The effect of peripheral bipyridine ligands on the photocatalytic hydrogen production activity of Ru/Pd catalysts
Bindra, Gurmeet Singh; Schulz, Martin; Paul, Avishek; Soman, Suraj; Groarke, Robert; Inglis, Jane; Pryce, Mary T.; Browne, Wesley R.; Rau, Sven; Maclean, Brian J.

Published in:
Dalton Transactions

DOI:
10.1039/c1dt11241d

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Electronic Supporting Information for:

Effect of peripheral bipyridine ligands on the photocatalytic hydrogen production by activity of Ru/Pd catalysts

Gurmeet Singh Bindra, Martin Schulz, Avishek Paul, Suraj Soman, Robert Groarke, Jane Inglis, Mary T. Pryce, Wesley R. Browne, Sven Rau, Brian J. Maclean and Johannes G. Vos*

Experimental

General: Reagents for synthesis were purchased as reagent grade and were used without further purification. NMR spectra were recorded on a Bruker Advance 400 spectrometer and referenced to the solvent signal. Elemental analysis was carried out on an Exador Analytical CE440 by the Microanalytical Department of the University College Dublin.

Instruments: Optical spectra were recorded against a silver/silver chloride reference electrode (Ag/AgCl) for the mono- and dinuclear complexes. Samples were excited with a LED at 360 nm. Cyclic voltammograms and differential pulse voltammograms were recorded with a CHI750C bipotentiostat. Prior to each experiment, the electrochemical cell was purged for at least 25 minutes using argon. The supporting electrolyte. Scans were recorded at room temperature for all complexes. A solution of 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) was used as the solvent signal. Emission and excitation spectra were obtained on a Perkin Elmer LS 50B at 20 ± 1°C. UV-Vis spectra were recorded on Varian Cary 50 spectrophotometer at 20 ± 1°C in deaerated acetonitrile solution (freeze-pump-thaw triple sequence). Samples were excited with a LED at 360 nm. Cyclic voltammograms and differential pulse voltammograms were recorded against a silver/silver chloride reference electrode (Ag/AgCl) for the mono- and dinuclear complexes. Glassy carbon (GC) electrodes were used as the working electrodes and a platinum wire was employed as the counter electrode. Scans were recorded at room temperature for all complexes. A solution of 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) was used as the counter electrode. Excited-state lifetimes were measured by time-correlated single photon counting on an Edinburgh Analytical Instruments single photon counter at 20 ± 1°C (293 K) in deaerated acetonitrile solution (freeze-pump-thaw triple sequence). Samples were excited with a LED at 360 nm. Cyclic voltammograms and differential pulse voltammograms were recorded against a silver/silver chloride reference electrode (Ag/AgCl) for the mono- and dinuclear complexes. Glassy carbon (GC) electrodes were used as the working electrodes and a platinum wire was employed as the counter electrode. Scans were recorded at room temperature for all complexes. A solution of 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) was used as the supporting electrolyte. Typical concentration of 1 mM were used for cyclic voltammetry and differential pulse voltammetry. Electrochemical experiments were carried out using a CHI750C bipotentiostat. Prior to each experiment, the electrochemical cell was purged for at least 25 minutes using argon. The working electrodes were prepared by polishing with 0.05 µm alumina pastes and sonicated in Millipore water for 5 min followed by 5 min of sonication in acetonitrile. Scan rates recorded at 100 mV/s.

2.5-di(pyridin-2-yl)pyrazine
2,5-bis(2-pyridyl)pyrazine was prepared according to the literature. ¹ H NMR (CDCl₃): 9.59 (s, 2H, 3-H, 6-H), 8.68 (d, 2H, \(J = 4.7 \) Hz, 9-H, 15-H), 8.38 (d, 2H, \(J = 7.8 \) Hz, 12-H, 18-H), 7.91 (t, 2H, \(J = 7.6 \) Hz, 11-H, 17-H), 7.80 (t, 2H, \(J = 5.0 \) Hz, 10-H, 16-H).

