Analysis of Two Additional Signaling Molecules in *Streptomyces coelicolor* and the Development of a Butyrolactone-Specific Reporter System

Nai-Hua Hsiao,1,2 Satoshi Nakayama,3 Maria Elena Merlo,2 Marcel de Vries,4 Robert Bunet,1,5 Shigeru Kitani,3 Takuya Nihira,3 and Eriko Takano1,2,*

1Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany
2Department of Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9751 NN Haren, The Netherlands
3International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
4Centre for Medical Biomics, University Medical Centre Groningen, 9713 AV Groningen, The Netherlands
5Present address: Biotica, Chesterford Research Park, Little Chesterford, Cambridge CB10 1XL, UK
*Correspondence: e.takano@rug.nl
DOI 10.1016/j.chembiol.2009.08.010

SUMMARY

γ-Butyrolactone bacterial hormones regulate antibiotic production and morphological differentiation in *Streptomyces* species. One γ-butyrolactone, SCB1, has been previously characterized in *Streptomyces coelicolor*. Here we report the characterization of two additional γ-butyrolactones, named SCB2 (2-[1′-hydroxyoctyl]-3-hydroxymethylbutanolide) and SCB3 (2-[1′-hydroxy-6′-methyloctyl]-3-hydroxymethylbutanolide), possessing an antibiotic stimulatory activity. To elucidate the specificity determinants of these ligands for the receptor protein, ScbR, 30 chemically synthesized γ-butyrolactone analogs were tested by utilizing the release of ScbR from DNA upon binding to a γ-butyrolactone, which can be detected by kanamycin resistance. The butyrolactone detection method developed here revealed that ScbR shows preference toward a ligand possessing a 7–10 carbon C-2 side chain, a C-1′-β-hydroxyl group, and a C-6′-methyl branch that coincides with SCB3. Moreover, this method was successfully used to screen for potential γ-butyrolactone producers from commercial-antibiotic-producing *Streptomyces*.

INTRODUCTION

Small extracellular signaling molecules called γ-butyrolactones are involved in the regulation of antibiotic production and, in some cases, morphological differentiation in the soil-dwelling *Streptomyces* (Takano, 2006). Regarded as bacterial hormones, the γ-butyrolactones are active at nanomolar concentrations and are thought to diffuse freely in and out of the cell. Twelve γ-butyrolactones, which have a 2,3-di-substituted γ-butyrolactone skeleton in common, have been identified to date. These have been classified into the following three groups based on their structural differences (Figure 1): (1) A-factor type, possessing a 1′-keto group; (2) virginiæ butanolide (VB) type, possessing a 1′-z-hydroxyl group; and (3) IM-2 type, possessing a 1′-β-hydroxyl group (Choi et al., 2003). Early studies in *Streptomyces coelicolor* led to the partial elucidation of six γ-butyrolactone compounds (see Figure S1 available online; Anisova et al., 1984) but no biological function was determined in the producing strain. Takano et al. (2000) characterized the IM-2-type compound SCB1 from *S. coelicolor* that possesses antibiotic stimulatory activity, but does not have same structure as those identified by Anisova et al. (1984). In this study, two additional γ-butyrolactones, named SCB2 and SCB3, were successfully isolated from *S. coelicolor* and their chemical structures elucidated. Like SCB1, they also exhibit antibiotic stimulatory activity in the producing strain.

The published and most widely used assays for detecting the γ-butyrolactone signaling molecules are bioassays that detect antibiotic production (Hara and Beppu, 1982; Nihira et al., 1988; Sato et al., 1989; Takano et al., 2000). For example, in *S. coelicolor*, the SCB1 activity is determined by observing the induced production of the pigmented antibiotics actinorhodin and undecylprodigiosin (Takano et al., 2000). These bioassays, however, can be tedious and in some cases difficult to use because antibiotic production can be effected by indicator lawn concentration, medium conditions, and cultivation time. Furthermore, the γ-butyrolactones are produced in minute quantities and are difficult to isolate. Therefore, to study ligand specificity to the receptor and to detect novel γ-butyrolactones, a simple yet sensitive and reproducible detection method is necessary.

Previous studies revealed that the γ-butyrolactone receptor, ScbR, regulates the antibiotic production in *S. coelicolor* through repressing the transcription of its own gene and that of *cpkO*, a pathway-specific regulatory gene for the CPK antibiotic biosynthesis gene cluster (Takano et al., 2005 and Pawlik et al., 2007). The repression is abolished by the presence of the γ-butyrolactones, resulting in the transcription of the target genes. Based on these findings, we have designed and tested a new γ-butyrolactone detection method using ScbR as a sensor and the *cpkO* promoter coupled with a promoterless kanamycin resistance gene as a reporter to detect the γ-butyrolactones.
A-facotor type

racemic A-factor

VB type

VB type (-)-SCB1 [2R,3R,1'S]

VB type (+)-SCB1 [2S,3S,1'S]

IM-2 type

SCB1 (-)-SCB1 [2R,3R,1'S]

(+)-SCB1 [2S,3S,1'S]

Figure 1. The Types of the γ-Butyrolactones and Their Examples

The three different types of the γ-butyrolactones are indicated and their examples from SCB1. Chemical structures of SCB1 [(−)-SCB1 (2R,3R,1'R)], its isomers [(+)-SCB1 (2S,3S,1'S)], VB type [(−)-SCB1 (2R,3R,1'R)], VB type [(+)-SCB1 (2S,3S,1'R)], and the racemic A-factor are shown, and the names of chemical structures are indicated below.

Synthetic analogs of A-factor were analyzed for their biological activity in Streptomyces griseus, the cognate host for A-factor (Khokhlov, 1991). Similarly, Nihira and coworkers chemically synthesized VB analogs (Nihira et al., 1988). These analogs were tested for their ability to induce virginiamycin in the VB cognate host, Streptomyces virginiae. These results from both groups indicate the specificity of the VB or A-factor receptor and the γ-butyrolactone analogs. However, a systematic analysis of chemically synthesized γ-butyrolactone analogs to the receptor protein, ScbR, from S. coelicolor has never been carried out.

