND’ , [ I5F4Q1 , I5F4Q2 ] )
195 )
196

197 I5 = AbstractFactor (
198 i d e n t i f i e r = ’ I5 ’ ,
199 t e x t = ’Had minimum r i g h t s . ’ ,
200 default = False ,
201 acceptfactors = Relationship ( ’AND’ , [ I5F1 , I5Q1 , I5F2 , I5F3 , I5F4 , I5Q2 ] )
202 )
203

204 # The f u l l ADF
205 echr_ADF = ADF(
206 i d e n t i f i e r = ’ v i o l a t i o n ’ ,
207 t e x t = ’ Violation of A r t i c l e 6 . ’ ,
208 default = False ,
209 acceptfactors = Relationship ( ’AND’ , [ I1 , I2 , I3 , I4 , I5 ] ) ,
210 )

Listing B.1 | Our implementation for the ADF of Article 6 of the ECHR as used in Part II
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This appendix describes additional information and results regarding Part III of the thesis.
We include an example of the code we wrote that represents an ADF. Furthermore, we
show the code of an ADF generated by a generative large language model and demonstrate
where it makes mistakes.

C.1. ADFS FOR LEGAL ARTICLES

In Chapter 7, we created Abstract Dialetical Frameworks (ADFs) that represent legal
articles. The ADF representations of the articles are written in Python, using a custom
ADF library that we designed ourselves called ADFlib. 1 We explain how this library works
in Section B.2.

In Figure C.1, we provide the code that we created for Article 689 of the Japanese Civil
Code using the ADFlib library. Article 689 was used as an example throughout Chapter 7,
and can be found in written, natural language form in the left-hand side of Figure 7.1.
The ADF for Article 689 is represented graphically in Figure 2.6. The ADF in Figure C.1
was created manually.

We also investigated whether it is possible to generate ADFs artificially using GPT3.5
(OpenAI 2023), as described in Section 7.3.3. The system that used these artificially
generated ADFs performed poorly, worse than the baseline LLM and the hybrid model
that used manually crafted ADFs (see Table 7.5). In the discussion of Chapter 7, we note
that the artificially generated ADFs contain many mistakes, even though the code is
executable. These mistakes are due to incorrect logic, inconsistent naming of variables,
determining the baselevel factors incorrectly or by misconstruing the text that denotes
the question about the claim.

1Github repository: https://github.com/CorSteging/ADFlib
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Figure C.1 | Code for the ADF of Article 689 as discussed in Section 7.3.2 and represented graphically in
Figure 2.6.

1 import sys
2 sys .path . append (" .. " )
3 from ADFlib import *
4 # ADF represent ing Art ic le 689
5 # Created manual ly
6

7 # The baselevel factors
8 ben = BaseLevelFactor ( 'ben ' , 'Was the manager \ 's intervent ion

benevolent ? ' , False )
9 esc = BaseLevelFactor ( 'esc ' , 'Did the manager \ 's act ions aim to allow

the principal to escape imminent danger to the principal \ 's person ,
reputation , or property ? ' , False )

10 dmg = BaseLevelFactor ( 'dmg ' , 'Was there any damage result ing from the
intervent ion ? ' , False )

11 fth = BaseLevelFactor ( ' fth ' , 'Did the manager act in bad faith ' , False )
12 neg = BaseLevelFactor ( 'neg ' , 'Did the manager exhibit gross negl igence '

, False )
13

14 # The abstract factors
15 acc_f = AbstractFactor (
16 ident i f ier = 'acc_f ' ,
17 text = 'The manager has acted in bad faith or with gross negl igence

. ' ,
18 default = False ,
19 acceptfactors = Relat ionship ( 'AND ' , [ben , esc , dmg ])
20 )
21 rej_f = AbstractFactor (
22 ident i f ier = ' rej_f ' ,
23 text = 'The manager has acted in bad faith or with gross negl igence

. ' ,
24 default = False ,
25 acceptfactors = Relat ionship ( 'OR ' , [ fth , neg ])
26 )
27

28 # The ADF
29 adf = ADF(
30 ident i f ier = 'claim ' ,
31 text = ' Is the manager not l iable to compensate for damages ? ' ,
32 default = True ,
33 acceptfactors = acc_f ,
34 reject factors = rej_f
35 )
36

37 def return_adf () :
38 return adf
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Article 104: Appointment of Subagents by Agents
An agent appointed by mandate may not appoint a subagent unless the
authorization of the principal is obtained or there is a compelling
reason to do so.