Synthesis of the mononuclear ruthenium complexes Ru and EtOOC-Ru

[Ru(2,2’-bipyridine)Cl₂]·2H₂O (0.65 mmol) dissolved in 10 ml of ethanol was added drop-wise to a solution of 2,5-di(pyridin-2-yl)pyrazine (0.187 g, 0.80 mmol) in 10 ml of ethanol/water (3:1 v/v). The reaction mixture was heated at reflux for 8 h. Subsequently, the mixture was allowed to cool to room temperature and the solvent was evaporated in vacuo. Then 2 ml of water were added to dissolve the red complex and washing with 10 ml of diethyl ether. Recrystallization from acetone/water (3:1 v/v) afforded a red solid.

![Synthesis of the dinuclear ruthenium/palladium complexes RuPd and EtOOC-RuPd](image)

Yield: 71%. Anal. Calcd. for C_{88}H_{74}N_{14}P_{12}Ru·2H₂O (956.08 g/mol): C, 42.73; H, 2.95; N, 11.73%. Found: C, 43.11; H, 2.94; N, 11.46%. ¹ H NMR (Acetonitrile-d₃, 400 MHz): \(\delta = 9.65 \) (d, \(J = 1.2 \) Hz, 1H, 3-H), 8.74 (d, \(J = 1.2 \) Hz, 1H, 6-H), 8.69 (d, \(J = 8.4 \) Hz, 1H, 12-H), 8.57 – 8.52 (m, 4H, bpy), 8.51 (d, \(J = 4.8 \) Hz, 1H, 15-H), 8.44 (d, \(J = 8.0 \) Hz, 1H, 18-H), 8.19-8.08 (m, 4H, bpy), 8.14 (dd, \(J = 8.0 \) Hz, \(J = 1.6 \) Hz, 1H, 11-H), 7.97 (dd, \(J = 8.0 \) Hz, \(J = 1.6 \) Hz, 1H, 17-H), 7.81 (d, \(J = 5.6 \) Hz, 1H, 9-H), 7.82-7.75 (m, 4H, bpy), 7.50-7.44 (m, 4H, bpy), 7.49 (m, 1H, 10-H), 7.46 (m, 1H, 16-H).

[bis-(2,2’-bipyridine)](2,5-di(pyridin-2-yl)pyrazine) ruthenium(II) (PF₆)₂ · H₂O (Ru)

Yield: 71%. Anal. Calcd. for C_{88}H_{74}N_{14}P_{12}Ru·2H₂O (956.08 g/mol): C, 42.73; H, 2.95; N, 11.73%. Found: C, 43.11; H, 2.94; N, 11.46%. ¹ H NMR (Acetonitrile-d₃, 400 MHz): \(\delta = 9.65 \) (d, \(J = 1.2 \) Hz, 1H, 3-H), 8.74 (d, \(J = 1.2 \) Hz, 1H, 6-H), 8.69 (d, \(J = 8.4 \) Hz, 1H, 12-H), 8.57 – 8.52 (m, 4H, bpy), 8.51 (d, \(J = 4.8 \) Hz, 1H, 15-H), 8.44 (d, \(J = 8.0 \) Hz, 1H, 18-H), 8.19-8.08 (m, 4H, bpy), 8.14 (dd, \(J = 8.0 \) Hz, \(J = 1.6 \) Hz, 1H, 11-H), 7.97 (dd, \(J = 8.0 \) Hz, \(J = 1.6 \) Hz, 1H, 17-H), 7.81 (d, \(J = 5.6 \) Hz, 1H, 9-H), 7.82-7.75 (m, 4H, bpy), 7.50-7.44 (m, 4H, bpy), 7.49 (m, 1H, 10-H), 7.46 (m, 1H, 16-H).