Therefore, to elucidate the specificity determinant, we have synthesized 30 γ-butyrolactone analogs including two newly identified SCBs, SCB2 and SCB3. The biological activity of the analogs was measured using the novel kanamycin bioassay and affinity to ScbR was analyzed. Furthermore, we report the possible application of this assay to detect γ-butyrolactones produced by actinomycetes.

RESULTS

The Isolation and Determination of New SCBs from S. coelicolor

The structure of SCB1, a γ-butyrolactone in S. coelicolor M145 with antibiotic stimulatory activity, has previously been determined (Takano et al., 2000). High-performance liquid chromatography (HPLC) analysis indicates the presence of two further peaks possessing antibiotic stimulatory activity in S. coelicolor culture extracts, in addition to SCB1. These two minor peaks were further analyzed using an antibiotic bioassay described previously (Takano et al., 2000).

One HPLC peak fraction with a retention time (RT) very soon after SCB1 was applied to a C18 reverse-phase column and a bioactive peak with a RT of 24–25 min was detected (Figure 2A). This sample was subjected to 400 MHz 1H-NMR for structure elucidation and showed that the structure might be similar to that of IM-2 C8, especially because a triplet Me signal at 0.89 ppm indicated the presence of one terminal Me on a linear side chain, unlike the terminally branched side chain of SCB1 showing doublet Me signals (Figure S2). To further determine the structure, chemically synthesized racemic IM-2 C8 (see Experimental Procedures) was used for comparison of the C18 HPLC retention time, which suggested the structure to be correct (Table 1). Furthermore, the bioassay of the synthetic IM-2 C8 was active at similar concentrations to the natural SCB1 (data not shown). This compound was named SCB2 and the structure was determined as 2-(1′-hydroxyoctyl)-3-hydroxy-methylbutanolide (Figure 2B).

The other minor HPLC peak fraction was also applied onto a C18 reverse-phase column and a bioactive peak with the RT of 41–45 min was detected (data not shown). Assuming that the lactone backbone is retained, the RT of 41–45 min is in between those of IM-2 C8 (linear C8 side chain, 24–25 min) and IM-2 C9 (linear C9 side chain, 54–56 min). Therefore the structure of the compound with this RT could be IM-2 C9-sec or IM-2 C9-i.

To further test this hypothesis, the two racemic IM-2 C9-sec and IM-2 C9-i were chemically synthesized and the RT was determined on a reverse-phase HPLC. The chemically synthesized racemic IM-2 C9-sec eluted at 44–46 min whereas the racemic IM-2 C9-i, eluted at 48–50 min (Table 1), suggesting that IM-2 C9-sec might be the structure of the second peak. This compound was named SCB3 and the structure was determined as 2-(1′-hydroxy-6′-methyltyloctyl)-3-hydroxybutanolide (Figure 2C).

To further confirm the structure of SCB2 and SCB3, mass spectrometry (MS) and tandem MS were conducted using the high-accuracy Orbitrap MS on the synthesized SCB1, SCB2, SCB3, IM-2 C9-i, and the ethyl acetate extract of supplemented minimum medium solid (SMMS)-grown S. coelicolor M145. The RT for the synthesized SCB1, SCB2, SCB3, and IM-2 C9-i were 40.33, 41.12, 44.21, and 49.35/57.57, respectively (Table 1). In the M145 ethyl acetate extract, RTs that correspond to the mass equivalent to SCB1 [(M+H)+ 245.17], SCB2 [(M+H)+ 245.17], and SCB3 [(M+H)+ 259.19] were similar but somewhat earlier than the synthetic compounds (Table 1). This might be due to the impurity in the M145 ethyl acetate extracts. However, a mass corresponding to SCB3 [(M+H)+ 259.19] was not detected at the same RT as IM-2 C9-i. This strongly confirms the previous analysis and that the structure of SCB3 is indeed 2-(1′-hydroxy-6′-methyltyloctyl)-3-hydroxybutanolide. The MS and tandem MS spectra of the captured molecules in the M145 ethyl acetate extract show high similarity to the synthesized SCB1 and SCB2 [both have (M+H)+ 245.17] and also to SCB3 [(M+H)+ 259.19] spectra that include the mono- or di-dehydrated structures of SCB1, SCB2, or SCB3, confirming the production of these three butanolides in M145.
Synthesis of \(\gamma\)-Butyrolactone Analogs for Use in Structure-Activity Studies

The newly identified SCBs differ in the nature of the C-2 side chain compared with the previously identified compound SCB1. To determine the specificity of these ligands to the receptor, further racemic analogs, IM-2 type, VB type, and A-factor type were chemically synthesized with different side-chain length and branching. Thirty different analogs can be grouped into four types based on structure: (1) SCB1 isomers: IM-2 type: (-)-SCB1 \([2R,3R,1'R]\), (+)-SCB1 \([2S,3S,1'S]\), VB type: (-)-SCB1 \([2R,3R,1'S]\), (+)-SCB1 \([2S,3S,1'R]\); (2) IM-2-type analogs possessing a C-1'-\(\alpha\)-hydroxyl group with various linear and branched C-2 side chains; (3) a VB-type series possessing a C-1'-\(\alpha\)-hydroxyl group with various linear and branched C-2 side chains; and (4) A-factor type series possessing a C-1'-keto group. The chemical structures are shown in Figures 1 and 4.

A New \(\gamma\)-Butyrolactone Detection Assay Using Kanamycin Resistance

To test the activity of the chemically synthesized analogs, the previously published antibiotic bioassay based on the precocious production of colored antibiotics could have been utilized (Takano et al., 2000). However, this method is not always easy to score because the production of the colored antibiotics can vary with time, density of the inoculum used for the indicator lawn, and batch of media used. Therefore, a new reporter system that is both easier to perform and gives a clearer measure of \(\gamma\)-butyrolactone activity was developed.