Figure C.2 | Article 104 of the Japanese Civil Code

Figure C.3 | Code for the artificially generated ADF of Article 104, generated by GPT3.5. This ADF contains a
logical error on line 16, where the relationship should be an OR relationship rather than an AND relationship.

1 import sys
2 sys .path . append (" .. " )
3 from ADFlib import *
4 # ADF represent ing Art ic le 104
5 # Generated by GPT 3.5
6

7 # The baselevel factors
8 author izat ion = BaseLevelFactor ( ' author izat ion ' , 'Was the author izat ion

of the principal obtained ? ' , False )
9 compel l ing_reason = BaseLevelFactor ( ' compel l ing_reason ' , 'Was there a

compel l ing reason to appoint a subagent ? ' , False )
10

11 # The abstract factors
12 reject_f = AbstractFactor (
13 ident i f ier = ' reject_f ' ,
14 text= 'The agent appointed a subagent without obtaining the

author izat ion of the principal or without a compel l ing reason . ' ,
15 default =False ,
16 acceptfactors = Relat ionship ( 'AND ' , [ authorizat ion , compel l ing_reason

])
17 )
18

19 # The ADF
20 adf = ADF(
21 ident i f ier = 'claim ' ,
22 text= ' Is the appointment of a subagent by the agent val id ? ' ,
23 default =True ,
24 reject factors = reject_f
25 )
26

27 def return_adf () :
28 return adf
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As an example, we examine Article 104, as shown in Figure C.2. The ADF, as generated
by GPT3.5, is shown in Figure C.3. The article states that a subagent may be appointed
if either one of two conditions is fulfilled: the authorization of the principal must be
obtained or there must be a compelling reason to do so. While the ADF generated by
GPT3.5 recognized these two conditions (as shown in lines 8 and 9 of Figure C.3), it
did not recognize the OR-statement. Instead, on line 16 of Figure C.3 it generates an
AND-relationship between the two conditions.



GLOSSARY

ADF Abstract Dialectical Framework: a symbolic knowledge representation. For more
information, see Section 2.5.2.

Algorithm (machine learning) Machine learning algorithms are a set of rules or statisti-
cal methods that can extract patterns from data, used to create a machine learning
model.

Architecture (machine learning) In machine learning, architectures refer to classes of
models, such as convolutional neural networks, transformers or LSTMs.

Behavior (of AI systems) The output of an AI system in response to a particular input.

BERT A specific large language model based on the transformer architecture (Devlin
et al. 2019).

Chain-of-thought prompting A form of prompt engineering to induce sound and ex-
plainable reasoning in generative large language models by providing examples
with step-by-step instructions in the prompt (Wei et al. 2022).

Deep learning A subset of machine learning that uses artificial neural networks that have
one or multiple hidden layers.

Design In this thesis, we define the design of an AI system as the entire design process
used to create the AI system. This is not limited to the design of the architecture.

ECHR European Convention on Human Rights: an international convention that aims
to protect the human rights of people that belong to the Council of Europe.

ECtHR The European Court of Human Rights.

Explainable AI system In this thesis, an AI system is explainable if it can provide some
form of explanations for its decisions.

Foundation models Machine learning models that are trained on a wide variety of tasks
and datasets rather than on a single task (Schneider et al. 2024).

Generative AI A type of AI system that can generate content such as images, text, video
or audio.

