ABSTRACT

In modal logic, when adding a syntactic property to an axiomatisation, this property will semantically become true in all models, in all situations, under all circumstances. For instance, adding a property like $K_a p \rightarrow K_b p$ (agent b knows at least what agent a knows) to an axiomatisation of some epistemic logic has as an effect that such a property becomes globally true, i.e., it will hold in all states, at all time points (in a temporal setting), after every action (in a dynamic setting) and after any communication (in an update setting), and every agent will know that it holds, it will even be common knowledge. We propose a way to express that a property like the above only needs to hold locally: it may hold in the actual state, but not in all states, and not all agents may know that it holds. We can achieve this by adding relational atoms to the language that represent (implicitly) quantification over all formulas, as in $\forall p(K_a p \rightarrow K_b p)$. We show how this can be done for a rich class of modal logics and a variety of syntactic properties.

Categories and Subject Descriptors

1.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms and Methods—Modal Logic

General Terms

Theory

Keywords

Modal logic, Correspondence theory, Canonicity, Local properties, Epistemic logic

1. INTRODUCTION

Modal logic has become the framework for formalising areas in computer science and artificial intelligence as diverse as distributed computing [10], reasoning about programs [11], verifying temporal properties of systems, game theoretic reasoning [18], and specifying and verifying multi-agent systems [21]. Regarding the latter example alone, since Moore’s pioneering work [14] on knowledge and action, agent theories like intuition logic [4] and BDI [15] use modal logic (where the modalities represent time, action, informational attitudes like knowledge or belief, or motivational attitudes like desires or intentions) to analyse interactions between modalities, like perfect recall, no-learning, realism, or different notions of commitment. As for epistemic modal logic, since the seminal work of Hintikka [12], modal epistemic logic has played a key role in knowledge representation, witnessed by its key role for reasoning about knowledge in computer science [7], and artificial intelligence [13]. The current activities in dynamic epistemic logic [1, 19] can be seen as providing a modal logical analysis in the area of belief revision, thereby providing it with a natural basis to do multi-agent belief revision, give an account of the change of higher order information, capture this all in one and the same object language: a modal language, indeed.

The popularity of modal logic in those areas is partly explained by its appealing semantics: the notion of state is a very powerful one when it comes to modeling computations of a machine, or describing possibilities that an agent thinks/desires/fears to be possible. Another strong feature of modal logic is its flexibility: the fact that temporal, dynamic, informational and motivational attitudes can be represented by modalities does not mean that they all satisfy the same laws. Rather, depending on the interpretation one has in mind, one can decide to either embrace or abandon certain principles for each of the modalities used. Syntactically, this means one assumes a number of axioms or inference rules for a modality or for the interaction of some modalities, and more often than not, this semantically corresponds to assuming some specific properties of the associated accessibility relations.

In the context of epistemic logic for instance, adding specific modal axioms allows one to specify that the knowing agent is veridical ($K_a p \rightarrow p$): if agent a knows that p, then p must be true), or that he is positively ($K_a p \rightarrow K_a K_a p$) or negatively ($\neg K_a p \rightarrow K_a \neg K_a p$) introspective. Those axioms happen to correspond (in a precise way: correspondence theory for modal logic is already some decades old, cf. [7]) to reflexivity, transitivity and euclidianity of the associated accessibility relation R_a, respectively. Moreover, the axioms are canonical for it: adding the syntactic axiom to a modal logic enforces the canonical model for the logic to have the corresponding property, which then in turn implies that completeness of the logic with respect to the class of models satisfying that relational property is guaranteed. At this point, it is important to note the difference between $K_a p \rightarrow p$ as a formula and that as a scheme, or axiom: as a formula, it merely expresses that regarding the atom
p, agent a cannot know it without it being true. However, when we assume it as an axiom, or as a scheme, it means that we assume it to hold for every substitution instance of p, in other words, we assume that for all formulas \(\varphi \), the implication \(K_a \varphi \rightarrow \varphi \) holds.

It is often argued (indeed, already by Hintikka in [12]) that a distinguishing feature between knowledge and belief is that whereas knowledge is veridical, belief need not be, i.e., the scheme \(B_a p \rightarrow p \) should not be assumed as an axiom for belief. This then simply entails that epistemic logics have veracity as an axiom, and doxastic logics have not. Semantically speaking: the accessibility relations denoting knowledge are reflexive, those denoting belief need not be. But how then to deal with a situation where we want to express that "currently, a’s beliefs happen to be true"? If we add \(B_a p \rightarrow p \) as a step to our logic, the effect is that in all models (with respect to which the logic is complete), and in all states, all instances of that axiom are true, i.e., for all models \(M \), for all states \(s \) and for all formulas \(\varphi \), we then have \(M, s \models B_a \varphi \rightarrow \varphi \). Given a model \(M \) and a state \(s \) we can express that a’s belief that an individual proposition \(q \) holds is correct: \(M, s \models B_a q \land q \). And we can express that a’s belief about \(q \) is correct: \(M, s \models (B_a q \rightarrow q) \land (B_a \neg q \rightarrow \neg q) \). But what we cannot express in modal logic is that \(B_a \varphi \rightarrow \varphi \) holds for all \(\varphi \) in one state, without claiming at the same time it should hold throughout the model. As a consequence, we cannot express in the object language that agent a thinks that agent a’s beliefs are correct, while agent e believes that a is wrong about a proposition \(q \). The closest one gets to expressing that would be to say that for all \(\varphi \), in \(M, s \) we have \(M, s \models B_a (B_a \varphi \rightarrow \varphi) \land B_a ((B_a q \land q) \lor (B_a \neg q \land \neg q)) \) (but here, the quantification over \(\varphi \) is on a meta-level, and not in the scope of agent e). Neither can we say, in a temporal doxastic context, that a’s beliefs now are correct, but tomorrow they need not be.

To give another example of the same phenomenon, suppose one adds the scheme \(K_a p \rightarrow K_b p \) to a modal logic (b knows everything that a knows). Semantically, this means \(R_b \subseteq R_a \). If the logic is about a set of agents A, then it becomes common knowledge among A that b knows at least what a knows! And if there is a notion of time, we have that it will always be the case that b knows at least what a knows, and, when having modalities for actions, it follows that no action can make it come about that a has a secret for b, in particular, it is impossible to inform a about something that b does not already know—this rules out dynamics that is, in contrast, very possible in DEL.