ScbR, the \(\gamma\)-butyrolactone receptor, which has been shown to be the only receptor that can recognize the \(\gamma\)-butyrolactones to promote antibiotic stimulatory activity, binds to its own promoter region and to that of \(\text{cpkO}\), a pathway-specific regulatory gene for the CPK cluster, and thereby represses the transcription (Takano et al., 2005 and Pawlik et al., 2007). In the

Table 1. Retention Time of SCB1, SCB2 and SCB3 Chemically Synthesized or Extracted from M145 Analyzed by HPLC or by Nano-LC-Orbitrap MS

<table>
<thead>
<tr>
<th>Compound</th>
<th>HPLC (C18 RP Column)</th>
<th>Nano-LC-Orbitrap MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemically synthesized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCB1</td>
<td>23–24</td>
<td>40.33</td>
</tr>
<tr>
<td>SCB2 (IM-2 C(_9))</td>
<td>25–27</td>
<td>41.12</td>
</tr>
<tr>
<td>SCB3 (IM-2 C9-sec)</td>
<td>44–46</td>
<td>44.21</td>
</tr>
<tr>
<td>IM-2 C(_9))</td>
<td>48–50</td>
<td>49.35/57.57</td>
</tr>
<tr>
<td>M145 ethyl acetate extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCB1</td>
<td>22–23</td>
<td>39.30</td>
</tr>
<tr>
<td>SCB2 (IM-2 C(_9))</td>
<td>24–25</td>
<td>40.20</td>
</tr>
<tr>
<td>SCB3 (IM-2 C9-sec)</td>
<td>40–48</td>
<td>43.97</td>
</tr>
</tbody>
</table>
The IM-2-type \(\gamma\)-Butyrolactone Analog with a Long C-2 Side Chain Shows the Highest Specificity in the Kanamycin Bioassay

The chemically synthesized structural analogs of SCBs were tested for their binding specificity toward ScbR according to the kanamycin bioassay results. The activity measurement taken was the minimum amount of compound required for growth, as determined by finding the lowest amount of compound capable of inducing a visible halo of growth in the bioassay (Table 2).

A confluent lawn of \(S.\ coelicolor\) LW16::pTE134 spores was plated onto Difco Nutrient Agar (DNAgar) plates containing 5 \(\mu\)g/ml kanamycin and spotted with synthesized SCB1 (6.25–0.001 \(\mu\)l) and the M145 ethyl acetate extract (1 and 0.3 \(\mu\)l) at the time of inoculation. After incubation, the kanamycin-resistant colonies grew around the spot where the \(\gamma\)-butyrolactones had diffused (Figure 3). The same samples, the SCB1 and M145 ethyl acetate extract, 0.25 and 0.05 \(\mu\)l and 1.0 and 0.3 \(\mu\)l, respectively, were used for the antibiotic bioassay and also gave precocious antibiotic production (Figure 3). To determine the lowest working concentration detectable by the kanamycin bioassay, SCB1 compound compared with the racemic mixtures. The (+)-stereochromical compound, which is present in the racemic mixture, showed 250-fold less activity in the case of SCB1 (Table 2), indicating that these stereochromical compounds for the other \(\gamma\)-butyrolactones might also have almost no activity and can be disregarded. Therefore, the activity for the racemic mixtures is approximately half for SCB2 (which possesses one chiral carbon) and a quarter for SCB3 (which possesses two chiral carbons) of what is observed. Taking this into account, the activity can be recalculated to: SCB1 = 0.025, SCB2 = 0.025, SCB3 = 0.006 \(\mu\)g. In conclusion, SCB3 has the highest affinity toward ScbR, followed by SCB1 and SCB2 (Table 2 and Figure S5).

The diameters of the halo detected with 6.25, 1.25, 0.25, 0.05, and 0.025 \(\mu\)g SCB1 are 3.5, 3.0, 2.7, 2.0, and 1.0 cm, respectively (Figure 3). This shows that the size of the growth halo increases with increasing amounts of the natural SCB1. However, the relationship is not linear but shows a sigmoidal curve, and therefore it is difficult to determine the concentration of samples by analyzing the size of the growth halo.
Racemic A-factor (6.25, 1.25, and 0.25 \(\mu g \)) was tested and the minimum amount required for growth was 1.25 \(\mu g \) (Figure S4). No growth was observed with racemic A-factor with a shorter linear C-2 side chain, C4 or C5 (Table 2).

Twenty-seven chemically synthesized SCB1 isomers, racemic IM-2-type, racemic VB-type \(\gamma \)-butyrolactone analogs were also tested using a range from 62.5 \(\mu g \) to 0.01 \(\mu g \) (Table 2, Figure 4).

Consistent with the previous results (Takano et al., 2000), among the four pure SCB1 isomers \((-/-C_0\)-SCB1, \((+/-C_0\)-SCB1, \((-/-C_0\)-SCB1, \((+/-C_0\)-SCB1, representing the four different configurations of SCB1, \((-/-C_0\)-SCB1 showed the highest activity, the minimum 0.025 \(\mu g \) being 250-fold lower than with the other three analogs (Figure 1 and Figure S5). As also reported previously (Takano et al., 2001), ScbR showed a higher specificity toward the IM-2-type compounds possessing a \(1\beta \)-hydroxyl group, rather than the VB type, which have a \(1\alpha \)-hydroxyl group (Table 2).

The activity of the chemically synthesized IM-2-type analogs with varying lengths of the linear C-2 side chain was tested. Those that possessed a length of 6 to 11 carbons had the most specificity (Figure S6). No growth at all was detected with the analogs possessing 5 or fewer carbons using up to 31.25 \(\mu g \) compound. Because the maximum carbon chain length tested was C11, the activity beyond this length is not known. The most active among the IM-2-type analogs was the racemic SCB2 (IM-2 C8, 0.05 \(\mu g \)), which possesses an 8 carbon C-2 side-chain length (Table 2).

Similarly, the specificity of the chemically synthesized racemic VB type analogs with varying lengths of the linear C-2 side chain was tested, and the 7 to 10 carbons had the highest specificity (Figure S7). No growth was detected using 62.5 \(\mu g \) racemic VB C6 (racemic VB-C, data not shown).