[bis-(4,4’-dicarboxyethyl(2,2’-bipyridine))(2,5-di(pyridin-2-yl)pyrazine) ruthenium(II)] (PF₆) · 2H₂O (EtOOC-Ru)

Yield: 78%. Anal. Calcd. for C_{88}H_{74}N_{14}O_{14}P_{12}Ru·2H₂O (1261.90 g/mol): C, 43.78; H, 3.67; N, 8.88%. Found: C, 43.53; H, 3.27; N, 8.49%. ¹ H NMR (Acetonitrile-d₃, 400 MHz): \(\delta = 9.69 \) (s, 1H, 3-H), 9.12-9.07 (m, 4H, bpy) 8.71 (d, \(J = 8.3 \) Hz, 1H, 12-H), 8.64 (s, 1H, 6-H), 8.50 (d, \(J = 4.8 \) Hz, 1H, 15-H), 8.44 (d, \(J = 8.0 \) Hz, 1H, 18-H), 8.20 (dd, \(J = 8.0 \) Hz, \(J = 1.5 \) Hz, 1H, 11-H), 8.13-7.84 (m, 8H, bpy) 7.97 (m, 1H, 17-H), 7.74 (d, \(J = 5.6 \) Hz, 1H, 9-H), 7.52 (m, 1H, 10-H), 7.46 (m, 1H, 16-H) 4.54-4.46 (m, 8H, CH₂), 1.50-1.40 (m, 12H, CH₃).
The mononuclear precursor (0.10 mmol) was dissolved in 5 ml of dichloromethane and added drop wise to a solution of Pd(CH\textsubscript{2}CN\textsubscript{2})\textsubscript{2}Cl\textsubscript{2} (0.026 g, 0.10 mmol) in 5 ml of dichloromethane. The reaction mixture was heated at reflux for 24 h. Subsequently the mixture was allowed to cool to room temperature. The product was precipitated by addition of 10 ml of n-hexane. After filtration and washing with 10 ml of diethyl ether a reddish purple solid was obtained.

\[\text{[Ruthenium(II)(2,2'-bipyridine)\textsubscript{2}(\mu-2,5-di(pyridin-2-yl)pyrazine)PdCl\textsubscript{2}]} (PF\textsubscript{6})_2 \cdot 2 \text{H}_2\text{O (RuPd)} \]

Yield: 90%. Anal. Calcd for C\textsubscript{34}H\textsubscript{26}Cl\textsubscript{2}F\textsubscript{12}N\textsubscript{8}P\textsubscript{2}PdRu \cdot 2 H\textsubscript{2}O (1150.98): C, 35.48; H, 2.63; N, 9.74%. Found: C, 35.30; H, 2.22; N, 9.31%. 1H-NMR (Acetonitrile-d\textsubscript{3}, 400MHz): \(\delta = 10.05 \) (s, 1H, 3-H), 8.91 (d, \(J = 4.8 \) Hz, 1H, 15-H), 8.62 (d, \(J = 8.4 \) Hz, 1H, 12-H), 8.57 – 8.52 (m, 4H, bpy), 8.42 (s, 1H, 6-H), 8.15 (ddd, \(J = 6.0 \) Hz, \(J = 1.8 \) Hz, 1H, 11-H), 8.19-8.08 (m, 4H, bpy), 8.10 (ddd, \(J = 7.6 \) Hz, \(J = 1.2 \) Hz, 1H, 17-H), 7.81 (d, \(J = 8.0 \) Hz, 1H, 9-H), 7.82-7.75 (m, 4H, bpy), 7.66 (d, \(J = 7.6 \) Hz, 1H, 18-H), 7.59 (m, 1H, 10-H), 7.61 (m, 1H, 16-H), 7.50-7.44 (m, 4H, bpy).

\[\text{[Ruthenium(II)(4,4'-dicarboxyethyl(2,2'-bipyridine))\textsubscript{2}(\mu-2,5-di(pyridin-2-yl)pyrazine)PdCl\textsubscript{2}]} (PF\textsubscript{6})_2 \cdot 2 \text{H}_2\text{O (EtOOC-RuPd)} \]