Interpretable AI system In this thesis, an AI system is interpretable if its reasoning is
made explicit.
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Learning-to-reason A design approach for inducing a desired rationale in data-driven
AI systems, where the system learns the desired rationale from examples. Examples
of the learning-to-reason approach include chain-of-thought prompting, RLHF
and the TREI method.

LLM Large Language Model: a deep learning model that can perform general-purpose
natural language processing tasks. For more information, see Section 2.5.2.

MCC Matthew’s correlation coefficient: a performance metric for classification tasks. In
this thesis, the MCC ranges from -100 (perfect negative correlation) to 100 (perfect
positive correlation), where 0 indicates no correlation at all.

Model (machine learning) A machine learning model is an object that has been trained
to recognize certain types of patterns using an algorithm and can provide output
for a given input.

Naive Bayes Classifier A type of supervised machine learning algorithm that can perform
classification tasks based on the conditional probability and the assumption of
conditional independence.

Neurosymbolic AI An AI approach that combines neural AI (machine learning) models
and symbolic AI models in a single system. For more information, see Section 2.4.2.

NLI Natural Language Inference: determining whether a hypothesis is true for a given
premise in a text.

NLP Natural Language Processing: the field that concerns itself with enabling computer
programs to understand and process human language.

Overfitting Overfitting occurs when a machine learning model performs well on the
training dataset, but performs poorly on new, unseen data. By overfitting on training
data, models fail in learning to generalize.

Prompt Instructions for a generative large language model, expressed as text in natural
language.

Prompt engineering The process of creating the optimal prompt for a generative large
language model, such that the model provides the desired output.

Random Forest A type of supervised machine learning algorithm that generates an en-
semble of decision trees in order to perform classification tasks.

Rationale The internal decision-making process used by an AI system to map input to
output. In this thesis, synonymous with Reasoning.

Reasonableness The fact of being fair, practical and sensible.

Reasoning The internal decision-making process used by an AI system to map input to
output. In this thesis, synonymous with Rationale.
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Reasoning-by-design A design approach for inducing a desired rationale in data-driven
AI systems, where the desired rationale is represented explicitly in the system, such
as in neurosymbolic AI systems.

Responsible AI In this thesis, the general definition of a responsible AI system is one that
behaves according to some description or set of guidelines of the intended behavior.
More specifically, a responsible AI system should make the right decisions for the
right reasons and be able to explain its decision-making in terms of those reasons.

RLHF Reinforcement Learning using Human Feedback: a method that utilizes human
feedback to better align generative large language models with human preferences
via online optimization against a learned reward model (Havrilla et al. 2023).

SVM Support Vector Machine: a type of supervised machine learning algorithm based
on finding the optimal hyperplane that maximizes distance between classes.

System (AI) In this thesis, we define an AI system as the complete pipeline that processes
the input into output.

Transfer learning Transfer learning is a method in which a pretrained model is used in a
task that it was not originally trained for instead of training a model from scratch.

TREI Tailored Rationale Evaluation and Improvement: a learning-to-reason method that
we developed to assess and adjust the Rationale of data-driven AI systems. For
more information, see Chapter 5.

XAI Explainable AI: a subfield of AI that aims to combat the issue of non-transparency in
machine learning by providing explanations to human users.
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SUMMARY

Artificial Intelligence (AI) plays a prominent role in our society. Some of the AI applica-
tions are easily recognizable as such, like self-driving cars or chatbots. Others play an
important role in the background, for example by autonomously recommending the most
appropriate choices for users, such as in recommender systems in webshops, social media
or businesses. AI systems have therefore become an integrated part of our society. This
integration is not always without flaws, however, and there have been cases where the
use of an AI system has led to undesirable situations. These situations can occur because
the AI system was used irresponsibly, or because the AI system itself made decisions in
an irresponsible way. In this thesis, we focus on the latter and investigate how we can
design AI systems that make responsible decisions. We define responsible AI systems as
AI systems that make the right decisions for the right reasons and are able to explain their
decision-making in terms of these reasons.