The different branching positions at the same C-2 side-chain length within the IM-2-type and VB-type analogs were also compared. The pure SCB1 \((-/-SCB1), possessing a C-6'-methyl group, is 50-fold more active than the racemic IM-2 C8-s, possessing a C-5'-methyl group, and 10-fold more active than the racemic IM-2 C7, possessing a linear C-2 side chain. Furthermore, the racemic SCB3 (IM-2 C8-s, possessing C-6'-methyl group, is 10-fold more active than the racemic IM-2 C9-s, possessing a C-7'-methyl group, and 2-fold more active than the racemic SCB2 (IM-2 C9), possessing a linear C-2 side chain (Table 2 and Figure S8). However, the VB-type analogs with a branched side chain did not show a significant difference (<6-fold) as seen in the IM-2 type compounds (Table 2 and Figure S8).

Table 2. Minimum Concentration of \(\gamma \)-Butyrolactone Analogs that Show Kanamycin Resistance

<table>
<thead>
<tr>
<th>Analogues</th>
<th>IM-2 Type ((\mu g))</th>
<th>VB Type ((\mu g))</th>
<th>A-Factor Type ((\mu g))</th>
<th>SCB1 Isomers ((\mu g))</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>-</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C3</td>
<td>-</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C4</td>
<td>-</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C5</td>
<td>-</td>
<td>-</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C6</td>
<td>12.5</td>
<td>-</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C7</td>
<td>0.25</td>
<td>6.25</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C8</td>
<td>0.05</td>
<td>1.25</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C9</td>
<td>0.25</td>
<td>0.25</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C10</td>
<td>1.25</td>
<td>1.25</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C11</td>
<td>6.25</td>
<td>-</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C11-sec</td>
<td>1.25</td>
<td>12.5</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>C9-sec</td>
<td>0.25<sup>g</sup></td>
<td>1.25</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>A-factor</td>
<td>NA</td>
<td>NA</td>
<td>0.025<sup>g</sup></td>
<td>NA</td>
</tr>
<tr>
<td>((-/-SCB1)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.025<sup>g</sup></td>
</tr>
<tr>
<td>(+/+SCB1)</td>
<td>NA</td>
<td>NA</td>
<td>6.25<sup>h</sup></td>
<td>NA</td>
</tr>
<tr>
<td>VB type ((-/-SCB1)</td>
<td>NA</td>
<td>NA</td>
<td>6.25<sup>h</sup></td>
<td>NA</td>
</tr>
<tr>
<td>VB type (+/+SCB1)</td>
<td>NA</td>
<td>NA</td>
<td>6.25<sup>h</sup></td>
<td>NA</td>
</tr>
</tbody>
</table>

All compounds are a racemic mixture apart from the four SCB1 isomers. Minus sign indicates no growth halo on the plate (the highest used amount is 31.25 \(\mu g \), except for VB C6, where 62.5 \(\mu g \) was used); NA, not applicable (this analog is unavailable). The superscript letters a–g indicate the natural \(\gamma \)-butyrolactones.

^a IM-2.
^b VB-C.
^c VB-D.
^d SCB2.
^e SCB3.
^f A-factor.
^g SCB1.
^h The growth halo was not clear.

31.25 \(\mu g \) compound. Because the maximum carbon chain length tested was C11, the activity beyond this length is not known. The most active among the IM-2-type analogs was racemic SCB2 (IM-2 C8, 0.05 \(\mu g \)), which possesses an 8 carbon C-2 side-chain length (Table 2).

Similarly, the specificity of the chemically synthesized racemic VB type analogs with varying lengths of the linear C-2 side chain was tested, and the 7 to 10 carbons had the highest specificity (Figure S7). No growth was detected using 62.5 \(\mu g \) racemic VB C6 (racemic VB-C, data not shown).

The different branching positions at the same C-2 side-chain length within the IM-2-type and VB-type analogs were also compared. The pure SCB1 \((-/-SCB1), possessing a C-6'-methyl group, is 50-fold more active than the racemic IM-2 C8-s, possessing a C-5'-methyl group, and 10-fold more active than the racemic IM-2 C7, possessing a linear C-2 side chain. Furthermore, the racemic SCB3 (IM-2 C8-s, possessing C-6'-methyl group, is 10-fold more active than the racemic IM-2 C9-s, possessing a C-7'-methyl group, and 2-fold more active than the racemic SCB2 (IM-2 C9), possessing a linear C-2 side chain (Table 2 and Figure S8). However, the VB-type analogs with a branched side chain did not show a significant difference (<6-fold) as seen in the IM-2 type compounds (Table 2 and Figure S8).
Table 3. The Streptomyces Species from the Tübingen Collection that Were Tested for \(\gamma \)-Butyrolactone Production

<table>
<thead>
<tr>
<th>Strain</th>
<th>Antibiotic</th>
<th>Growth on Plates</th>
<th>Growth Halo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptomyces antibioticus ETH 6143 (Tü 2)</td>
<td>Cinerubin</td>
<td>O</td>
<td>–</td>
</tr>
<tr>
<td>Streptomyces antibioticus ETH 6677 (Tü 4)</td>
<td>Angolamycin</td>
<td>X</td>
<td>–</td>
</tr>
<tr>
<td>Streptomyces olivaceus ssp. Atratus (Tü 5)</td>
<td>Narbomycin</td>
<td>X</td>
<td>+</td>
</tr>
<tr>
<td>Streptomyces griseus ETH4289 (Tü 19)</td>
<td>Streptomycin</td>
<td>O</td>
<td>–</td>
</tr>
<tr>
<td>Streptomyces tendae ETH11313 (Tü 21)</td>
<td>Carbomycin</td>
<td>O</td>
<td>–</td>
</tr>
<tr>
<td>Nocardia brasiliensis ETH27413 (Tü 69)</td>
<td>Ferrioxamin E</td>
<td>O</td>
<td>–</td>
</tr>
<tr>
<td>Streptosporangium roseum ETH28349 (Tü 74)</td>
<td>Unknown</td>
<td>X</td>
<td>–</td>
</tr>
<tr>
<td>Streptomyces mediteranei (Tü 75)</td>
<td>Rifomycin</td>
<td>X</td>
<td>+</td>
</tr>
<tr>
<td>Microellobosporia cinerea ETH28583 (Tü 76)</td>
<td>Unknown</td>
<td>X</td>
<td>–</td>
</tr>
</tbody>
</table>

Tü 2–Tü 76 indicate strain number of the Tübingen strain collection. X represents strains that grew well on the SMMS and SMMS supplemented with yeast extract; O, strains that barely grew on the SMMS and SMMS supplemented with yeast extract; –, no growth halo on the plate; +, growth halo on the plate.