So, the general picture in modal logic that we take as our starting point is the following. One has a modal logic to which one adds an axiom scheme \(\theta \) (say, \(B_a p \rightarrow p \)). If one is lucky, the scheme corresponds to a relational property \(\Theta(x) \) (in the case above, \(Rxx \)). However, adding \(\theta \) to the logic means having \(\Theta(x) \) true everywhere, implying that \(\theta \) is always true. What we are after is looking at ways to enforce the scheme \(\theta \) locally. To do so, we will add a marker \(\square \) to the modal language, such that \(\square \) is true locally, in a state \(s \), if and only if \(\Theta \) is true, locally (i.e., \(Rss \) holds).

Doing so, we generalise work of [20], where a case study, in the context of a multi-agent logic S5, is given for ‘knowing at least as much as’, i.e., in our terminology, \(\square (a,b) \) in [20] equals \(a \geq b \), and our \(\Theta (a,b)(x) \) is the property \(\forall y (R_a x y \Rightarrow R_b a y) \) in [20].

We will not only generalise the result of [20] to arbitrary modal logics \(K(\varphi_1, \ldots, \varphi_n) \) where \(\varphi_i \) are canonical axioms, but also we allow to add several markers at the same time. This then enables that we cannot only make global properties locally true, but it allows for far more subtle quantifications over formulas than is allowed in modal logic, enabling us to express properties like “If all of John’s beliefs are correct, than so must Mary’s beliefs be”, or “If John knows now everything that Mary knows, then that must have been true already as well” or “If John’s beliefs are correct, then he must know that Mary’s beliefs are correct as well” (for more examples of such quantification, see Section 2.1).

This paper is organised as follows. In Section 1.1 we sketch how our machinery will look like. Then, in Section 2 we formally introduce three languages and present an example. Section 3 provides an axiomatisation of our extended modal logic, we come back to the example and make a case for completeness. Finally, in Section 4 we summarise and conclude.

1.1 To a Modal Logic with Local Schemes

In this section we introduce three languages to reason about Kripke models. The place where these languages meet are important for our set-up. Let us outline the overall approach at the hand of an example: formal definitions follow later in this section. First of all, we are interested in a modal scheme \(\theta (a,b,p) = [a]p \rightarrow [b]p \) in a modal language \(L \) (generally, we write \([a] \varphi \) for modal formulas, but for epistemic interpretations we may write \(K_a \varphi \), and for doxastic ones \(B_a \varphi \)). To the modal language we add a relational atom \(\square (a,b) \), or, in this specific case \(Sup (a,b) \), which will be true in a state \(s \) iff \(\forall y (R_a s y \Rightarrow R_b s y) \) holds. The latter property is a formula \(\Theta (a,b)(x) \) in a first-order language \(L^1 \). Our modal logic should now formalise the idea that \(\theta (a,b,c) \) and \(\square (a,b) \) ‘capture the same’. Rather than saying that the two are equivalent, the logic will take care that something along the following lines holds: consistency of a formula \(\varphi \) with an occurrence of \(\neg \square (a,b) \) is the same as consistency of \(\varphi \) with the occurrence of \(\neg \square (a,b) \) replaced by \(\neg \theta (a,b,p) \) (if \(p \) is a fresh atom). For completeness of the logic, we then take care that in its canonical model, the truth of \(\theta (a,b,p) \) in a specific world (i.e., maximal consistent set \(\Delta \)) coincides with property \(\Theta (x) \). We show that our construction works because the second order formula \(\forall P (\forall x (R_a s x \Rightarrow P y) \Rightarrow \forall y (R_b s y \Rightarrow P y)) = \forall P \Theta (a,b,P)(x) \) is equivalent to \(\Theta (x) \). The formula \(\forall P \Theta (a,b,P) \) is an example of a formula from the third language that we use, i.e., a second-order language \(L^2 \).

The languages that we define are simple extensions of languages usually studied in standard modal logic [3, 2]. More specifically, our modal logic extends that of modal logic with some relational atoms \(\square \), the first order language is the standard language to reason about properties of accessibility relations, and the second order language is similar to the one usually obtained by applying the so-called standard translation to modal formulas. Our completeness proof, in turn, is an extension of ‘standard’ completeness proofs in modal logic: we sometimes have to add fresh atoms \(p \) to ensure that \(\theta (a,b,p) \) is satisfied. However, we have borrowed ideas from [5] to prove our Extension Lemma 2 and ideas from [16] to make this lemma work ‘everywhere in the canonical model’. Space does not allow to include the proofs themselves, but we will make an effort to explain the overall idea and the construction of the canonical model.
2. LANGUAGE AND SEMANTICS

As outlined above, we deal with three languages, which are all interpreted over the same objects, i.e., Kripke models. The languages are an extended modal language \(L \), a first order language \(L^1 \) and a second order language \(L^2 \).

For all languages, we assume a set of modality labels \(A = \{a_1, \ldots, a_n\} \). In the modal language, these will give rise to modalities \([a] \), and in the other two languages, we assume to have a binary relation \(R_a \) for each \(a \in A \). For the latter two languages we also assume to have a set of variables \(\mathcal{X} = \{x, y, \ldots\} \). The variables will range over possible worlds: note that neither in \(L^1 \) nor in \(L^2 \) we assume to have constants. For \(L^2 \), we furthermore use a set \(\Pi = \{P_1, P_2, \ldots, Q_1, Q_2, \ldots\} \) of unary predicates. For each such predicate \(P \in \Pi \) we assume to have an atomic proposition \(p \in \pi \) that are building blocks for the modal language \(L^1 \). On top of this, for this modal language \(L \) we assume a finite set \(\square = \{\square_1, \square_2, \ldots, \square_m\} \) of relational atoms: they are nothing else than syntactic atoms of which the truth depends on local properties of accessibility relations (see the function \(I \) in Definition 1). Therefore, we will often write \(\Box(a_1, \ldots, a_n) \) rather than \(\Box \) to make this dependence clear, and treat \(\Box \) as if it were an \(n \)-ary relational predicate (rather than an atomic symbol). Our languages will be denoted \(L(A, \pi, \rho) \) (the modal language), \(L^1(A, \lambda) \) (the first order language) and \(L^2(A, \Pi, \lambda) \) (the second order language). If the parameters for the languages are clear, we will also write \(L \), \(L^1 \) and \(L^2 \), respectively.

Definition 1 (Modal language). Let the sets \(A, \pi \) and \(\rho \) be as described above. The modal language \(L(A, \pi, \rho) \) is defined as follows:

\[
\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid [a] \varphi \mid \Box(a_1, \ldots, a_n)
\]

where \(a, a_1, \ldots, a_n \in A \), \(p \in \pi \) and \(\Box \) is an \(n \)-ary relational atom in \(\rho \). Formula \([a] \varphi \) is shorthand for \(\neg[a] \neg \varphi \) and we also assume the usual definitions for disjunction, implication and bi-implication. If the modality is an epistemic one, the labels are agents, and we write \(K_{\alpha} \varphi \) rather than \([a] \varphi \). For a doxastic interpretation we write \(B_{\alpha} \varphi \), etc.