To design responsible AI systems, one must therefore first determine what the right
decisions and the right reasons are. While it is usually easy to define the right decisions, it
is not as trivial to define the right reasons for those decisions. Even so, it is often possible
to define a set of rules or guidelines to which the AI system should adhere based on
domain knowledge. Those rules and guidelines make a part of the right reasons explicit.
After the right decisions and reasons have been determined, there is a next step: designing
an AI system that actually makes the right decisions for the right reasons. This is easier
said than done, and the focus of this thesis is therefore on achieving that step.

A prominent AI technique is ‘Machine Learning’ (ML), where systems automatically
learn to make decisions based on examples. While ML is a very successful technique that
many of the current AI systems are based on, it does possess a few inherent problematic
drawbacks. One of those drawbacks deals with the internal reasoning process of an ML
system. While it is possible to study the decisions of such a system, it is often nearly
impossible to analyze the complete internal reasoning process. Most of the prominent
ML systems are therefore so-called ‘black boxes’.

In and of itself, the fact that ML systems are often a black box can be problematic when
we desire an explanation or a justification for a decision. For example, when it comes to
an AI system that provides medical diagnoses, the system should provide not only the
diagnosis but also the reasons on which the diagnosis is based. This is not possible with
traditional black box ML systems.

Because many ML systems are black boxes, it is also difficult to determine whether
the reasons that the system uses to get to a decision are correct or as desired. For example,
it is possible that an ML system detects specific correlations in the examples from which
it learns, that do not have a causal relationship. This can cause the system to learn to take
decisions for the wrong or undesired reasons. Because the system is a black box, it is also
impossible to analyze these reasons.
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The field of ‘explainable AI’ (XAI) emerged as a response to the black box problem.
Using XAI-techniques, one attempts to provide explanations for the decisions of a black
box ML system. However, commonly-used XAI-techniques, such as SHAP and LIME,
cannot guarantee the faithfulness of the explanation that they provide: it is possible that
the provided explanation does not reflect the inner workings of the ML system. These
XAI-techniques therefore do provide an explanation, but they can only provide limited
insight into the inner workings of the ML system.

INVESTIGATING AND ADJUSTING THE REASONING OF MACHINE LEARNING
SYSTEMS.

Because of these issues, we developed a method to investigate and adjust the reasoning of
ML systems. In our method, we design specialized tests that can measure to what extent
the right reasons are being used by an ML system. We apply this method in experiments
within the domain of law. In these experiments, we generate data based on a set of rules
or other knowledge representations. The examples in this data are used by ML systems to
learn from. Should the ML system learn the rules that define the data, then we can state
that the system uses the correct reasons. We investigate to what extent the systems make
the right decisions, and to what extent the systems use the right reasons.

In our experiments, we show that the reasoning of an ML system is not always as
expected. Even when the AI system makes the right decisions, the reasoning used to
get to that decision can still be incorrect or undesirable, which in practice can lead to
irresponsible behavior. We also compare our method to SHAP and LIME and show that
these XAI techniques can be misled: in one of our experiments, the XAI-techniques
incorrectly suggest that the right reasons are being used, even though this was not the
case. Our method, on the other hand, does show that the correct reasons are not being
used.

In addition to evaluating whether the right reasons are used, our method also offers the
possibility to adjust the reasoning of the ML system if so desired. This is done by adjusting
the examples from which the system learns in a specific manner. These adjustments are
based on knowledge of the domain and on the results of the evaluation. For example
in our experiments we discovered that the system did not learn all of the rules that
defined the data as well. This was because the system had to learn from examples where
multiple independent rules were intertwined, which caused the system to learn spurious
correlations between the rules. By presenting the rules to the system one at a time, instead
of intertwined, the system did learn the correct reasons, even in situations where multiple
rules were used.