A summary of the minimum amount required for growth on kanamycin for the chemically synthesized compounds is shown in Table 2.

Identification of Two New Possible \(\gamma \)-Butyrolactone-Producing Actinomycetes Using the Kanamycin Bioassay

The kanamycin bioassay was used to identify possible \(\gamma \)-butyrolactone producers from among nine actinomycetes species obtained from the Tübingen strain collection (Table 3). These nine species were grown on SMMS for 3 days (Figure S9), and \(\gamma \)-butyrolactones were isolated by ethyl acetate extraction (see Experimental Procedures). Some species (Streptomyces antibiotics ETH 6143, Streptomyces griseus ETH4289, Streptomyces tendae, and Nocardia brasiliensis) did not grow well on SMMS or on SMMS supplemented with 5% yeast extract. Nevertheless, all strains were isolated and tested. Extracts from two of nine species, Streptomyces olivaceus ssp. atratus and Streptomyces mediteranei, which are producers of narbomycin and rifomycin, respectively, had an ability to induce a growth halo in the bioassay (Figure S9), suggesting that these two species produce compounds, most likely to be \(\gamma \)-butyrolactones, which have affinity toward ScbR.

DISCUSSION

Multiple \(\gamma \)-Butyrolactones Produced in S. coelicolor

Two additional signaling molecules, SCB2 and SCB3, from S. coelicolor were identified and both exhibit a similar lactone structure to the previously identified compound SCB1, as well as the same IM-2 type stereospecificity. The difference in structure was the C-2 side-chain length with a linear C8 for SCB2 and a branched C9 for SCB3. SCB2 did not correspond to any of the six \(\gamma \)-butyrolactones identified previously; however, because the chirality of SCB3 was not assigned, there is a possibility that it has the same structure as Acl1a (Figure S1; Anisova et al., 1984). Both newly identified compounds induce precocious antibiotic production in an S. coelicolor bioassay, and the highest affinity toward ScbR was shown by SCB3 followed by SCB1 and SCB2 as determined by the kanamycin bioassay.

The \(\gamma \)-butyrolactones from S. coelicolor are synthesized by ScbA, which is a protein also conserved in the A-factor and VB-producing Streptomyces (Hsiao et al., 2007 and Kato et al., 2007). The S. coelicolor scbA deletion mutant does not produce any \(\gamma \)-butyrolactones with antibiotic stimulatory activity (Takano et al., 2001), indicating that SCB1, SCB2, and SCB3 all are synthesized by ScbA. One possible explanation for the different side-chain structures of the three signaling molecule might be due to the precursors used in the biosynthesis, this suggests a somewhat relaxed substrate specificity for ScbA. From the proposed biosynthesis pathway of A-factor in Streptomyces griseus, a dihydroxyacetone phosphate and a \(\beta \)-keto acid derivative is condensed by the ScbA homolog and further reduction and dephosphorylation result in A-factor (Kato et al., 2007). The \(\beta \)-keto acid derivatives might be provided either by a dedicated biosynthesis pathway or by scavenging an intermediate from fatty acid metabolism. We have extensively analyzed the S. coelicolor genome and have been unable to identify a dedicated biosynthesis pathway capable of providing the \(\beta \)-keto acid derivatives. It is therefore seems likely that the fatty acid metabolism intermediates are the precursors for SCB biosynthesis. Streptomyces produce both linear and branched fatty acids (Han et al., 1998), which correlate to the C-2 side-chain differences observed in this work. The same hypothesis has been suggested by Kato et al. (2007).

Interestingly, S. coelicolor is not the only multiple \(\gamma \)-butyrolactone-producing strain to have been reported. Five different virginiae butanolides (VB-A to VB-E) were identified from Streptomyces virginiensis (Yamada et al., 1987 and Kondo et al., 1989), and two active factors were isolated from Streptomyces bikinienis (Gräfe et al., 1983). In addition, \(\gamma \)-butyrolactones from 11 Streptomyces species were analyzed by HPLC (Hashimoto et al., 1992), and only 3 species produced a single \(\gamma \)-butyrolactone, whereas the others produced two to four different compounds. It will be interesting to determine what the exact roles of these different \(\gamma \)-butyrolactones are in their producing strains.

The New \(\gamma \)-Butyrolactone Detection Reporter System

The kanamycin bioassay was successfully applied as a sensitive \(\gamma \)-butyrolactone detection tool in S. coelicolor. It utilizes the cpkO promoter, which is tightly controlled by ScbR and is fused to a kanamycin-resistance cassette along with the \(\gamma \)-butyrolactone receptor, ScbR, as a sensor. The high kanamycin sensitivity in the absence of \(\gamma \)-butyrolactone is due to the specific and high affinity of ScbR to the cpkO promoter resulting in the tight repression of the gene. Some spontaneous resistant mutants do arise, especially with low concentrations of kanamycin (Figure S5). To obtain optimal sensitivity of the assay, kanamycin...
concentrations should be systematically varied to be able to monitor the resistant growth without any background.

The kanamycin bioassay has the same minimum active concentration for SCB1 as with the antibiotic bioassay (256 nM, data not shown), which is reasonable considering that both methods use ScbR as the sensor. However, when recognizing the non-cognate γ-butylactones, the kanamycin bioassay was much more sensitive than the antibiotic bioassay. Only 50-fold higher concentration of A-factor, compared with SCB1, was required to give activity with the kanamycin bioassay, whereas the antibiotic bioassay required 100-fold higher concentration (Takano et al., 2000).