A formula without occurrences of relational atoms is called a purely modal formula. Suppose we have a multi-modal formula \(\theta(a_1, \ldots, a_n, p_1, \ldots, p_k) \) where \(a_1, \ldots, a_n \) are labels of modalities \([a_1], \ldots, [a_n] \) and \(p_1, \ldots, p_k \) are atoms. We will write \(\overline{a} \) for the tuple \(a_1, \ldots, a_n \) and \(\overline{p} \) for \(p_1, \ldots, p_k \). When we write a \(\overline{a} \) we mean that \(a \) is one of the labels occurring in the tuple \(\overline{a} \), likewise for \(\overline{p} \). Finally, for any tuple \(\overline{x} = x_1, \ldots, x_n \) with each \(x_i \) taken from some set \(X \), we will write \(\overline{x} \in \mathcal{X} \).

Definition 2 (First and Second Order Language). Let \(A \) and \(\mathcal{X} \) be given. First define a language \(L^1(A, \mathcal{X}) \):

\[
\Theta ::= R_a x y \mid \forall y \Theta \mid \neg \Theta \mid \Theta \land \Theta
\]

with \(a \in A \), and \(x, y \in \mathcal{X} \). Now, our first order language \(L^1(A, \mathcal{X}) \) is the one-free-variable sublanguage of \(L^1 \), i.e., the sublanguage of \(L^1 \) consisting of all formulas with at most one variable not in the scope of a quantifier. If \(\Theta \in L^1(A, \mathcal{X}) \) has \(x \) as its only free variable, and if \(a_1, \ldots, a_n \) are all the modality labels occurring in \(\Theta \), we will also write \(\Theta(\overline{a})(x) \) for \(\Theta \).

Finally, given \(A, \Pi \) and \(\mathcal{X} \) we define the second order language \(L^2(A, \Pi, \mathcal{X}) \) as the one-free-variable fragment of

\[
\tilde{\Theta} ::= P(x) \mid R_a x y \mid \forall y \tilde{\Theta} \mid \forall y \hat{\Theta} \mid \neg \tilde{\Theta} \mid \tilde{\Theta} \land \hat{\Theta}
\]

with \(P \in \Pi, x, y \in \mathcal{X} \) and \(a \in A \). In \(L^1(A, \mathcal{X}) \) and \(L^2(A, \Pi, \mathcal{X}) \), existential quantification (using \(\exists \)) and implication (using \(\Rightarrow \)) are defined in a standard way.

We write \(P x \) for \(P(x) \). As mentioned earlier, all languages will be interpreted over Kripke models.

Definition 3 (Kripke models and frames). Given \(A, \pi \) and \(\rho \), a Kripke model is a tuple \(M = \langle W, R, I, V \rangle \) where

- \(W \) is a set of possible worlds;
- \(R : A \to \rho(W \times W) \) assigns a binary relation to each modality label
- \(I : \rho \to L^1(A, \lambda) \) assigns a first order property to each relational atom in \(\rho \)
- \(V : \pi \to \varphi(W) \) assigns a set of possible worlds to each propositional variable

Rather then \((w, v) \in R(a) \) we will write \(R_{w,v} \). A Kripke frame is a tuple \(F = \langle W, R, I \rangle \) such that \(\langle M, V \rangle = \langle W, R, I, V \rangle \) is a model. The ‘arity’ of a symbol \(\square \in \rho \) can be read off from its interpretation \(I(\square) \): if \(I(\square) \) refers to modalities \(a_1, \ldots, a_n \), then we may write \(I(\square)(\overline{a}) \) for \(\square \).

Definition 4 (Semantics of modal formulas). Let \(A \) and \(\pi \) be given. Also, let \(M = \langle W, R, I, V \rangle \). Then we define, for \(\varphi \in L(A, \pi, \rho) \):

\[
\begin{align*}
M, w \models p & \iff w \in V(p) \\
M, w \models \neg \varphi & \iff M, w \not\models \varphi \\
M, w \models \varphi \land \psi & \iff M, w \models \varphi \text{ and } M, w \models \psi \\
M, w \models [a] \varphi & \iff \text{for all } v \in R_{w,v}, \text{then } M, v \models \varphi \\
M, w \models \Box(\overline{a}) & \iff I(\Box(\overline{a}))(w) \text{ holds}
\end{align*}
\]

The class of all models is denoted \(K(A, \pi, \rho) \). All models with interpretation \(I \) are denoted \(K(A, \pi, \rho, I) \). Validity in a model \(M \) is defined as usual. Moreover, \(K(A, \pi, \rho) \models \varphi \) means that for all \(I, M = \langle W, R, I, V \rangle \), and all \(w \in W \), we have \(M, w \models \varphi \). Given \(I \), we say that \(\varphi \) is \(I \)-satisfiable, if there is a model \(M = \langle W, R, I, V \rangle \) and a \(w \in W \) such that \(M, w \models \varphi \). Formula \(\varphi \) is \(I \)-valid if \(\neg \varphi \) is not \(I \)-satisfiable.

If \(F = \langle W, R, I \rangle \) is a frame, \(F, w \models \varphi \) is defined as: for all valuations \(V, \langle W, R, I, V, w \rangle, w \models \varphi \).

Interpretation of \(L^1(A, \mathcal{X}) \)-formulas in a model \(M = \langle W, R, I, V \rangle \) is straightforward. For \(L^2(A, \Pi, \mathcal{X}) \), we assume that \(P \)s holds for a predicate \(P \) iff \(s \in V(p) \). In other words, the link between a propositional atom and a unary predicate is implicit by using lower-case and upper-case notation.

Example 1. Let \(\Box(a, b) \) be such that in \(M \) with interpretation \(I \), we have \(I(\Box(a, b)) = \Theta(a, b) \) where \(\Theta(a, b)(x) = \forall y R(a, x) \Rightarrow R(x, y) \), saying that in the current world \(w \), the set of b-successors of \(w \) is a superset of the set of a-successors of \(w \). If this is the interpretation of \(\Box(a, b) \), we will also write \(Sup(a, b) \). As a second example, take \(\Box = \Box(a) \) to be such that \(I(\Box(a))(x) = R_a x x \). Note that \(B_a(\Box(a)) \) can hence be interpreted as ‘\(a \) believes that his beliefs are correct’, since \(M, w \models B_a(\Box(a)) \) does entail that for all \(\varphi \), \(M, w \models \).
Table 1: In this table, \vec{a} is a sequence a or (a,b) or (a,b,c) of modality labels, and \vec{p} is either the single atom p or the sequence p,q. $\Theta(\vec{a})$ is a property of a state x, and $\Box(\vec{a})$ is a name in the object language such that $\Box(\vec{a})$ holds at w iff $\Theta(\vec{a})(w)$ of M.