Both the evaluation and adjustment aspect of our method requires domain knowledge.
Without domain knowledge, it becomes impossible to write tests to evaluate and to tailor
the set of examples in order to adjust the reasoning. The more domain knowledge we have,
the more our method can do in terms of both evaluation and improvement. Our method
therefore requires good collaboration between AI-developers and domain experts. This
makes our method hybrid in two ways: it is a synergy between humans and machines,
but also between explicit knowledge and learned behavior.
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DESIGNING HYBRID AI SYSTEMS WITH PREDETERMINED REASONING

Our method makes it possible to analyze and adjust the reasoning of AI systems. Instead
of learning the right reasons, it is also possible to design AI systems with predetermined
reasoning built-in. In classical, symbolic AI, human domain knowledge is translated into
a knowledge representation that is used by an AI system to reason and make decisions.
While this guarantees the use of the right reasons, it does have a downside: many of our
reasons are hard to define explicitly. An example of this would be recognizing a cat from
a picture. It is nearly impossible to define a set of rules that can be used to determine
whether an image contains a cat based on a collection of pixels. These are the type of
situations where machine learning thrives, however, since they learn from examples
instead of following preprogrammed rules.

To utilize the strengths of both symbolic AI systems and ML systems, we also inves-
tigate a different hybrid approach in this thesis: the neurosymbolic approach, where
we combine symbolic AI systems with machine learning. We illustrate this approach
with a hybrid system that can autonomously solve legal exam questions. Using domain
knowledge, we manually design explicit knowledge representations of laws that are used
by the hybrid AI system to reason with. Then, we use machine learning to process the
natural language in which the exam questions are written into a format that can be used
by the knowledge representation. The system is therefore made up of an ML part and a
symbolic part.

We show that this hybrid system performs as well as the ‘pure’ machine learning
approach when it comes to answering the exam questions. Additionally, the knowledge
representation part of the hybrid system uses exactly the right reasoning. Because of the
knowledge representation part, it is also possible to provide explanations for the decisions
of the system. Mistakes in the ML part of the system, however, cannot be ruled out as
this is still a black box. Yet, the potential mistakes made by the ML part can be detected
and adjusted, as these are used in the symbolic-part, which is inherently transparent and
adjustable.

RESPONSIBLE DESIGN CHOICES IN MACHINE LEARNING SYSTEMS

Besides detecting, adjusting and installing the right reasoning, we also investigate the
effects of certain design choices that can be made when designing ML systems. We
focus on predicting the outcome of court cases, a popular task in the literature. In our
experiments, we do not only investigate whether the right decisions are made by the AI
system, but also whether the design choices made to create said AI system, both new and
from the literature, are reasonable.

For example, in one of our experiments, we show that ML systems can achieve an
unjustifiably high performance when the distribution between the cases from which they
learn and the cases for which they predict outcomes is determined arbitrarily. Although
this is common practice when designing an ML system, it can result in systems predicting
cases from the ‘past’, while having learned from cases from the ‘future’. Because legal
cases can refer to each other and because the interpretation of the law is subject to time,
it is therefore necessary for ML systems to use the correct chronological order and only
learn from past cases to predict future cases. While we did not explore all possible design
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choices, the experiments regarding court case prediction show that it is important to
take the unique characteristics of the domain in which one is working into account when
designing an ML system. For the correct design choices of ML systems, the learning of
the correct reasons, and the explicit embedding of the correct reasons, human domain
knowledge is necessary. A double hybrid approach, with a combination of human and
machine, and a combination of learning with knowledge, is therefore essential when
designing responsible artificial intelligence.



SAMENVATTING

Kunstmatige Intelligentie (KI) speelt een prominente rol in onze samenleving. Sommige
KI toepassingen staan op de voorgrond en zijn duidelijk te herkennen als zodanig, bijvoor-
beeld in de vorm van zelfrijdende auto’s en chatbots. Andere spelen een belangrijke rol
op de achtergrond door op autonome wijze de voor de gebruiker meest geschikte keuzes
voor te leggen, zoals in ‘recommender systemen’ in webshops, social media of in het be-
drijfsleven. KI systemen zijn daardoor een geïntegreerd onderdeel van onze samenleving.
Deze integratie gaat echter niet altijd vlekkeloos en er zijn voorvallen waarin het gebruik
van een KI systeem tot onwenselijke gevolgen kan leiden. Dit kan gebeuren doordat het
KI systeem op onverantwoorde wijze wordt gebruikt, of doordat het KI systeem zelf op
een onverantwoorde manier beslissingen neemt. In dit proefschrift richten wij ons op
het laatste en onderzoeken we hoe we KI systemen kunnen ontwikkelen die verantwoord
beslissingen nemen. Wij definiëren daarbij verantwoorde KI systemen als KI systemen die
de juiste beslissingen nemen, die dat doen om de juiste redenen, en die deze beslissingen
kunnen uitleggen aan de hand van die redenen.