The kanamycin bioassay is also more sensitive than other Streptomyces γ-butylactone assays when detecting the non-cognate signaling molecules. The A-factor bioassay required 3×10^-5-fold higher concentration of VB (non-cognate signal) than A-factor by the streptomyacin cosynthesis method using a streptomyacin nonproducing mutant, S. griseus HH1 (Miyake et al., 1989). A concentration of A-factor or IM-2 (non-cognate signals) that was 1.7 × 10^-4-fold higher than VB was required to trigger virginiamycin production in a liquid culture of S. virginiae (Hashimoto et al., 1992; Nihira et al., 1988), and a concentration of VB-A (non-cognate signal) that was 8.3 × 10^-4-fold higher than IM-2 was required to induce the blue pigment production in liquid cultures of Streptomyces lavendulae FRI-5 (Hashimoto et al., 1992). This might reflect the higher sensitivity of the kanamycin bioassay because it is directly measuring the binding affinity of the ligand to the receptor and not detecting antibiotic production, which is the end product of the signaling cascade and might have other unknown influences. However the higher sensitivity can also lead to background kanamycin resistance observed in some cases, which can be due to perturbations and noise. In conclusion, this new assay is much clearer than the antibiotic bioassay, is simple to use, and directly exhibits sensitivity can also lead to background kanamycin resistance and might have other unknown influences. However the higher sensitivity can also lead to background kanamycin resistance observed in some cases, which can be due to perturbations and noise. In conclusion, this new assay is much clearer than the antibiotic bioassay, is simple to use, and directly exhibits the relationship between ScbR and the ligands.

Similar repressor-inducer reporter systems are available. Tahlan and coworkers have developed a potential screening method to detect ligands isolated from S. coelicolor that bind to tetracycline-inducible repressor (tetR)-like regulators from S. coelicolor using Escherichia coli as a host (Tahlan et al., 2008). The tetR-operator regulation system from E. coli transposon Tn10 has been widely used as a tool in many organisms including Streptomyces (Stebbins et al., 2001; Rodríguez-Garcia et al., 2005). However, this is the first reporter system using a γ-butylactone receptor to detect the signaling molecules in Streptomyces.

ScbR Ligand Specificity
From our data, the chemical analogs with a shorter C-2 side-chain length than 8 (for the IM-2 type) or 9 carbons (for the VB type) resulted in a lower binding affinity than the SCBs and must have at least 6 (for the IM-2 type) or 7 (for the VB type) carbons and no more than 10 (for the VB type) carbons for the C-2 side-chain length to bind to ScbR. We do not have ligands with more than 11 carbons at the C-2 side chain to conclude the limit of the longest C-2 side-chain length for the IM-2 type. The IM-2-type analog with 9 carbons for the C-2 side-chain length with branching at C-6’ position showed the best affinity than the branching at C-7’ position and no branching, in this order. We have therefore shown for the first time, that the branching at the C-6’ position is the preferred ligand to bind to ScbR. In conclusion, the γ-butylactone structure with the highest affinity to ScbR is as follows: (1) IM-2 type configuration, (2) C-2 side-chain length of C7 or C8, (3) branching at the C-6’ group.

Twenty-one synthetic analogs of A-factor with varying lengths of either linear or branched C-2 side chains or different substitutes at C-3 position were analyzed for their biological activity in S. griseus, the cognate host for A-factor (Kokhlov, 1991). None of these analogs gave significant activity compared with A-factor except when the C-3 position was substituted for acylated products. The A-factor type analogs with one carbon longer or shorter than C8 all with a methyl residue at the end of the chain resulted in a 10-fold lower activity compared with A-factor (Kokhlov, 1991). Similarly, Nihira and coworkers chemically synthesized 41 VB analogs, varying the C-2 and C-3 stereochemistry to include the A-factor and cis and trans VB type of γ-butylactones as described above, and also varying the C-2 linear side-chain length up to C10, and different substitutes for the C-3 position (Nihira et al., 1988). These analogs were tested for their ability to induce virginiamycin in the VB cognate host, S. virginiae. The cis VB-type compounds with C7 and C8 linear side chain was most active whereas the trans VB type compounds with the equivalent side-chain length gave 12.5-fold less activity. The C9 A-factor type compound was the only A-factor analog to give the highest activity, which was 1250-fold less compared with the cis VB-type C7 compound, thus demonstrating the importance of the C-1’ free hydroxy group.

For all three Streptomyces γ-butylactone receptors that were tested using synthetic analogs, the length of the C-2 side chain is preferred to be C7 or C8. Furthermore, none exceeded in their binding specificity toward the receptor than the naturally produced γ-butylactones. To obtain chemical ligands that have better binding properties than the natural compounds, other structural substitutes than that of the C-2 side-chain length or branching will be interesting to test. Three-dimensional crystallization analysis of the receptor with the various γ-butylactones might give valuable information on further binding specificities and possible new structural substitutions.

Potential Application for the Kanamycin Bioassay
In the screening for possible new γ-butylactone producers (Table 3 and Figure S9), two of the nine tested strains from the Tübingen strain collection were able to produce compounds that could be recognized by ScbR. These strains have not been shown previously to produce any γ-butylactones. The extracts from the other strains did not show γ-butylactone-induced kanamycin-resistant growth, but this might be due to the unsuitable growth conditions used for the preparation of the extracts because in some cases the strains did not grow efficiently. It is also possible that the extraction of the γ-butylactone was not at the appropriate time of growth, because these compounds are known to be produced in a growth-dependent manner (Takano, 2006). Therefore, optimizing the suitable medium for growth and altering the timing for the extract preparation might assist in the detection of other γ-butylactones from different strains. This result, together with the higher sensitivity toward the γ-butylactones than the commonly used
bioassay, proves the feasibility of the kanamycin bioassay as a powerful tool for large-scale screening of γ-butyrolactone producers.