<table>
<thead>
<tr>
<th>$\theta(\vec{a},\vec{p})$</th>
<th>$\Theta(\vec{a})(x)$</th>
<th>$\Box(\vec{a})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[a]p \rightarrow [b]p$</td>
<td>$\forall q(R_{a,q} \Rightarrow R_{a,q})$</td>
<td>$\text{Sup}(a,b)$</td>
</tr>
<tr>
<td>$[c]p \rightarrow [a] [b]p$</td>
<td>$\forall y,z((R_{a,q}xy & R_{b,q}yz) \Rightarrow R_{a,q}xz)$</td>
<td>$\text{Trans}(a,b,c)$</td>
</tr>
<tr>
<td>$\neg [a] \bot$</td>
<td>$\exists y R_{a,xy}$</td>
<td>$\text{Ser}(a)$</td>
</tr>
<tr>
<td>$[a]p \rightarrow p$</td>
<td>$R_{a,xx}$</td>
<td>$\text{Ref}(a)$</td>
</tr>
<tr>
<td>$\neg [a]p \rightarrow [b] [c]p$</td>
<td>$\forall yz((R_{a,q}xy & R_{b,q}xz) \Rightarrow R_{a,q}yz)$</td>
<td>$\text{Euc}(a,b,c)$</td>
</tr>
<tr>
<td>$(a)p \rightarrow (b) [c]p$</td>
<td>$\forall z((R_{a,q}xz \Rightarrow \exists y R_{a,q}xy & R_{b,q}yz))$</td>
<td>$\text{Dens}(a,b,c)$</td>
</tr>
</tbody>
</table>

Table 2: For every modal formula $\Theta(\vec{a},\vec{p})$ from Table 1, we give the second order translation $\hat{\Theta}(\vec{a},\vec{p})$.

<table>
<thead>
<tr>
<th>$\theta(\vec{a},\vec{p})$</th>
<th>$\Theta(\vec{a},\vec{p})(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[a]p \rightarrow [b]p$</td>
<td>$\forall q(R_{a,q} \Rightarrow P_{y}) \Rightarrow \forall z(R_{a,q}xz \Rightarrow P_{z})$</td>
</tr>
<tr>
<td>$[c]p \rightarrow [a] [b]p$</td>
<td>$\forall w(R_{a,q}xw \Rightarrow P_{w}) \Rightarrow \forall y(R_{a,q}xy \Rightarrow \forall z(R_{b,q}yz \Rightarrow P_{z}))$</td>
</tr>
<tr>
<td>$\neg [a] \bot$</td>
<td>$\neg \forall y(R_{a,q}xy \Rightarrow \bot)$</td>
</tr>
<tr>
<td>$[a]p \rightarrow p$</td>
<td>$\forall q(R_{a,q} \Rightarrow P_{y}) \Rightarrow P_{x}$</td>
</tr>
<tr>
<td>$\neg [a]p \rightarrow [b] [c]p$</td>
<td>$\neg \forall w(R_{a,q}xw \Rightarrow P_{w}) \Rightarrow \forall y(R_{a,q}xy \Rightarrow \exists z(R_{b,q}yz & P_{z}))$</td>
</tr>
<tr>
<td>$(a)p \rightarrow (b) [c]p$</td>
<td>$\exists w(R_{a,q}xw & P_{w}) \Rightarrow \exists y(R_{a,q}xy & \exists z(R_{b,q}yz & P_{z}))$</td>
</tr>
</tbody>
</table>

Note that, since $\Theta(\vec{a})(w)$ does not refer to atomic propositions p (or, rather predicates P), we have that $\Theta(\vec{a})(w)$ holds in the model M iff $\Theta(\vec{a})(w)$ holds in the frame F.

Definition 5 (Standard Translation). Fix sets A, π, Π, and ρ. Fix an interpretation I and write $I(\Box(\vec{a})) = \Theta_{\Box}(\vec{a})$. We define $ST_{I} : \mathcal{L}(A,\pi,\Pi,\rho) \times X \rightarrow \mathcal{L}^{2}(A,\Pi,\Pi)$ by

$$ST_{I}(\rho)(x) = P(x)$$

$$ST_{I}(\Box(\vec{a}))(x) = \Theta_{\Box}(\vec{a})(x)$$

$$ST_{I}(\neg \varphi)(x) = \neg ST_{I}(\varphi)(x)$$

$$ST_{I}(\varphi \land \psi)(x) = ST_{I}(\varphi)(x) \& ST_{I}(\psi)(x)$$

$$ST_{I}(\Box(\varphi))(x) = \forall y(R_{xy} \Rightarrow ST_{I}(\varphi)(y))$$

In the last clause, y is assumed to be a fresh variable. If φ is purely modal (i.e., φ is \Box-free), $ST_{I}(\varphi)$ does not depend on the interpretation I and we write $ST(\varphi)$ in such a case.

Note that the standard translation $ST(\Theta(\vec{a},\vec{p}))$ of a modal formula involving modalities \vec{a} and atoms \vec{p} is typically a formula $\hat{\Theta}(\vec{a},\vec{p})(x)$ involving binary relations R_{a} (one for each $a \in \vec{a}$) and predicates P (one for each $p \in \vec{p}$) and a free variable x.

Example 2. Take $\theta(\vec{a},\vec{p}) = [a]p \rightarrow [b]p$. Then we have that $ST_{I}(\theta(\vec{a},\vec{p}))(x) = \forall y(R_{a,q}xy \Rightarrow P_{y}) \Rightarrow \forall z(R_{a,q}xz \Rightarrow P_{z})$.

If $\theta(\vec{a},\vec{p}) = [c]p \rightarrow [a] [b]p$, we have $ST_{I}(\theta(\vec{a},\vec{b},\vec{c},\vec{p})) = \forall w(R_{a,q}xw \Rightarrow P_{w}) \Rightarrow \forall y(R_{a,q}xy \Rightarrow \forall z(R_{b,q}yz \Rightarrow P_{z}))$.

The following is straightforward from classical modal theory, except for the case of $\theta(\vec{a},\vec{p}) = \Box(\vec{a})$, in which case it follows directly from the truth definition (Definition 4) for \Box-formulas.