Om verantwoorde KI systemen te ontwikkelen moeten we daarom allereerst bepalen
wat de juiste beslissingen en redenen zijn. Hoewel de juiste beslissingen vaak goed te
definiëren zijn, zijn de redenen niet altijd triviaal om uit te schrijven. Toch is het vaak
mogelijk om aan de hand van domeinkennis een aantal regels en richtlijnen te definiëren
waaraan het KI systeem zich zou moeten houden. Zulke regels en richtlijnen maken een
deel van de juiste redenen expliciet. Wanneer men de juiste beslissingen en redenen heeft
vastgesteld volgt de volgende stap: het ontwerpen van een KI systeem dat daadwerkelijk
de juiste beslissingen maakt om de juiste redenen. Dit is niet altijd eenvoudig te bereiken
en de focus van dit proefschrift ligt dan ook op deze stap.

Een prominente KI techniek is ‘machine learning’ (ML), waarin systemen automatisch
leren om beslissingen te nemen aan de hand van voorbeelden. Hoewel dit een succesvolle
techniek is, waar veel van de huidige KI systemen op gebaseerd zijn, kent het ook een
aantal inherente problematische tekortkomingen. Een belangrijke tekortkoming heeft
te maken met de interne besluitvorming van een ML-systeem. Het is mogelijk om de
beslissingen van een dergelijk systeem te bestuderen, maar het is dikwijls onmogelijk
om de complete besluitvorming te analyseren. De meeste prominente ML-systemen zijn
daardoor zogeheten ‘black boxes’.

Het feit dat ML-systemen vaak black boxes zijn, kan op zichzelf al een probleem
vormen wanneer er naast de beslissing van een KI systeem ook behoefte is aan een uitleg
of rechtvaardiging van de beslissing. Denk hierbij bijvoorbeeld aan een KI systeem dat
medische diagnoses stelt: hierbij willen we weten wat de diagnose is, maar ook wat
de redenen zijn op basis waarvan de diagnose gesteld wordt. Dit is niet mogelijk met
traditionele black box ML-systemen.

Omdat veel ML-systemen black boxes zijn, is het daarnaast ook moeilijk om te achter-
halen of redenen van het systeem juist of gewenst zijn. Het is bijvoorbeeld mogelijk dat
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een ML-systeem bepaalde correlaties detecteert in de voorbeelden waar het van leert, die
geen causaal verband hebben. Op die manier kan een systeem beslissingen nemen om
ongewenste redenen. Omdat het systeem een black box is, is het ook niet mogelijk om
deze redenen te controleren.

Als reactie op het black box probleem is het deelgebied ‘explainable AI’ (XAI) ontstaan.
Met XAI-technieken probeert men op verschillende manieren uitleg te geven aan de
beslissingen van een black box ML-systeem. Echter bieden veelgebruikte XAI technieken,
zoals SHAP en LIME, geen garantie voor de betrouwbaarheid van de uitleg die ze geven:
het is mogelijk dat de uitleg niet de daadwerkelijke interne redenen van het ML-systeem
reflecteert. Daarom bieden deze XAI technieken wel een uitleg, maar alleen tot op zekere
hoogte inzicht in de redenen van een ML-systeem.