SIGNIFICANCE

The significant conclusion from this work is the characterization of two further γ-butyrolactones from *S. coelicolor* and the identification of the γ-butyrolactone receptor (ScbR) specificity determinant by use of a novel small signaling molecule reporter system analyzing both natural and synthetic ligands. This is the first report where many synthetic γ-butyrolactone analogs were tested systematically to compare their binding specificity to ScbR. The favored ligand consists of an IM-2-type β-hydroxyl group on the C-1' position, with a long (7-10 carbons, with C8 representing the best) C-2 side chain. Surprisingly, we have been able to show for the first time the importance of a methyl branch at the C-6' position of the C-2 side chain. This preference was also confirmed because the newly characterized γ-butyrolactone, SCB3, follows the ScbR ligand preference and has the highest affinity compared with the two other cognate signaling molecules. Understanding the ligand specificity determinant will allow further potential design of new compounds to either inhibit or to promote antibiotic production by controlling ligand binding to the γ-butyrolactone receptor. The new sensitive reporter system can be applied to detect γ-butyrolactones that are only produced in small quantities and can be difficult to detect. We have demonstrated this use by identification of two new commercial-antibiotic-producing *Streptomyces* strains that most likely can synthesize γ-butyrolactones with affinity toward ScbR.

EXPERIMENTAL PROCEDURES

Bacterial Strains, Plasmids, and Growth Conditions

Streptomyces strains M145, LW16 (this work), and *S. coelicolor* A3(2) were manipulated as described elsewhere (Kieser et al., 2000). *E. coli* JM101 was manipulated according to Sambrook et al. (1989). MS agar (Kieser et al., 2000) was used to prepare spores and selection of exconjugants. SMM and SMMagas (Takano et al., 2001) was used to isolate γ-butyrolactones. SMMagas (Takano et al., 2001) was used for the antibiotic bioassay. DNA agar containing 5 µg/ml kanamycin was used for the kanamycin bioassay. pGem-T (Promega) was used for cloning polymerase chain reaction (PCR) products. plJ487 (Ward et al., 1986), plJ6120 (Takano et al., 2001), and plJ682 (Hong et al., 2004) were used to construct the new reporter.

Purification and Structural Determination of γ-Butyrolactones

The purification was conducted as reported previously (Takano et al., 2000). The HPLC peak samples with precocious antibiotic production from these transformants. SMM and SMMS agar (Takano et al., 2001) was used to isolate tyrolactones. SMMS grown M145 ethyl acetate extracts were injected as negative control.

**The HPLC peak samples with precocious antibiotic production from these transformants. SMM and SMMS agar (Takano et al., 2001) was used to isolate tyrolactones. SMMS grown M145 ethyl acetate extracts resuspended in 100% MeOH was analyzed using nano-liquid chromatography (LC) on-line coupled to an Orbitrap MS (Thermo Scientific Corporation). Chemically synthesized SCB1, SCB2, SCB3, and IM-2 C23 (1 ng/µl) were used as reference standards and SMM and SMMS agar containing the RP4 derivative pUZ8002 (Flett et al., 1997), and transferred to *S. coelicolor* A3(2) ethyl acetate extracts were injected as negative control.

The system was operated with electrospray ionization source in positive mode. LC conditions were as follows: the column was a Dionex C18 column (Acclaim PepMap100, C18, 3 µm, 75 µm i.d. × 15 cm); the mobile phase consisted of A (H2O/0.1% formic acid) and B (acetonitrile/0.1% formic acid); the gradient elution started with 20% B at 3 min, 95% B at 45 min, 95% B at 50 min, and 20% B at 55 min and was then kept at 20% B until 60 min, flow rate 0.100 µl/min, MS mass detection range 150-500 Da. One microfilter of the reference standards and 5 µl acetate extracts were injected. Analysis was done by using Xcalibur software (Thermo Fisher Scientific).

Construction of scbA and scbR Double Deletion Mutant

To construct the scbA scbR double deletion mutant, the disruption cassette, aac(3)IV-onT, from the plasmid pIJ773 (Gust et al., 2003) was amplified by the primers, RB4F and RB4R (Supplemental Data) and the resulting PCR product was cloned into the cosmid vector (Promega) to obtain pTE130. The EcoRI digested fragment from pTE130 was subcloned into the EcoRI site of pJ6120 (which contains an intact scbR and its own promoter region) in the orientation so that the start codon of the promoterless kanamycin gene is flanked by the SacI site (Takano et al., 2005), to create pTE131. A 140 bp PCR fragment, corresponding to 25 to +34 from the starting site, containing a cpkO promoter and the ScbR binding site region (Takano et al., 2005) was amplified by using the primers pkasO1 and pkasO2 (Supplemental Data), which contain an SacI restriction site at the 5' end of each primer, and *S. coelicolor* M145 genomic DNA was used as template. After digestion with SacI, the 137 bp PCR fragment was ligated into SacI-digested pTE131 with the promoter oriented to direct transcription toward the promoterless kanamycin gene to obtain pTE133. A 22.2 kb BglII fragment from pTE133 was then subcloned into a BamHI site of plJ682, an integrating vector, to yield pTE134. The relative orientation of the scbR and the cpkO promoter with the neo was confirmed by PCR with the primers pkasO1, pkasO2, scbR neo2 (Supplemental Data), and by Southern analysis (data not shown). The mutant was named *S. coelicolor* LW16.