Lemma 1. Let I be an interpretation of relational symbols and let $\Theta(\vec{a},\vec{p})$ be a modal formula. Let $\hat{\Theta}(\vec{a},\vec{p})(x)$ be its second order translation $ST_{I}(\theta(\vec{a},\vec{p}))$. Then, for all models $M = \langle W, R, I \rangle$, all frames $F = \langle W, R, I \rangle$ and worlds $w \in W$ we have

1. $M, w \models \theta(\vec{a},\vec{p})$ if $\hat{\Theta}(\vec{a},\vec{p})(w)$ holds in M
2. $M, \emptyset \models \theta(\vec{a},\vec{p})$ if $\forall x \hat{\Theta}(\vec{a},\vec{p})(x)$ holds in M
3. $F, w \models \theta(\vec{a},\vec{p})$ if $\forall x \hat{\Theta}(\vec{a},\vec{p})(w)$ holds in F
4. $F, w \models \theta(\vec{a},\vec{p})$ if $\forall x \hat{\Theta}(\vec{a},\vec{p})(x)$ holds in F

Table 2 provides the standard translation $\hat{\Theta}(\vec{a},\vec{p})(x)$ of the modal formulas $\theta(\vec{a},\vec{p})$ that we introduced in Table 1.

Definition 6. Let $\theta(\vec{a},\vec{p})$ be a purely modal formula from $\mathcal{L}(A,\pi,\rho)$ and suppose that $\Theta \in \mathcal{L}^{2}(A,\pi)$ is such that $\Theta(\vec{a})(x)$ is equivalent with the second order formula $\forall y \hat{\Theta}(\vec{a},\vec{p})(x)$ where $\hat{\Theta}(\vec{a},\vec{p})(x) = ST(\Theta(\vec{a},\vec{p}))(x)$. Then we say that $\theta(\vec{a},\vec{p})$ characterises $\Theta(\vec{a})(x)$.
If $\theta(\vec{a}, \vec{p})$ characterises $\Theta(\vec{a})(x)$ then we have that $F, w \models \theta(\vec{a}, \vec{p})$ if $\Theta(\vec{a})(w)$ holds. In other words, $\theta(\vec{a}, \vec{p})$ corresponds with $\Theta(\vec{a})$. There are many well known classes of modal formulas $\theta(\vec{a}, \vec{p})(x)$ for which it is guaranteed that the second order formula $\forall \mathcal{PST}(\theta(\vec{a}, \vec{p}))$ is equivalent to a formula $\Theta(\vec{a})(x) \in L^2(A, X)$. A large set of formulas for which this is true is the set of so-called Sahlqvist formulas. Moreover, given such a Sahlqvist formula $\theta(\vec{a}, \vec{p})$, its first order equivalent $\Theta(\vec{a})(x)$ can be effectively computed from it [3, Theorem 3.54]. So for Sahlqvist formulas, we can effectively find the first-order formula that it characterises. All the formulas $\theta(\vec{a}, \vec{p})$ from Table 1 are (equivalent to) Sahlqvist formulas.

Take the specific example in a doxastic context where $\Theta(a)(x)$ is $\forall x R_a xx$, and $I(\square(a)) = \Theta(a)$, note that $\theta(a, p) = (B_a p \rightarrow p)$ characterises $\Theta(a)(x)$ but still, as shown in Remark 1, the formulas $\square(a)$ and $\theta(\vec{a}, \vec{p})$ are not equivalent. Still, the two should be strongly connected, in a sense we will explain in Section 3. We first look at an example, involving our extended modal language.

2.1 A Simple Example

Consider five friends, Joey, Chandler, Ross, Monica and Phoebe (or j, c, r, m and p, for short). In this example, we use ‘think’ and ‘believe’ for the same thing. Joey believes that Monica’s beliefs are at least as accurate as Ross’ beliefs, i.e., Joey believes that if Ross’ beliefs are correct, so must Monica’s be (A). Joey also believes that Monica thinks that Chandler believes anything that Monica believes (B). Although Joey does not think that he believes everything he knows (he thinks that he knows he cannot find a job as an actor, but at the same time cannot believe it), he actually believes anything he knows (C). Moreover, Joey thinks that Chandler’s beliefs are consistent (D). Finally, Joey happens to know that Monica believes that Phoebe is in competition with her for Chandler’s attention, but at the same time Joey thinks that Chandler believes that Phoebe is not in competition with Monica for his attention (E). Then, we conclude that Joey believes that Ross’ beliefs are not guaranteed to be correct (F), or, better, that Joey believes he may assume that some formula is believed by Ross, but not true (F').

We first give a (semi-formal) formalisation of our assumption using a modal logic that allows for quantification over formulas. Let z represent the proposition that Joey cannot find himself a job as an actor, and let q be the proposition that Phoebe is in competition with Monica for Chandler’s attention. This formalisation is given in Table 3, where assumption A in the episode is represented as a, etc. The formalisation in our language $L(A, \pi, p)$ follows in Table 4.

We can now be more precise about what it means that our language can do more than just formalising a local version of a global property. For instance, the global property $B_a p \rightarrow p$ will have a local counterpart $\text{Refl}(a)$. Locally, this will denote something that is similar to $\forall x\varphi(B_a x \rightarrow x)$. But if one looks at the ‘translation’ a' in Table 3 of the assumption A above, i.e., $B_j(\forall x(\varphi(B_a x \rightarrow x) \rightarrow \varphi(B_a x \rightarrow x)))$, it becomes clear that this is different from the quantification $g : \forall x B_j((B_a x \rightarrow x) \rightarrow \varphi(B_a x \rightarrow x))$, which one would get as a local counterpart of an axiom $B_j((B_a p \rightarrow p) \rightarrow ((B_a p \rightarrow p))$. That a and g are not equivalent, can be seen in the model M, w of Figure 1, where a is true in M, w, but g is not: for the latter, $\varphi = p$ provides a counterexample. That a is true in M, w is easily seen from realising that a is formalised by a'.