REDENEN VAN MACHINE LEARNING SYSTEMEN ONDERZOEKEN EN AANPAS-
SEN

Voor dit doeleinde ontwikkelden we een methode waarmee het mogelijk wordt om de
redenen van een ML-systeem te onderzoeken en om deze aan te passen indien nodig. In
onze methode ontwerpen we speciale testen waarmee gemeten kan worden in hoeverre
het ML-systeem specifieke redenen gebruikt. We passen deze methode toe in een aantal
experimenten binnen het rechtsdomein. Hiervoor genereren we data op basis van een
verzameling regels of andere kennisrepresentaties. De voorbeelden in deze data worden
vervolgens door ML-systemen gebruikt om van te leren. Mocht het ML-systeem de
regels die de data definiëren geleerd hebben, dan kunnen we zeggen dat het systeem de
juiste redenen gebruikt. We onderzoeken hierbij in hoeverre de ML-systemen de juiste
beslissingen nemen en in hoeverre ze de juiste redenen gebruiken.

In onze experimenten laten we zien dat de redenen van een ML-systeem niet altijd
zijn zoals wij verwachten. Zelfs als het KI systeem de juiste beslissingen neemt, kunnen
de redenen ongewenst zijn, wat in de praktijk tot onverantwoord gedrag kan leiden. Wij
vergelijken onze methode ook met SHAP en LIME en laten zien dat deze XAI-technieken
misleidend kunnen werken: de XAI-technieken suggereren in een van de experimenten
dat de juiste redenen wél correct gebruikt worden, terwijl dit niet het geval is. Onze
methode laat daarentegen zien dat de juiste redenen niet gebruikt worden.

Naast het evalueren van de redenen, biedt onze methode een mogelijkheid om de
redenen van een ML-systeem bij te sturen indien dit gewenst is door de voorbeelden
waarvan het systeem leert op een specifieke manier aan te passen. Deze aanpassingen zijn
gebaseerd op de kennis van het domein en de resultaten van de evaluatie. Bijvoorbeeld, in
onze experimenten ondervonden wij dat het systeem niet alle regels die de data definiëren
even goed leerde. Dit kwam doordat het systeem van voorbeelden moest leren waarin
meerdere onafhankelijke regels door elkaar werden gebruikt, waardoor het systeem
incorrecte correlaties tussen de regels leerde. Door de regels één voor één aan het systeem
te presenteren, in plaats van door elkaar heen, leerde het systeem wel de juiste redenen,
ook in situaties waar meerdere regels een rol speelden.

Voor zowel het evaluatie- als het verbeteringsonderdeel van onze methode is domein-
kennis nodig. Zonder domeinkennis kunnen er geen tests worden geschreven en kan
de verzameling voorbeelden niet aangepast worden voor verbetering van het leerproces.
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Hoe meer informatie we hebben over de juiste of gewenste redenen, des te meer kan
onze methode doen qua evaluatie en verbetering. De methode vereist dus een goede
samenwerking tussen KI-ontwikkelaars en domeinexperts. Dit maakt de methode hybride
op twee manieren: het is een wisselwerking tussen mens en machine, maar ook tussen
expliciete kennis en geleerd gedrag.

VOORBEDACHTE REDENEN INBOUWEN MET HYBRIDE KI SYSTEMEN

Met onze methode proberen we de juiste redenen te analyseren en bij te sturen. Naast
het aanleren van de juiste redenen, is het ook mogelijk om de juiste redenen expliciet
in te bouwen tijdens het ontwikkelen van een KI systeem. In klassieke, symbolische KI
systemen wordt menselijke domeinkennis omgezet naar een kennisrepresentatie die
door een KI systeem gebruikt wordt om te redeneren en beslissingen te nemen. Hoewel
dit garantie biedt voor het gebruik van de juiste redenen, kent het een keerzijde: veel
van onze redenen zijn moeilijk om expliciet te representeren. Denk hierbij bijvoorbeeld
aan het automatisch herkennen van een kat op een foto. Het is vrijwel onmogelijk om
regels te maken die aan de hand van een verzameling pixels kunnen bepalen waarom
op een plaatje wel of niet een kat te zien is. Dit zijn de situaties waar ML-systemen
juist wél weer goed werken, aangezien deze leren van voorbeelden in plaats van dat ze
voorgeprogrammeerde regels volgen.