Construction of the Kanamycin Assay Strain

The promoterless kanamycin gene was PCR amplified from the plasmid pJ487 by using the primers Tmeneo1 and neo2 (Supplemental Data). The PCR fragment was cloned into pGEM-T vector (Promega) to obtain pTE130. The EcoRI digested fragment from pTE130 was subcloned into the EcoRI site of pJ6120 (which contains an intact scbR and its own promoter region) in the orientation so that the start codon of the promoterless kanamycin gene is flanked by the SacI site (Takano et al., 2005), to create pTE131. A 140 bp PCR fragment, corresponding to 25 to +34 from the starting site, containing a cpkO promoter and the ScbR binding site region (Takano et al., 2005) was amplified by using the primers pkasO1 and pkasO2 (Supplemental Data), which contain an SacI restriction site at the 5' end of each primer, and *S. coelicolor* M145 genomic DNA was used as template. After digestion with SacI, the 137 bp PCR fragment was ligated into SacI-digested pTE131 with the promoter oriented to direct transcription toward the promoterless kanamycin gene to obtain pTE133. A 22.2 kb BglII fragment from pTE133 was then subcloned into a BamHI site of plJ682, an integrating vector, to yield pTE134. The relative orientation of the scbR and the cpkO promoter with the neo was confirmed by PCR with the primers pkasO1, pkasO2, scbRneo2, and neo2. pTE134 DNA was sequenced by MWG Biotech AG (data not shown).

Construction of Double Deletion Mutant

pTE134 was introduced into the methylation-deficient E. coli strain ET12567 containing the RP4 derivative pUBZ002 (Flett et al., 1997), and transferred to *S. coelicolor* LW16 by conjugation (Flett et al., 1997). Single-crossover exconjugants were selected on MS containing hygromycin and nalidixic acid, to obtain transconjugants LW16::pTE134. The genomic DNA was isolated and plasmid integration was confirmed by PCR with the primers JGattB1-fwd and JGattPint-rev (Supplemental Data), which gave an amplified product of 137 bp PCR fragment, corresponding to 25 to +34 from the starting site, containing a cpkO promoter and the ScbR binding site region (Takano et al., 2005) was amplified by using the primers pkasO1 and pkasO2 (Supplemental Data), which contain an SacI restriction site at the 5' end of each primer, and *S. coelicolor* M145 genomic DNA was used as template. After digestion with SacI, the 137 bp PCR fragment was ligated into SacI-digested pTE131 with the promoter oriented to direct transcription toward the promoterless kanamycin gene to obtain pTE133. A 22.2 kb BglII fragment from pTE133 was then subcloned into a BamHI site of plJ682, an integrating vector, to yield pTE134. The relative orientation of the scbR and the cpkO promoter with the neo was confirmed by PCR with the primers pkasO1, pkasO2, scbRneo2, and neo2. pTE134 DNA was sequenced by MWG Biotech AG (data not shown).

The Kanamycin Bioassay

Chemically synthesized autoregulator analogs or methanol-extracted γ-butyrolactones from *S. coelicolor* M145, *JscbA*, and various *Streptomyces* species
Chemistry & Biology

γ-Butyrolactone Reporter Assay in S. coelicolor

were spotted onto a confluent lawn of S. coelicolor LW16:pTE134 spores plated on DNAagar supplemented with kanamycin at a final concentration of 5 μg/ml and then incubated at 30°C for 3 days. Methanol was used as a negative control. For detailed protocol see Hsiao et al. (2009). To determine the detection range of the kanamycin bioassay, 62.5 μg to 0.01 μg autoregulator analogs was tested.

Chemical Synthesis of Autoregulator Analogs

A-factor type analogs (Figure 4) containing a C-1’ keto group with various alkyl side chains at C-2 were synthesized as previously described (Nihira et al., 1988) by reacting 3-(trimethylsilyloxy)methylbutanolide with a suitable linear aldehyde by Aldol condensation. Virginiae butanolide (VB) type analogs (Figure 4) and IM-2 type analogs (Figure 4) with various linear alkyl side chains at C-2 were synthesized as described before (Kim et al., 1989) by reacting 3-(trimethylsilyloxy)methylbutanolide with a suitable linear aldehyde by Aldol condensation.

For the synthesis of VB-type and IM-2 type analogs containing 1’-hydroxy-7’-methyloctyl, 1’-hydroxy-6’-methylheptyl, or 1’-hydroxy-5’-methylheptyl side chain (VB C8, IM-2 C8, VB C9, IM-2 C9, VB C10, IM-2 C10), corresponding branched-chain carboxylic acids (7-methyltanoic acid, and 6-methyltanoic acid) were first synthesized from 5-bromovaleric acid and isobutyl bromide, respectively, using modified Grignard reaction in the presence of dilithium tetrachlorocuprate (Baer and Carney, 1976). Alkyl chloride was prepared from the branched-chain carboxylic acid and was used to synthesize the corresponding A-factor-type analogs, and reduction with NaBH4 gave corresponding VB-type and IM-2-type analogs (Figure 4).

SCB1 and its isomers (Figure 1), which contain 1’-hydroxy-7’-methylheptyl side chain at C-2, were synthesized as previously described (Takano et al., 2000). The synthesized compounds were purified by C18 HPLC and the structure confirmed by 1H-NMR analysis on a Nippon Denshi model JNM-GSX-400 spectrometer at 400 MHz in CDCl3 using CHCl3 δ6 7.25 as an internal reference.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures and nine figures and can be found with the article online at http://www.cell.com/chemistry-biology/supplemental/S1074-5521(09)00279-8.

ACKNOWLEDGMENTS

We dedicate this manuscript to the late Sueharu Horinouchi for his immense contributions to the field of Streptomyces genetics, especially his pioneering work on the γ-butyrolactone system in S. griseus. We thank Anita Brock for assistance in the experiments. We thank Paul Williams and Andy Hesketh for critical reading of the manuscript. We also thank W. Wohlleben for assistance in the experiments. We thank Paul Williams and Andy Hesketh for critical reading of the manuscript. We also thank W. Wohlleben for providing us with the 12 strains from the Tübingen strain collection. N.H.H. was funded by the DFG (TA428/1-1, 1-2) and Osaka University scholarship to travel to the International Center for Biotechnology, Osaka University. M.E.M. was funded by the 4x4 Ubo Emmius from the GBB, University of Groningen. R.B. was funded by the DFG (TA428/2-1, 2-1). E.T. was funded by the Rosalind Franklin Fellowship from the University of Groningen.

Received: April 29, 2009
Revised: July 24, 2009
Accepted: August 21, 2009
Published: September 24, 2009

REFERENCES

γ-Butyrolactone Reporter Assay in S. coelicolor

Chemistry & Biology