Yield: 88%. Anal. Calcd for C\textsubscript{46}H\textsubscript{42}F\textsubscript{12}N\textsubscript{8}O\textsubscript{8}Cl\textsubscript{2}PdP\textsubscript{2}Ru \cdot 2 H\textsubscript{2}O (1439.23 g/mol): C, 38.39; H, 3.22; N, 7.79%. Found: C, 38.22; H, 2.89; N, 7.72%. 1H-NMR (Acetonitrile-d\textsubscript{3}, 400MHz): \(\delta = 10.13 \) (s, 1H, 3-H), 8.81 (d, \(J = 4.8 \) Hz, 1H, 15-H), 8.68 (d, \(J = 8.4 \) Hz, 1H, 12-H), 8.42 (s, 1H, 6-H), 8.25 (ddd, \(J = 8.0 \) Hz, \(J = 1.2 \) Hz, 1H, 11-H), 8.10 (ddd, \(J = 8.0 \) Hz, \(J = 1.6 \) Hz, 1H, 17-H), 7.92-7.83 (m, 8H, bpy), 7.82 (d, \(J = 5.6 \) Hz, 1H, 18-H), 7.79 (d, \(J = 7.6 \) Hz, 1H, 9-H), 7.61 (m, 1H, 10-H), 7.59 (m, 1H, 16-H), 4.54-4.46 (m, 8H, CH\textsubscript{2}), 1.50-1.40 (m, 12H, CH\textsubscript{3}).

Figure S1 UV-Vis absorption (solid) and emission (dashed) spectra in CH\textsubscript{3}CN of (left) the mononuclear and (right) heterobimetallic dinuclear complexes.

Photocatalysis
All manipulations were carried out under strict a dinitrogen atmosphere. Acetonitrile was dried over calcium hydride and triethylamine over sodium according to standard procedures and freshly distilled under dinitrogen prior to use. Photocatalytic dihydrogen production experiments were carried out using a home-built air-cooled apparatus for maintaining the temperature (22°C) under constant irradiation of the sample. For a typical photocatalytic experiment, 2 ml of sample solution were added to GC vials (total volume 5 ml, diameter 13 mm, 3 ml headspace) in the dark and under a constant stream of dinitrogen. The vials were closed with gas-tight septum caps and placed in the sample holder of the apparatus for irradiation. A typical sample solution was prepared by mixing 0.1 ml of a 8.16·10-4 M catalyst solution in acetonitrile, 0.6 ml of triethylamine, 0.1 ml (5 vol%) of thoroughly degased water and 1.2 ml of anhydrous acetonitrile. Subsequently, the GC vials were irradiated at 470 nm using light emitting diodes (LEDs, vide infra) for 18 h. After irradiation, 20 µl samples were drawn from the headspace with a gas tight syringe (50 µl, SGE Analytical Science) and injected into a gas chromatograph (GC). The dihydrogen evolved was measured by headspace gas chromatography on a Varian CP3800 gas chromatograph, with a thermal conductivity detector and a CP7536 Plot Fused Silica 25 MX 0.32 MMID column (length 25 m, layer thickness 30 µm) with dinitrogen carrier gas (purity 99.999 %). The GC was calibrated by 100% dihydrogen. The obtained signal (retention time for H\textsubscript{2} = 1.58 min) was plotted against the calibration curve and multiplied accordingly to receive the total produced amount of dihydrogen in the headspace. The LED-torch consists of a stick-shaped printed board (19 x 1 cm) with 30 blue LEDs (Kingbright, type L-7113PBG, 470 ± 20 nm) with a luminous efficiency of 2000 mcd per LED. LEDs are soldered closely on front and backside in a range of 9 cm.

Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2011
Figure S2 Irradiation time-dependent evolution of hydrogen with the EtOOC-RuPd (blue) and EtOOC-Ru + Pd(CH$_3$CN)$_2$Cl$_2$ (red).