Om de sterke kanten van symbolische KI systemen en ML-systemen te benutten,
onderzoeken we in dit proefschrift ook een andere hybride aanpak: de neurosymbolische
aanpak, waarin we symbolische KI systemen combineren met machine learning. We
illustreren deze aanpak met een hybride KI systeem dat automatisch juridische examen
vragen kan beantwoorden. Door middel van domeinkennis, ontwerpen we handmatig ex-
pliciete kennisrepresentaties van wetten die door het hybride KI systeem gebruikt worden
om te redeneren. Vervolgens gebruiken we machine learning om tekst van de examen-
vragen te verwerken op een manier die bruikbaar wordt voor de kennisrepresentatie. Op
deze manier bestaat het hybride systeem uit een ML-deel en een symbolisch KI-deel.

We laten zien dat het hybride systeem net zo goed presteert als de ‘pure’ machine
learning aanpak wat betreft het beantwoorden van de examenvragen. Daarnaast gebruikt
het kennisrepresentatie-deel van het hybride systeem precies de bedoelde redenen. Ook
is het door de kennisrepresentaties mogelijk om een uitleg te geven voor de beslissingen
van het systeem. Fouten in het ML-deel van het hybride systeem zijn echter niet uit te
sluiten: dit blijft een black box. Toch zijn de foute beslissingen vanuit het ML-deel te
detecteren en aan te passen, aangezien deze gebruikt worden in het symbolische deel dat
geheel transparant en aanpasbaar is.

VERANTWOORDE ONTWERPKEUZES VOOR MACHINE LEARNING SYSTEMEN

Naast het detecteren, bijsturen en inbouwen van de juiste redenen, onderzoeken we ook
de effecten van bepaalde ontwerpkeuzes die gemaakt kunnen worden in het ontwikke-
len van ML-systemen. Daarbij richten wij ons op het voorspellen van de uitkomst van
rechtszaken, een taak die in het verleden veelal is onderzocht. In deze experimenten
onderzoeken we niet alleen of de juiste beslissingen gemaakt worden, maar ook of de
ontwerpkeuzes die wij gebruiken in onze experimenten en die eerder in de literatuur zijn
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gebruikt plausibel zijn.
In een van onze experimenten laten we bijvoorbeeld zien dat ML-systemen een onte-

recht hoge prestatie kunnen leveren wanneer de verdeling tussen de rechtszaken waarvan
ze leren en de rechtszaken waarvoor ze uitkomsten voorspellen op een willekeurige wijze
wordt bepaald. Hoewel dit de gebruikelijke werkwijze is in het ontwerpen van een ML-
systeem, kan dit ervoor zorgen dat het ML-systeem rechtszaken uit het ‘verleden’ moet
voorspellen terwijl het heeft geleerd van rechtszaken uit de ‘toekomst’. Omdat rechtszaken
naar elkaar kunnen verwijzen, en omdat de interpretatie van de wet onderhevig is aan
de tijd, is het daarom noodzaak dat ML-systemen de juiste tijdsvolgorde gebruiken en
alleen leren van rechtszaken uit het verleden om vervolgens rechtszaken uit de toekomst
te voorspellen.

Hoewel wij niet alle mogelijke ontwerpkeuzes hebben onderzocht, laten de experi-
menten rondom het voorspellen van rechtszaken zien dat het belangrijk is om de unieke
karaktereigenschappen van het domein waarin men werkt in acht te nemen voor het
ontwerpen van een ML-systeem.

Voor de juiste ontwerpkeuzes van ML-systemen, het leren van de juiste redenen, en het
expliciet inbouwen van de juiste redenen is menselijke domeinkennis nodig. Een dubbele
hybride aanpak, met een combinatie van mens en machine, en een combinatie van leren
met kennis, is daarom essentieel voor het ontwerpen van verantwoorde kunstmatige
intelligentie.
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