3. AXIOMATIZATION

The aim of this section is to provide an axiomatisation for modal logics that are enriched with some relational atoms $\square_1(\vec{a}), \ldots, \square_m(\vec{a})$, such that for every $\square_k (k \leq m)$, there is a modal formula $\theta(\vec{a}, \vec{p})$ such that, at least on frames, the two ‘mean the same thing’. In fact, the logic $K(A, \pi, p, I)$ that we define should be sound and complete with respect to $K(A, \pi, p, I)$, so our aim for our logic is that for all formulas $\varphi \in L(A, \pi, p), \text{ the notions } K(A, \pi, p, I) \models \varphi \text{ coincide.}$

We then formalise the same episode using the relational atoms $\square(\vec{a})$ introduced in Table 1, which results in Table Table 4. Abusing the language somewhat, we write $\text{Sup}(kj, j)$ for the relational atom corresponding to $K_j \varphi \rightarrow B_j \varphi$ from a language point of view. K_j and B_j are simply two different modal operators, say $[i]$ and $[kj].$

Table 3: A semi-formal translation of the episode

A	B_j(\forall \varphi(B_j \varphi \rightarrow \varphi) \rightarrow \forall \varphi(B_m \varphi \rightarrow \varphi))
B	B_j B_m(\forall \varphi(B_m \varphi \rightarrow B_m \varphi))
C	\neg B_j(K_j z \rightarrow B_j z) \land \forall \varphi(K_j \varphi \rightarrow B_j \varphi)
D	B_j \forall \varphi(\neg(B_m \varphi \land B_m \neg \varphi))
E	K_j B_m q \land B_j B_k \neg q

We use $\neg B_j(\forall \varphi(B_j \varphi \rightarrow \varphi))$ for $\text{Refl}(r)$.

Table 4: A formalisation of the episode

a'	B_j(\text{Refl}(r) \rightarrow \text{Refl}(m))
b'	B_j B_m(\text{Sup}(m, c))
c'	\neg B_j(K_j z \rightarrow B_j z) \land \text{Sup}(kj, k)
d'	B_j \text{Ser}(c)
e'	K_j B_m q \land B_j B_k \neg q
f'	B_j \neg \text{Refl}(r)
Adding the other direction as an implication does not work, as the example $\emptyset(\vec{a}) = \emptyset(a, b) = \text{Sup}(a, b)$ and $\theta(\vec{a}, \vec{p})$ shows: $(\{a\}p \rightarrow b)p \rightarrow \text{Sup}(a, b)$, where p does not occur in φ. This then means that φ must entail that (locally) all b successors are a successors, i.e., $\mathcal{K}(A, \pi, \rho, I) \models \varphi \rightarrow (a)p \rightarrow [b]p$, where p does not occur in φ. Following the previous reasoning that involves pseudo modalities, we will then what we have proven now is $\mathcal{K}(A, \pi, \rho, I) \models \psi \rightarrow \neg \text{Refl}(m)$ (4).

We also define $[a]\varphi$ as $\neg\psi \rightarrow \varphi$. We say that φ does not occur in s (and write $p \not\in s$) if none of the atoms p occurring in φ does not occur in any of the formulas s_i in s.

So, for instance (a, ψ, b, φ) is an abbreviation of $(a)(\psi \land b, \varphi)$, while $[a, \psi, b, \varphi]$ is $[a](\psi \rightarrow b, \varphi)$.

Definition 8 (Proof System). Fix A, π and ρ. Moreover, fix an interpretation $I: \rho \rightarrow \mathcal{L}(A, \mathcal{X})$ such that for every $\varphi \in \rho$, there is a $\theta_{\varphi}(\vec{a}, \vec{p})$ such that the modal formula $\theta_{\varphi}(\vec{a}, \vec{p})$ characterises the first order formula $\Gamma(\varphi)$. Then, the following comprises the axioms and inference rules of the logic $\mathcal{K}(A, \pi, \rho, I)$

Prop All instances of propositional tautologies

$K[\{a\}(\varphi \rightarrow \psi) \rightarrow ([a]\varphi \rightarrow [a]\psi)]$

$A\Box(\vec{a}) \rightarrow \theta(\vec{a}, \vec{p})$

MP From $\varphi \rightarrow \psi$ and ψ, infer φ

NCe From φ, infer $[a]\varphi$

$\Box\alpha$ From $\langle s \rangle \theta_{\alpha}(\vec{a}, \vec{p}) \rightarrow \varphi$, infer $\langle s \rangle \Box(\vec{a}, \vec{p}) \rightarrow \varphi$, where $p \not\in \varphi$ or s.

US From φ infer $\varphi[p/p]$.

MP stands for Modus Ponens, **Nec** for Necessitation, and **US** for Uniform Substitution ($[a]\varphi[p/p]$ stands for substitution of φ for every occurrence of p in φ). If $\Box(\vec{a})$ and $\theta_{\varphi}(\vec{a}, \vec{p})$ are connected through the axiom $A\Box$ and inference rule $\Box\alpha$, we say they are axiomatically linked (through axiom $A\Box$ and rule $\Box\alpha$). If there is a derivation of a formula φ from a set of formulas Γ using Γ and the axioms and inference rules from $\mathcal{K}(A, \pi, \rho, I)$ we write $\Gamma \vdash_{\mathcal{K}(A, \pi, \rho, I)} \varphi$, or $\Gamma \vdash_{\mathcal{K}} \varphi$, for short.

Theorem 1 (Soundness). For all $\varphi \in \mathcal{L}(A, \pi, \rho)$, if $K(\mathcal{A}, \pi, \rho, I) \vdash \varphi$ then $\mathcal{K}(A, \pi, \rho, I) \vdash \varphi$.

3.1 Back to Our Example

To formalise the derivation of Table 4, let the set of modalities $A = \{c, f, m, p, r\}$, let $\mathcal{E} = \{g, z\}$ and let $\rho = \{\text{Refl}(r), \text{Refl}(m), \text{Sup}(c, m), \text{Ser}(c), \text{Sup}(k, j)\}$ and those atoms are axiomatically linked with their ‘natural’ modal counterparts (see Table 1 and for KmplB(j) we take $\mathcal{K}j \rightarrow \mathcal{K}j$). Let the resulting logic be $K(\mathcal{A}, \pi, \rho, I)$

First of all, from c' and $A\text{Kmpl}(j)$ we derive $B, B, \text{Sup}(c, m)$, $B, c, B, m, \text{Sup}(c, m)$, $B, c, B, m, \text{Sup}(c, m)$ and $B, c, B, m, \text{Sup}(c, m)$

Combining this with c' gives $B, B, \text{Sup}(c, m)$, $B, c, B, m, \text{Sup}(c, m)$, $B, c, B, m, \text{Sup}(c, m)$, which is equivalent to $B, c, B, m, \text{Sup}(c, m)$.

From b' and $A\text{Sup}(m, c)$ we derive $B, B, m, B, m, \text{Sup}(c, m)$, $B, c, B, m, \text{Sup}(c, m)$, $B, c, B, m, \text{Sup}(c, m)$ and $B, c, B, m, \text{Sup}(c, m)$. From b' and $A\text{Sup}(m, c)$ we derive $B, B, m, B, m, \text{Sup}(c, m)$, $B, c, B, m, \text{Sup}(c, m)$, $B, c, B, m, \text{Sup}(c, m)$ and $B, c, B, m, \text{Sup}(c, m)$. From b' and $A\text{Sup}(m, c)$ we derive $B, B, m, B, m, \text{Sup}(c, m)$, $B, c, B, m, \text{Sup}(c, m)$, $B, c, B, m, \text{Sup}(c, m)$ and $B, c, B, m, \text{Sup}(c, m)$.
But from this, if not derive, we can safely assume that, given \(\varphi \), there is some formula \(\psi \) for which \(B_j(B_m \psi \land \neg \psi) \), because if this were not the case, we would have, for some atom \(p \) not occurring in \(\varphi \):

\[
K(A, \pi, p, I) \vdash \varphi \rightarrow B_j(B_m p \rightarrow p)
\]

(5)

From which, using rule \(RC_\Box(\bar{a}) \), we would conclude

\[
K(A, \pi, p, I) \vdash \varphi \rightarrow B_j \text{Refl}(m)
\]

(6)

which either means we have a derivation for \(B_j \perp \) (Joey believes anything), or, if we assume the conjunct \(g' = \text{Ser}(j) \) to be also part of \(\varphi \) (expressing, that actually, Joey’s beliefs are consistent), that we have derived a contradiction with (4).

It is worth noting how the axiomatisation makes it possible that some relational atoms (and hence some first-order frame properties) only hold in the scope of a modal operator (like in property \(a' \) and \(b' \) for example): the axiom \(\text{Ax}_\Box \) and rule \(RC_\Box \) do not require that some relational properties hold, they only specify what should be the case if they hold.

3.2 Completeness

Definition 9. A theory \(\Gamma \) is a set of formulas. For \(\pi \) a set of propositional atoms, \(\Gamma \) is a \(\pi \)-theory if all propositional atoms in \(\Gamma \) are from \(\pi \). Given a logic \(L \), a theory \(\Gamma \) is \(L \)-consistent if \(\perp \) cannot be derived from \(\Gamma \) using the axioms and inference rules of \(L \). A theory \(\Gamma \) is a maximal \(L \)-consistent \(\pi \)-theory if it is consistent and no \(\pi \)-theory \(\Delta \) is \(L \)-consistent while at the same time \(\Gamma \subseteq \Delta \). For a logic \(K(A, \pi, p, I) \), a set of formulas \(\Gamma \) is a witnessed \(\pi \)-theory if for every \((s) \models \square (\bar{a}) \in \Gamma \), there are atoms \(\bar{p} \) such that \((s) \models \theta_{\square}(\bar{a}, \bar{p}) \in \Gamma \), where \(\square(\bar{a}) \) and \(\theta_{\square}(\bar{a}, \bar{p}) \) are axiomatically linked. If \(\Gamma \) is not witnessed, then a formula \((s) \models \square (\bar{a}) \) for which there is no \((s) \models \theta_{\square}(\bar{a}, \bar{p}) \in \Gamma \), is called a defect for the theory \(\Gamma \). Finally, \(\Gamma \) is said to be fully witnessed, if it is witnessed and for every formula of the form \((s) \models \varphi \), either that formula or its negation is in \(\Gamma \).

Lemma 2 (Extension Lemma). Let \(\Sigma \) be a \(K(A, \pi, p, I) \)-consistent \(\pi \)-theory. Let \(\pi' \supseteq \pi \) be an extension of \(\pi \) by a countable set of propositional variables. Then there is a maximal \(K(A, \pi', p, I) \)-consistent, witnessed \(\pi' \)-theory \(\Sigma' \) extending \(\Sigma \).

Before we outline a proof, we first define some languages.

Definition 10. Let the set of agents \(A \), the set of atoms \(\pi \) and the set of relational atoms \(\rho \) be fixed. Let \(L(A, \pi, \rho) \) be as in Definition 1. Let \(\pi^0 = \{ p_0, p_1, \ldots \} \) be a set of fresh atomic variables, i.e., \(\pi \cap \pi^0 = \emptyset \) and \(\pi' = \pi \cup \pi^0 \). Let \(\pi_n = \pi \cup \{ p_i \mid i \leq n \} \). Define \(L_n \) to be \(L(A, \pi_n, \rho) \), and let \(L_\omega \) be \(L(A, \pi, \rho) \). A theory \(\Delta \subseteq \Sigma \) is called an approximation if for some \(n \) it is a consistent \(\pi_n \)-theory. For such a theory, and any number \(k \), the sequence \(\bar{p} = (p_{n+1}, \ldots, p_{n+k}) \) is a new sequence \(\bar{p} \) for \(\Delta \) if \(n \) is the least number such that \(\Delta \) is a \(\pi_n \)-theory.

Proof of Lemma 2 (Sketch). Assume an enumeration of \(\varphi_0, \varphi_1, \ldots \) of all formulas of the form \((s) \models \square (\bar{a}) \), where \(s \) is a pseudo modality and \(\square(\bar{a}) \in \rho \). Define

\[
\Delta^+ = \begin{cases}
\Delta \cup \{ (s) \models \neg \theta_{\square}(\bar{a}, \bar{p}) \} & \text{where } \bar{p} \text{ is a new sequence for } \Delta, \text{ and } (s) \models \square(\bar{a}) \text{ is the first defect for } \Delta, \\
\Delta & \text{if this exists otherwise}
\end{cases}
\]

Clearly, by \(\text{Ax}_\Box \), the set \(\Delta^+ \) is consistent when \(\Delta \) is and hence, if \(\Delta \) is an approximation, so is \(\Delta^+ \). To define the extension \(\Sigma' \) of \(\Sigma \), assume \(\varphi_0, \varphi_1, \ldots \) to be an enumeration of the formulas in \(L_\omega \), and define \(\Sigma_0 = \Sigma \), and

\[
\Sigma_{2n+1} = \begin{cases}
\Sigma_{2n} \cup \{ \varphi_n \} & \text{if this is consistent} \\
\Sigma_{2n} \cup \{ \neg \varphi_n \} & \text{else}
\end{cases}
\]

\[
\Sigma_{2n+2} = (\Sigma_{2n+1})^+
\]

Finally, let \(\Sigma' = \bigcup_{n \in \mathbb{N}} \Sigma_n \). By construction, \(\Sigma' \supseteq \Sigma \) is a maximal \(K(A, \pi, p, I) \)-consistent, witnessed \(\pi' \)-theory.

Definition 11 (Canonical Model). The canonical model \(M^c = (W^c, R^c, I, V^c) \) for the logic \(K(A, \pi, p, I) \) has:

- \(W^c = \{ \Gamma \mid \Gamma \) is a maximal \(L_\omega \)-consistent witnessed \(\pi' \)-theory\};
- \(R^c \models \Gamma \) if for all \(\varphi \in L_\omega \) it holds that if \([a] \varphi \in \Gamma \), then \(\varphi \in \Delta \);
- \(I \) as given as a parameter of the logic;
- \(V^c_p = \{ \Gamma \mid p \in \pi' \cap \Gamma \} \).

Lemma 3. Suppose the following holds:

1. \(\theta_{\square}(\bar{a}, \bar{p}) \) is a purely modal formula;
2. \(\theta_{\square}(\bar{a}, \bar{p}) \) and \(\square(\bar{a}) \) are linked through the rule \(RC_\Box \) and the axiom \(\text{Ax}_\Box \);
3. The first order formula \(I(\square(\bar{a})) = \Theta(\bar{a})(x) \) is equivalent with the second order formula \(\forall \bar{P} \Theta(\bar{a}, \bar{P})(x) \) where \(\Theta(\bar{a}, \bar{P})(x) \) is \(ST(\theta_{\square}(\bar{a}, \bar{P}))(x) \).

Then, in the canonical model, \(\square(\bar{a}) \) and \(\Theta(\bar{a})(x) \) are connected as in Definition 4, i.e., for all \(\Delta \in M^c \) we have \(M^c, \Delta \models \square(\bar{a}) \) iff in \(M^c \) it holds that \(I(\square(\bar{a}))(\Delta) \).

Lemma 3 paves the way for a coincidence lemma that guarantees that membership and truth in the canonical model coincide. We then get:

Theorem 2. If the assumptions of Lemma 3 hold, the logic \(K(A, \pi, p, I) \) is sound and complete with respect to the class of \(K(A, \pi, p, I) \) models.

Definition 12. A purely modal formula \(\varphi \) is canonical for a first order property \(\Phi \), if the canonical model for the modal logic \((K + \varphi)(A, \pi, p, I) \) has the property \(\Phi \).

There are many examples of canonical formulas: all Sahlqvist formulas are canonical [8].

Theorem 3. Let \(\varphi_i \) be canonical for \(\Phi_i \), \(i \leq n \). Then the logic \((K + \varphi_1, \ldots, \varphi_n)(A, \pi, p, I) \) is sound and complete with respect to all models in \(K(A, \pi, p, I) \) that satisfy \(\Phi_1, \ldots, \Phi_n \).

4. CONCLUSION

First, note that our modelling of locality is different from local frame correspondence as defined in [3], and quite distant from the use of local propositions in epistemic logic [6], propositions that do not change truth value within an agent’s equivalence class.

We have so far assumed that the properties of \(\square(\bar{a}) \) are those specified by the axiom \(\text{Ax}_\Box \) and rule \(RC_\Box \). However, one
can add connections between $\Box(\vec{a})$ and modal formulas, or between different $\Box_1(\vec{a}_1)$ and $\Box_2(\vec{a}_2)$ atoms. For instance

$$\text{Refl}(a, a) \rightarrow \text{Trans}(a, a, a)$$

(7)

added to an epistemic logic has the effect that whenever a’s knowledge is veridical, a is also positively introspective. I.e., we would have, semantically, that whenever $M, s \models K_a \varphi \rightarrow \varphi$, for all φ, then also $M, s \models K_a \varphi \rightarrow K_s K_a \varphi$, for all φ. This again is a property that cannot be expressed in standard, ‘global’ modal logic. As a second example, in an epistemic temporal modal logic, one could add an axiom

$$\text{Trans}(a, a, a) \rightarrow F (\text{Trans}(a, a, a) \land \text{Eucl}(a, a, a))$$

(8)

saying that whenever agent a is positively introspective, he will eventually also become negatively introspective. As a third example, a simple axiom like

$$\text{Ser}(a) \rightarrow \text{Ser}(b)$$

(9)

in a doxastic setting would mean that whenever a’s beliefs are consistent, those of b must be consistent as well.

It is possible to view some standard results in modal logic concerning completeness of modal systems as obtained as special cases from our local logic. If the conditions of Theorem 2 are satisfied, and one adds a $\Box(\vec{a})$ as an axiom, one immediately gets completeness with respect to the class of models that satisfy $I(\Box(\vec{a}))$. For instance, in a logic with axioms and rules for $\text{Refl}(a)$, adding $\text{Refl}(a)$ itself as an axiom gives a modal system that is sound and complete with respect to the class of reflexive Kripke models. Of course, this amounts to the same thing as adding $\text{Refl}(a, \vec{a}, \vec{b})$, which is directly clear from rule \Box_R (take $\varphi = \bot$ and s the empty sequence). Finally, it is important to realise that, although we presented the axioms for the underlying logic (the formulas φ_i that we assumed to be canonical) and the relational atoms as two independent layers, let us recall that [20] showed that interaction properties between the modalities and the relational atoms may be automatically ‘imported’. For the case of epistemic logic $S5$ with at least two agents and the $\sup(a, b)$ atom, one can derive that $\sup(a, b) \rightarrow K_a \sup(a, b)$ and $\neg \sup(a, b) \rightarrow K_b \neg \sup(a, b)$, in other words, in such a logic, it is derivable that if agent a considers at least the states possible that b considers possible, then b knows this! Similarly, if there is a state considered possible by b but not by a, then agent b knows this as well!

To summarise, we have presented a flexible way to deal locally with quantification over formulas. In particular, we have shown how, under some mild conditions, in a modal logic that extends K with some canonical axioms, one can add a number of relational atoms, for each of them an axiom and an inference rule, such that the logic is complete for the class of models that interpret the atom as a first order property of the underlying frame. We argued that this presents many opportunities to express properties concerning the knowledge or beliefs of agents in a local way, so that they are only true now, or as a belief or knowledge of some specific agents. Although we focussed on epistemic and doxastic logics, our technique is applicable in temporal and dynamic settings as well. On our agenda is to study how our framework behaves in a dynamic epistemic logic setting. For instance, one might consider the effect of publicly announcing relational atoms, like $\sup(a, b)$, which would mean that it is announced that a knows at least what b knows. After such an announcement, one would expect that the local property becomes global again, in many cases it would become a validity in the resulting model that $\forall y (R_x \Rightarrow R_{xy})$.

Like we explained, our completeness proof borrows ideas from both [16] and [5]. Also, the inference rule \Box_R is reminiscent of an inference rule for irreflexivity [9]. However, it is important to stress that the approaches mentioned aim to axiomatise global properties. As far as we know, the work presented in this paper is a first general approach to local properties in models.

We thank the AAMAS reviewers for their helpful comments.

5. REFERENCES